User Tools

Site Tools




  • [Dir34a] P.-A.-M. Dirac. Théorie du positron. In Cockcroft, J. Chadwick, F. Joliot, J. Joliot, N. Bohr, G. Gamov, P.A.M. Dirac, and W. Heisenberg, editors, Structure et propriétés des noyaux atomiques. Rapports et discussions du septieme conseil de physique tenu à Bruxelles du 22 au 29 octobre 1933 sous les auspices de l’institut international de physique Solvay. Publies par la commission administrative de l’institut., pages 203–212. Paris: Gauthier-Villars. XXV, 353 S., 1934 (pdf)
  • [Dir34b] P. A. M. Dirac. Discussion of the innite distribution of electrons in the theory of the positron, Mathematical Proceedings of the Cambridge Philosophical Society, 30 (1934) 150 (pdf)
  • [Fur34] W. H. Furry and J. R. Oppenheimer, On the theory of the electron and positive, Phys. Rev. 45 (1934) 245 (pdf) [Introduces the particle-hole formalism and reordering]
  • [Jor28] P. Jordan and W. Pauli, Zur Quantenelektrodynamik Ladungsfreier Felder, Z. Phys. 47 (1928) 151 (pdf) [§2 introduces the relativistically invariant Pauli-Jordan function]
  • [Kra37] H.A. Kramers, The use of charge-conjugated wave-functions in the hole-theory of the electron, Proceedings Koninklijke Akademie van Wetenschappen 40 (1937) 814-823 (pdf) [Introduces charge conjugation. All publications of Kramers are found here]
  • [Sch48] Julian Schwinger, Quantum Electrodynamics. I. A Covariant Formulation. Phys. Rev. 74 (1948) 1439(pdf)
  • [Sch49] Julian Schwinger, Quantum Electrodynamics. II. Vacuum polarization and Self-Energy. Phys. Rev. 75 (1949) 651 (pdf)
  • [Wic56] Eyvind H. Wichmann and Norman M. Kroll, Vacuum Polarization in a Strong Coulombic Field, Phys/ Rev. 101 (1956) 843 (pdf)

Mean-field QED

  • [Bec93] Adam Bechler, Summation formulae for spherical spinors, J. Phys. A: Math. Gen. 26 (1993) 6039 (pdf)
  • [Bia11] Raffaello Bianco and Raffaele Resta, Mapping topological order in coordinate space, Physical Review B 84, 241106(R) (2011) (pdf)
  • [Cha89a] P Chaix and D Iracane, From quantum electrodynamics to mean-field theory. I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 3791 (pdf)
  • [Cha89b] P Chaix and D Iracane, From quantum electrodynamics to mean-field theory. II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 3815 (pdf)
  • [Hai07] Christian Hainzl, Mathieu Lewin and Jan Philip Solovej, The mean‐field approximation in quantum electrodynamics: The no‐photon case, Comm. Pure Appl. Math., 60 (2007) 546-596 (pdf)
  • [Lew11] Mathieu Lewin. Renormalization of Dirac's polarized vacuum. In Pavel Exner, editor, Mathematical Results In Quantum Physics, pages 45–59. World Scientific Publishing, 2011. Proceedings of the QMath 11 Conference, Hradec Kralove, Czech Republic, 6 –10 September 2010. (pdf)
  • [Sau03] T. Saue and L. Visscher: Four-component electronic structure methods for molecules, in S. Wilson and U. Kaldor (eds.): ``Theoretical chemistry and physics of heavy and superheavy elements'', Kluwer, Dordrecht 2003 (pdf)
  • [Sch15] Jan Schlemmer and Jochen Zahn, The current density in quantum electrodynamics in external potentials, Annals of Physics 359 (2015) 31–45 (pdf)
  • [Schw15] Peter Schwerdtfeger, Lukáš F. Pašteka, Andrew Punnett, Patrick O. Bowman: Relativistic and quantum electrodynamic effects in superheavy elements, Nuc. Phys. A 944 (2015) 551 (pdf)
ncpchem/bibliography.txt · Last modified: 2019/02/26 11:19 by tsaue