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On the Theory of the Electron and Positive
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In this paper we develop Dirac's suggestions for the
interpretation of his theory of the electron to give a con-
sistent theory of electrons and positives. In Section 1, we
discuss the physical interpretation of the theory, the limits
which it imposes on the spatiotemporal description of a
system and in particular on the localizability of the elec-
tron. In Section 2, we set up the corresponding formalism,
introducing wave functions to describe the state of the
electrons and positives in the system, and constructing
operators to represent the energy, charge and current
density, etc. It is shown that the theory is Lorentz in-
variant, and has just that invariance under contact trans-
formations which the physical interpretation requires. The
electromagnetic interaction of the electrons and positives
is formulated, and certain ambiguities which arise here are

discussed. In Section 3, it is shown that in all problems to
which the Dirac equation is directly applicable it gives the
correct energy levels for an electron, and the correct radia-
tive and collision transition probabilities. In these prob-
lems the wave functions are constructed from the solutions
of the Dirac equation. In Section 4, we discuss certain
problems which have no analogue in the original Dirac
theory of the electron, show that a certain part of the
energy of an electromagnetic field in general resides in the
electrons and positives, and consider the extent to which, in
the present state of theory, this can be detected by experi-
ment. For two charges within a Compton wave-length of
each other the law of force is not quite Coulomb's law. The
deviations though small should in principle be detectable
when protons are scattered in hydrogen.

ITH the discovery of the positive electron,

~ ~ ~

~

one of the most curious and radical pre-
dictions of Dirac's theory of the electron has re-
ceived experimental support. It appears that the
positive electron has the properties of the anti-
electron of the Dirac theory, and that in some
cases, notably in the absorption and internal
conversion of gamma-rays, the circumstances of
the production of pairs of electrons and positives
are just those to be expected from the theory. We
want to develop the formalism of the theory in its
present form as clearly and consistently as
possible, and to show how the formalism is to be
interpreted physically, where it justifies earlier
methods of calculation, where it leads to new
predictions, and where these predictions fail. We
shall see that the present theory is limited in
very much the same way as the quantum theory
of wave fields: here, too, it is possible to develop
a consistent and relativistic formalism which
within wide limits corresponds to the possibilities
of physical observation and gives correct results;
but here, too, the legitimate application of the
theory is limited to lengths which are large com-
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pared to the classical electron radius e'/mc2; and
when not so limited, leads at once to grave con-
tradictions with experiment.

The formal changes which are required in the
theory are simple, and correspond closely to
Dirac's most recent suggestion' for interpreting
the negative kinetic energy states which are
falsely predicted by his theory of the electron in
its original form. These formal changes may Inost
easily be formulated with the help of the distinc-
tion made by Schroedinger, ' in his attempt to re-
solve the difficulties with the negative energy
states, between odd and even operators, and
show how this distinction is properly to be ap-
plied to give a consistent and Lorentz invariant
theory. This distinction between even and odd
operators is essential to the physical interpreta-
tion of the theory: for only. those dynamical
variables of a system which correspond to even
operators may be determined without rendering
the number of particles —electrons and positives—in the system indeterminate.

' P. A. M. Dirac, Proc. Roy. Soc. A133, 60 (1931).
~ E. Schroedinger, Herl. Ber. , p. 63, 1931.For a review of

these earlier theories of the Dirac electron, see W. Pauli,
Handb. d. Physik 24, XXIV, 242—247 (1933).
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According to Dirac's theory, the states of an electron
subject to no forces are given by the solutions of the wave
equation

ibad= Hop; IIO = —Pmc' —c(a p). (1.1)

Any solution of (1.1) may be built up out of solutions of
two sorts: those of positive kinetic energy, for which

ihg =Hog =EP, with E ~ nsc'. —(1.3)

Any state which is a superposition of states of type (1.2)
may be called positive, any of type (1.3) alone negative.
Now with the help of these solutions, we can assign a
matrix to represent any function of the elementary dynam-
ical variables of the electron: p, x, a. When this matrix
reduces to two submatrices for positive and negative states
respectively and has no elements in which one index refers
to positive, the other to negative states, the corresponding
variable is said to give us an even operator. The momenta
of an electron are even; the coordinates are not.

Variables which correspond to operators which
are not even may still, of course, in principle be
determined; important examples of such vari-
ables are the total energy of a system in an ex-
ternal field, and the charge and current density
of a system; but this cannot be done without
introducing an indeterminacy in the number of
electrons and positives present. This circum-
stance which corresponds to a complementarity
between the description of a system in terms of a
definite number of permanent particles on the
one hand, and a spatiotemporal specification of
these particles on the other, is decisive in limiting
the applicability of the nonrelativistic trans-
formation theory of the quantum mechanics. For
it is not, in general, possible to specify at the
same time the number of particles in a system
and the values of arbitrary dynamical variables
of these particles. In particular, this means that
the unambiguous determination of the presence
of a positive in a system demands that under the
circumstances of the experiment one should be
able to abstract entirely from the creation and
destruction of pairs. This must particularly be
borne in mind in putting such questions as "Are
there any positives present near a nucleus?"; for
such a question can be given an unambiguous
meaning only by reference to such an experi-

ihP=HOP=EP, with E~mc' (1.2)

and those of negative kinetic energy:

mental arrangement for answering it, that one
may abstract from the nuclear field of the atom
which produces and destroys pairs.

From the formal point of view this situation
implies serious limitations on the use of wave
functions defined in a configuration space: wave
functions whose arguments are the characteristic
values of the dynamical variables of the particles
of the system. For, quite apart from the limita-
tion of the symmetry character of the wave func-
tions imposed by the exclusion principle, we meet
here for the first time the requirement that such
wave functions be defined as functions only of
even variables, since no physical interpretation
whatever can be given to the probability that a
particle shall have a determinate value for a
variable which is not wholly even. The canonical
transformations of the configuration space,
which in nonrelativistic theory are unrestricted,
are here limited to even transformations. In gen-
eral, too, a wave function defined in such an even
configuration space will not be adequate to de-
scribe the state of the system, since the number of
particles in the system, and thus the dimensions
of the configuration space, will not in general be
determinate: here, as in the description of the
electromagnetic field, we shall need, in general, a
series of wave functions, defined in spaces of
different numbers of dimensions and correspond-
ing to the probability of finding different num-
bers of particles in the system. This circumstance
means that, again as in the case of the electro-
magnetic field, the formal aspects of the theory
are best studied by abandoning the wave func-
tions defined in configuration space and by using
the method of quantized waves in actual space;
for specific calculations it is more convenient to
revert to the configuration space functions; and
it is, of course, possible to establish a corre-
spondence between the functions introduced by
the two methods.

Before we develop this formalism, we may il-
lustrate these considerations in the important
case of the position determinations of the elec-
tron. It is important to note that what we say
here has to do only with the critical length h/mc,
and throws no light at all on the breakdown of
the theory for lengths of the order e'/mc'. For
what we have here to consider, the charge on the
electron could have an arbitrarily small value;
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and these considerations, like all those based on
the present relativistic quantum mechanics, must
rather be regarded as attaining asymptotic
validity when the ratio of the two critical lengths,
which is the fine structure constant, n, goes to
zero.

It has often been observed' that by the gamma-
ray microscope one could not, in general, deter-
mine the position of an electron with arbitrary
precision. The limits on this precision are deter-
mined by the, in general, finite wave-length of
light scattered through a large angle by the
electron. For an electron at rest this wave-length
is of the order of the Compton wave-length Xo,
for an electron whose kinetic energy before the
scattering is E, it is possible to choose an ar-
rangement such that the wave-length of the light
scattered through a right angle is kc/Z. The
finiteness of these wave-lengths limits, of course,
the precision with which, from a given observa-
tion in the microscope, one can infer the position
of the scattering electron. This limitation in-
heres in all attempts to localize the electron by
scattering experiments, whatever be the nature
of the scattered radiation.

The Dirac theory of the electron, on the other
hand, starts with the postulation of a probability
density W(x) that the electron be found near the
point x, and thus guarantees the observability of
the position of the electron. But it does this only
at the expense of admitting the existence of states
of negative kinetic energy. For the conclusion
that hard light scattered by an electron is neces-
sarily softened by the scattering depends essen-
tially upon the fact that the kinetic energy of the
electron before the scattering is taken positive.
Because of the nonexistence in fact of electrons
of negative kinetic energy, the postulation of the
complete localizability of the electron and the
existence of the probability density W(x) appears
unjustifiable.

With the charge density the situation is
radically different. On the Dirac theory, it is
true, this charge density is merely proportional
to W(x):

p(x) =eW(x). (1.4)

'Se4. for instance L. Landau and R. Peierls, Zeits. f.
Physik 69, 56 (1931).

But for the determination of p other experimental
procedures are available. For the quantum theory
of the electromagnetic field and the careful con-
sideration recently given by Bohr to the possi-
bilities of observation which it implies show that,
at least so far as we may abstract from the atomic
nature of the measuring instruments, the electric
field may be mapped out with any precision we
want; its divergence gives the charge density p,
which may by this method be in principle deter-
mined. In any theory in which the atomic nature
of measuring instruments is neglected, this ob-
servability of charge density must persist. Since
we have seen what grave difficulties inhere in
relativistic theory in the definition of the particle
density, we must be prepared to abandon the
simple definition of p given by (1.4). As a matter
of fact we shall see that in the present theory the
vanishing of the mean charge density in a region
of space does not necessarily mean that there are
no particles present in the region; it may mean
only that there are equal numbers of electrons
and positives present and is no guarantee that the
region is empty. For in the present theory, the
charge density is not an even operator and can
therefore be determined only at the expense of
leaving indeterminate the number of particles
present in the system.

As far as the localizability of the electron itself
is concerned, the conclusions reached by the con-
sideration of the gamma-ray microscope are fully
confirmed by theory. For this it is essential to ob-
serve that the coordinate of an electron is not an
even operator; this means that in the Dirac
theory it is not possible at once to specify the
coordinate of a particle and to be sure that its
kinetic energy is positive. Now in the determina-
tion of the position of an electron, we cannot ad-
mit an indeterminacy in the number of particles
present since we must be sure that the light was
scattered into the microscope by the electron
which we wish to observe. (We are considering
for simplicity the case where only a single electron
is initially present. ) We cannot, the. efore, devise
an experiment for measuring precisely the co-
ordinate of the electron. What we have to con-
sider is how precisely we can infer the position of
an electron from an experiment in which an
even operator is determined. Thus we may deter-
mine the "even part" of the coordinate which is
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(~, ~lt. . . +) 2'f=4 r&L ( —a)t/V

X I
(m'c'+ p') '

I mc+ (m'c'+ p') -**

I ]—'a ' (1 6)

where

ai' = —p, a 2 —p

a '=mc+(m'c'+p')' a '=mc+(m'c'+p')'

C2 =84 = 0)1 1 a '=a '=0

where these functions are taken for positive
kinetic energy, and o-=1 corresponds to spin
parallel, 0-=2 to spin antiparallel, to the x axis;
a set of functions for negative kinetic energy,
which are relevant only in discussing the localiza-
tion of the positive, may be obtained from (1.6)
by replacing (m'c'+p') '* throughout by —(m'c'
+P)-:

These functions (1.6) form a complete set for
the expansion of any positive function; and the
mean dispersion, defined in the usual way as
x' —x' vanishes for all these packets. ' This cor-
responds to the circumstance that it is possible to
prepare an electron in such a way that its posi-
tion may be known without uncertainty. But
from the results of the experiment, namely the
determination of g, no unambiguous and precise
inference about the position of the electron be-
fore the measurement may be drawn. For the
probability of finding a value g is determined by

&(a) ~g = ~g

2 ~ 4

X g dx Q (g, 0, + I x, i) p, (x)
o =I i=1

4 We here give the formulae for the x-coordinate, and
take p„=p,=o: analogous formulae can be given which
correspond to determining g(x), g(y) and g(s) at once.

5 This is apparently in disagreement with the argument
of Landau and Peierls, reference 3.

given as an operator by

g(x) =x —(hc/2))Ln, HO '+cp,H'0 'j. (1.5)

Inferences as to the value of the coordinate de-
pend upon the properties of the transformation
functions g-+x. More precisely, these four-
component functions are the transformation
functions from g, 0- the component of spin in a
fixed direction and the sign of the kinetic energy
to the coordinates. 4 They are given by

and this is not in general given by

~(g)~a=~a ZI4'(a) I'

but depends upon the value of P in a region of
the order )() about g. When nothing is known
about the state of the electron, P, before the
measurement, the value of the coordinate x is
fixed by the determination of g only within the
limit of the Compton wave-length. When it is
known that the kinetic energy of the electron
before the observation is certainly as great as E,
then the probability of observing a given value
for g depends on the magnitude of the wave func-
tion P only throughout the region g&hc/E; and
the position of the electron before the experiment
can be inferred from the results of the experiment
with a correspondingly greater precision. One
may say therefore that, whereas it is possible by
experiment to localize an electron, in the sense
that the position of the electron after the experi-
ment may be determined as precisely as one
wishes, it is nevertheless not possible to deter-
mine the position of an electron in an arbitrary
state with a precision greater than )«. It will be
seen that this corresponds exactly to the possi-
bilities offered by the gamma-ray microscope
where the initial determination of position is
necessarily unprecise by about hc/Z, but where a
second determination of position, after the elec-
tron is known to have scattered a hard gamma-
ray, may in principle be made precise.

We have in this discussion assumed, in ac-
cordance with the physical considerations ad-
duced and in conformity with the theory which
we are here to develop, that the states of an elec-
tron in a system where it is known that no posi-
tives or pairs are produced correspond to purely
positive functions; in the same way we shall see
that the states of the isolated positive correspond
to purely negative states; and the limits here
derived for the localizability of an electron hold
unchanged for a positive. In situations in which,
as in the determination of the charge density, we
cannot be sure of the number of charges present
in our system, no unambiguous position meas-
urements of the charges are possible.

Because of these considerations it is not in
general possible, in experimental situations where
electron pairs are produced, to localize the region
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in which they are produced with a precision much
greater than the Compton wave-length. In this
sense the production of pairs by the absorption
of gamma-rays and their internal conversion
must be regarded as an extranuclear phenom-
enon; as far as present theory is concerned, the
fields within the nuclei have singularly little
effect upon the probability of these processes.

We must turn now to the development of the
formal theory. In the next section we shall in-
troduce the necessary methods, set up the wave
equations which the wave functions of the theory
must satisfy, and give the necessary proofs of
invariance. In Section 3 we shall show how these
equations may be solved and how their solutions
are connected with those of the original Dirac
theory, and justify the use of this theory in most
of the cases to which it has been applied. In Sec-
tion 4 we must discuss certain new effects intro-
duced in the present theory and define those
limitations on the applicability of the theory
which are introduced by the here postulated

and not understood corpuscular nature of the
elementary charges.

$(xlyl+1 ' ' 'xddyNsdd) ~ (2.1)

We can find the wave function corresponding to
this state as a function of any other complete set
of commuting variables $1, $2 $3~ with the help
of the transformation functions

(4 5wr ~
x1 sdd):

2.
We must now find what wave functions de-

scribe the states and what operators correspond
to the dynamical variables, in particular the
energy and charge and current density, of a
system of electrons and positives. In the non-
relativistic quantum mechanics, a system of N
indistinguishable particles which satisfy the
exclusion principle may be described by an anti-
symmetric wave function in the 3N-dimensional
configuration space of the particles:

d(1 b )=f dx dx. (1, ''1 !x, x )d(x, x.). (2.2)

In particular we can specify the configuration of the jth electron by the three commuting variables
$;, r!;, i; instead of x;, y;, s;, and use the wave functions

N
P($1 id') = dx1 dsdr 1I (P;r!;t; ~!x;y;s;)P(x1 sg) = P(r1 rdd)j=l

(2.3)

for the system. It will in no way impair the gen-
erality of the argument to suppose the sets of
characteristic values of $, 1!,i enumerable; we can
then order these sets of characteristic values in
an arbitrary but fixed. order; and for any set we
can use the symbol r. We can then fix the sign of
the antisymmetric function (2.3) by letting its
arguments be ordered. If we introduce' new
variables N„ to describe the system, one for each
characteristic value of r, and let N„= 1 when there
is a particle present in the state r, N, = 0 when
there is no particle present in this state, then we
can describe the state of the system by a wave
function of the ¹'s,defined by

P. Jordan and E. Wigner, Zeits. f. Physik 47, 63j.
(~928).

P(N) =0 when gN, +N

P Dx;";
j=1

(2.5)

there corresponds the operator

P D„.,a„+u„ (2.6)

The c„, a„+ here introduced satisfy

(0 1x 0 1x" 1x~ )
=(¹!)lp(r1 rdd) (2.4).

Any dynamical variable of the system which is
symmetric in the particles corresponds to an
operator on (2.4). To a variable which, as an
operator on (2.3), is given by
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a„a,+a,.a„=0; a,.+a,++a,+a,.+ =0;
a,.+a,+a,a„+= 8,., (2.7)

They may be expressed in terms of the X,'s and
operators r„, v„:

F,.F(Nt N, . tt N„N, .+t, . )
=F(Nt N, &, 1 —N„N, +.t )I', ;

negative; the states r which are positive shall be
indexed by Latin letters; the negative by Greek;
and a state which may be either positive or
negative will be indexed by a Latin letter in
parentheses: (r). By this restriction the unlimited
applicability of the quantum-mechanical trans-
formation theory is destroyed.

Thus

e.F(N) =(—)'"-"F(N) (2 8)

(2.9)

For what follows it is helpful to generalize our definition
of positive and negative states. A positive state is one
which is a superposition of states of a free particle of posi-
tive kinetic energy. And the states of a free particle are
determined by a wave equation which is in general

N„=a„+a„; 1 —X„=a,.a,.+;
f', .'=1; v„'=1. (2.10)

Here

(cn.p
—T)/=0; T= —c(a m) —Pmc'. (2.15)

Qr; rj ,-r, r;
i s

(2.11)

Similarly, to an operator on (2.3) of the form m-p ——(fh/c) (ti/pit) —(e/c) U;

vr = i,k grad ——(e/c) A

and, for no field

(2.16)

there corresponds the operator

fir's' rs+r' Ores' Os+ +
r', s', r, s

(2.12)

U= —(1/c)(a/at)& (p, y, s, t);.
A =grad 7s(x, y, s, t)

and to
0;

i+j

The solutions of (2.15) are given in terms of the solution
ps of (2.15) with X =0 hy the transformation

2. 13
P = Pp exp (iels/itc).

the operator

fir's', 'rs&r' +s' ore's+ + (2.14)

We have of course to consider solutions of (2.I5) which
correspond to definite values of the kinetic energy, which is
represented by the operator c~0 ——T. It will be observed
that under the transformation

It is in terms of this formalism that the relativ-
istic theory of electrons and positives Inay most
easily be developed. The formalism as it stands is
immediately applicable to the Dirac theory of the
electron in its original form and describes a sys-
tem of N electrons whose wave functions are
given by the Dirac wave equation, and in which
the electrons may have positive or negative
kinetic energies. (To describe the state of an elec-
tron, r must be supposed to include a variable
which determines the orientation of the spin of
the electron. ) But a simple formal change, which
corresponds exactly to regarding the emptiness
and not the fullness of a state of negative kinetic
energy as equivalent to the presence of a particle,
gives us at once the theory of electrons and posi-
tives. To make this change it is necessary, in
accordance with the physical considerations of
Section 1, to restrict the r's in a critical way. From
now on we shall consider only states r, such that a
given state is either wholly positive or wholly

Let us consider an operator of the form (2.5)
for which 0(„)(,) is a diagonal Inatrix: to it will
correspond the operator

Q Q„N,+Q Q„N, (2.18)

or, , if we write M, =1—X„
P Q, „N, PQ„M,+Q 0„. —(2.19)

For a system containing X electrons —i.e. , for
which N of the X„for the occupied states are 1,
and the others vanish —and containing 3f posi-
tives, in states corresponding to pi p~, we
should expect for the operator (2.6) just

0

1 8X
V'= V———;A'=A+grad );

c Bt
P' = P exp (te), /hc) (2.17)

the kinetic energy is invariant; under it positive states go
into positive, negative into negative states.
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Q O„,N, +Q( —Q„)Mv. (2.20) (2.26)

We are thus led to consider, in connection with
an arbitrary operator 0, the operator

with

+(r) (s)~(s) (s)
(r) (s)

(2.21)

This assignment suffices for a consistent descrip-
tion of a system of noninteracting electrons and
positives. To the question of the treatment of the
interaction of these particles, which cannot be
wholly clarified, and to which no complete and
unambiguous answer can be given, we shall return
only later.

The energy of a system of noninteracting par-
ticles, which may however be subject to arbi-
trary external forces, is of the form (2.5), and
corresponds then to the operator

(2.23)

In particular the kinetic energy T of the system is

Q N, T„, QM, T. „.— (2.24)

and is necessarily positive, the sum of the posi-
tive kinetic energies of the electrons and the
positive kinetic energies —T» of the positives.
The difference between the total number of posi-
tives and electrons in the system, which gives the
total charge,

ev = e(M—N); M = Q Ms,. —

commutes with H, and is constant, as it should
be: to any system there corresponds a fixed value
of v. But both M and N change with time in
general:

ihN= —i h M—=Q(Hv„av+a, H—„va,+a—,). (2.2.5—).
rp

Unless the energy corresponds to an even opera-
tor the number of particles in the system N+ M
will not be constant. The rate of production of a
pair r, p is measured by ~H„),' and that of its
annihilation by ~H, „~'.

The modification by which (2.21) was obtained
from (2.6), namely the subtraction of

Mr(, ) =0 r+a(, ) ', Cu(r), = Q(r)+C, ;

co,.=a,+a.—8,.= —a,a,+. (2.22)

has destroyed, as we have seen, and as the phys-
ics requires, the invariance of the theory under
arbi. trary contact transformations. If we restrict.
ourselves however to the even transformations,
((r)

~
(s)), for which ((r)

~
(s)) is an even matrix,

then P (0), which is the spur of the matrix
Q(„)(,) in an invariant subspace, will remain in-
variant. To any wave function of the N„and Mp
there will correspond a wave function of N, and
M, for any s, o- which are obtained from r, p by an
even transformation; and under such transforma-:
tion the theory is invariant.

The Lorentz invariance of the theory follows
from this. For under Lorentz transformation
positive kinetic energies go over into positive,
negative into negative; the Lorentz transforma-
tion is even. Thus

will transform under a Lorentz transformation
just as 0 does; if 0 is a scalar, then

P (Q) and

will be scalars; if the 0& form a four vector, so
will the

P (nv) and the av.

In the present formulation the subtraction of
the spur (2.26) destroys the gauge invariance of
the theory, in that it is not possible to associate
in an unambiguous way with a given choice of
gauge to represent a given field a unique gauge in

(2.16).This circumstance means that the division
of states into positive and negative here formu-
lated is still provisional, and will have to be modi-
fied in the presence of an electromagnetic field.
As the arguments of the next section mill show,
the non-gauge-invariance of the theory does not
affect the predictions which the theory makes
about the reactions of the system to a given
external field —the energy differences of the
states of the system in the field, the transition
probabilities, and the probabilities of production
of observable pairs. On the other hand, the
predictions of the theory about the reaction of
the system on the electromagnetic field are
gauge-dependent.
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Again with neglect of the interaction of the
particles, we may write the wave equation for
the functions P(X„;M,). If there is an electro-
magnetic field described by the potentials U, A
then the Hamiltonian is given by

H=eU+2hc(33, grad)+e(33 A) —prftc2. (2.27)

To this there corresponds the matrix II(„&(,) and
to this the operator

II= 2 H& &()~0(0& ).
(r) (s)

The wave equation is then

(2.28)

ih(B/Bt)P(X„M„). =II/(X„; M'p). (2.29)

We can readily write the wave equation in the
configuration space of the particles which cor-
responds to this. We define the wave functions in
configuration space, in analogy to (2.4), by'

P(X, ; M, ) =0,
M

p(0 ' 1 r0 ' ' ' 1 r3
' ' ' 1 r&

''
, 0 ' ' 1p, 0 1p& ~ ~ ) = (g!M!)~( —)~jtpj~pff3f(ri ~ ~ ~ r& pi ~ ~ .P3f)

X—M = p (2.30)

with the arguments of the fff3f ordered. We may now define the operator 10 corresponding to (2.5) and
(2.21) as an operator in configuration space. This operator transforms any function P into CuP,

according to
ill

(10$)ii ipf(r; p) =p p Qr;r off, 3f(. .r; ir'r;+1 ,'p) —p p Q, „p~, 3r(r; p; ip'p;+, )
p 1

3II
—(gM) 'g Q (

—
)-'+& 'Qr~p;p—ff 1,

—
3f 1—( r ir;+1, .p; ip;+, )

—(%+1)'(M+1) * p p Q, , off+1, 3f+1(ri rffr'; p'p, P3f). (2.31)
tf pl

Then the wave equation is
2h(B/Bt) 1 11', ff(r; r) = (H4)ff, M(r; P) (2.32)

or, in detail, for X—3II= v=0:
2@(~/itt)igloo=

—2 2 Hp "4'ii(l" P')
tf pl

(2.33)

3tt(~/itt)1/f»(ri' Pi) =2 H& ~'Ai(r ' Pi) 2 Hp'p Ai(li; p') H~, p, goo —2 p p EI, ,'$22(rir'; p'pi);
pl

for v=1:
N(~ ~/)ttt'10(rl) p H& &'0 10(r ) 2 2 2 Hp' '4'21(lll, p ),

gf tf pf

2!3(8/Bt)$21(rir2', pl) =p H~, "Al(r r2, pl)+p H~, ~ $21(rir; pl)

Hp»p 2(1r ri2p') —2 ~Hr p 410(ri)+2 'Hr p &f10(r2) —6'p p Hp i/32(rir2r', p'pi);
(2.34)

pl t. f pl

and for s = —1:
2&(a/&t) 40i(pi) = —2 H'. ,401(p') —2'* Z 2 H, "4i2(r', P'pi),

pl

273(B/l9t) i/12(ri; pip2) = p H~, "&12(r', pip2) —p Hp p, f12(ri; p'p2)
~f pf

—p EIp p., f12(ri, pip') —2:IIr, g' p1(p 0)+22 'IIr, p, 4'01(pi) —6'g p EI, „$32(rir'; p'pip2).
p

(2.35)

M
& Here QQ is the ordinal number assigned to the state p~ in ordering the net'ative states. The 4ctor (—)&&~pi~ is in-

serted to save writing.
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2 p(()"(~) ~ p(~) '(c) C4'(c) '0'(&') (2.36)

and current density

The rule for the transition from (2.6) to (2.21)
cannot be unambiguously extended to operators
of the form (2.14);and for the consideration of the
electromagnetic interaction of the particles of
the system we must revert to electrodynamical
theory. According to (2.21), to the charge density

When the magnetic forces and the retardation
of the forces between the charges must be taken
strictly into account, there can be, of course, no
operator in the configuration space of the par-
ticles to represent the corresponding energy, '

rather one must use the expressions (2.38) for the
charge and current of the system, and from these
compute the interaction energy between the
charges and the electromagnetic field

p j(r) (r) & j(r) (r) ef(, ) a$(,) (2.37) Hr —— dr[pV+(j A) j. (2.41)

C(r) (s); (~) (m)—
aJ

, p(~()(~)(+)p«)(~) (+ )
drdr' — —— —(2.39)

I r r' f—
and give an operator

C(~) (.) (() (-)(0(~)(.)~(()(-).
(~), (8), (~), (m)

(2.40)

This includes of course in its present form the
proper electrostatic energy of the particles.

must be assigned the operators

P p(,I(,)(a(,)(,) and P 3(,)(,)cv(,.)(,). (2.38)
(~) (~) (r) (s)

The form a four vector 8&.

The electrostatic interaction of the system with
itself, i.e., the Coulomb forces exerted by the
particles on themselves and on each other, may
then, with neglect of retardation, be obtained
from the matrix

This expression may then be treated as a per-
turbation which induces an interchange of energy
between the particles and the field; and in its
application one meets only the same difficulties
as in the Dirac dispersion theory: convergence
difficulties which rest ultimately on an illegiti-
mate application of the methods of the quantum
mechanics to the electromagnetic field.

In addition to the approximation (2.39} by which, with
the total neglect of retardation, one has the possibility of
taking into account to all orders the Coulomb interactions
of the charges, one has had, as is known, a second method of
approximation by which one can take the fully retarded
interaction into account to the first order only. For the case
that, in the absence of interactions, the Hamiltonian of
the system is even and has the characteristic values B„,Bf„
the interaction may to the first order be taken into account
by the inclusion of a term in the energy which corresponds
to the operator

Jl 1
Z ~(~)(.) ' (~) (m)(~)(8)(~)(~) ~

(' ' ~'( )(~)(~)~'(()(~)(& )
A(r)(s): (()(m) = k drdr — [exp (iv(,)(,)r/c)+exp (i) (()( )r/c) j (2.42)

p,=l f—f

with v(„)(,) = (8(,) —E(,))/k. But the application of this
method is seriously limited on the present theory. For
an unambiguous extension of this to the case where
the odd parts of the Hamiltonian without interac-
tion are not negligible does not appear to be possible, be-
cause the method presupposes that in the absence of inter-
actions the particles remain in stationary states, and, on
the present theory, this is not, in general, true; in general,
namely, there will be no even states r which give deter-
minate values to the energy of the system.

The interactions between the particles, in particular, the
Coulomb interactions given by (2.40}, can certainly not be
entirely neglected, since one must surely expect that posi-
tives and electrons will attract and repel each other. On

the other hand, there are ambiguities in the application of
(2.40}, which arise from the apparent impossibility of
drawing a rational distinction in all cases between proper
energy and interaction energy, and which we must now
discuss. Two consequences in particular of these interac-
tions must be noted. In the first place, they give rise to the
possibility of the simultaneous production or destruction of
more than one pair, a possibility which does not, of course,
exist when they are neglected. In the second place they
introduce deviations in the energy levels of an electron in a
static field computed from Dirac's equation. These eft'ects
are small, and in view of the ambiguities involved in ap-
plying (2.40}, it appears that the application of the formal-
ism to these problems transcends the limits within which
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arrscv)~Ma, a) apas,+ +

pocdmx~aoa'Ram a p
+ +

p& cosa —&aoa p as ar ~
+ +

&pro) sI—&ap+as+a Eary

u pm~~~Mama), a a, .+ +

The remaining terms should not be changed. These changes
have been made in such a way that no infinite contributions
to the electrostatic energy appear. Because there is no equa-
tion in configuration space with which to compare our
formulae, we cannot be sure that as far as the odd parts of
(2.40) are concerned our results are right: they lead to no

grossly incorrect consequences. In fact the distinction be-

tween proper energy and interaction energy, which has in

the present state of field theory to be made, cannot be
made without ambiguity in a system in which the number

of particles is necessarily indeterminate.

The wave functions which we have introduced,

f~, ~(r; p), give us directly the probability
P(r& rN, p, p~) of finding in the system X
electrons and HEI positives in the states r~. p~.
Just as in the case of the general transformation
functions of nonrelativistic theory, it is here not
always possible to say to what extent these
probabilities can be determined by actual ex-

perirnent. For although the theory enables us to
devise conceptual experiments for the determina-

tion of P which in no way contradict the theoret-
ical possibilities, it is not in general possible to
find actual physical means for carrying them out.
This may be illustrated by considering the func-

tion P for a static, non-even field, and taking the

(r) to be the components of momentum of the
particles. Here, by suddenly destroying the field,

destroying it, that is, in a time very short com-

pared to h/nzc', and determining in the usual way
the momenta of the free particles, we can in prin-

ciple determine P. Again, by scattering hard

the methods are valid. For these ambiguities can 'appar-

ently be dissipated only by a clearer understanding of the
stability of the elementary particles.

The terms in (2.40) with C„„.t, , Cp, . y„and C,." p, cor-
respond to the even parts of the interactions of electrons
with electrons, positives with positives, and electrons with

positives. In analogy to the replacement of (2.12) by (2.14),
we may eliminate the proper energies by

r s'M fm~ar at amas) po'c05 p, ~ao'apa k a p
+ + + +

leaving

&rs~ po' Qr asaoap and Go pours aoa p ar as+ + + +

Analogous rules can be given for all the other terms of

(2.40)

radiation, and observing the mornenta of the
particles of the pair and of the light after scatter-
ing, we could in principle determine the original
momentum distribution with the same precision
as in nonrelativistic atomic theory. But here an
important point must be noted: the gamma-ray-
or electron —which we use for the experiment, will

itself tend to produce or destroy pairs; for the
perturbation it induces is represented by an
operator which is not even; and to determine the
initial distribution in momentum of the pairs, we
should have actually to use an "even" gamma-
ray. It is clear therefore that the actual experi-
ments in which positives are observed do not
provide us with unambiguous determinations of
P for the field around nuclei. It is clear too that
the theory in its present form does not impose
restrictions on the available experimental means,
which make I' unobservable; from the point of
view of this theory, there could be such a thing as
an "even" gamma-ray. Nor is it possible to say
whether the limitations which are in fact imposed
ought to be recognized by a consistent theory:
whether, that is, they should be regarded as
limitations in principle or by accident. It seems
clear that such a limitation in the experimental
possibilities could only be based on a theory in
which the electromagnetic nature of the electrons
and positives were understood; and it is in the
sense of the quantum mechanical theory, and the
approximation nm0 which defines its appli-
cability, that these restrictions should not find a
counterpart in the theory, or the possibilities of
observation which it offers. This situation, how-
ever, makes it particularly urgent to show how
the wave functions Pz, ~(r; p), which are only in
principle and hardly in fact observable, can be
used for the calculation of things that the experi-
ments do give us.

When the interaction of the particles can be
neglected, the wave equation (2.32) determines
the characteristic values of the energy of the
system in static fields, and the transition prob-
abilities in collisions and radiative processes. Now
to certain of these questions, such as the energy
levels of an electron in some static fields, or the
probability of scattering of light by an electron,
the Dirac theory of the electron gives us an
answer, and one in large measure confirmed by
experiment. We have now to show how, in these
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cases, the new formalism gives the same answer
as the Dirac theory.

Let us consider first the characteristic values
of the energy of an electron in a static field. Ac-
cording to the Dirac theory these are determined
as the characteristic values of H in the equation

Hu„=E„u„. (3.1)

Under certain circumstances, some of these char-
acteristic values give correctly the energy levels
of an electron in the field of force, and the corre-
sponding wave functions may be used to describe
the behavior of the electron in its stationary
states. The circumstances under which this is so
may be defined in the following way: if we
imagine the field in which the electron is moving
(or the odd part of the field) to go adiabatically to
zero, the wave functions will go over into the
wave functions of a free particle (or the functions
for a particle in an even field of force). In the
absence of degeneracies of a special kited, any
solution u„will go over into a positive or purely
negative function. A function which in this sense
is "genetically positive" (L) will correspond to a
possible state of the electron, and the energy
value Ez, to a possible energy level. The functions
A which are genetically negative do not corre-
spond to states of the electron. Such an unam-
biguous application of the adiabatic theorem will,
in general, only then be possible, when the
stationary states corresponding to the even part
of the energy are not in this sense degenerate,
that positive and negative functions correspond
to the same energy value. When, as in the prob-
lem of the Klein paradox, such degeneracies oc-
cur, no simple interpretation of. the Dirac wave
functions can be given. But in many problems, in
particular in the problems of electrons in atomic
FieMs, and in general in all stationary state prob-
lems to which the Dirac theory gives correct
answers, the classiFication of states as genetically
positive (L) or genetically negative (A) will be
possible; and it is just in these cases that we can
establish a connection between the wave func-
tions of the present theory and those of the
Dirac theory in its original form, and a corre-
sponding equivalence of energy levels. Without
in general investigating the properties of the fields
for which this division of states is possible, we
may remark that of the simple fields defined by a

jV(L) jV(o) —jV (3.2a)

and similarly that the differences between the
B(~) and Z( ) are the negative of the A. energy
values of the Dirac equation:

jv(&) jv(o) — jv~ (3.2b)

In particular the energy differences B(~)—Z(~')
are the energy differences EJ„—E~'. This result
is essential, for it shows that where the Dirac
theory gives correct energy levels for an electron,
the present theory gives the same energies. In
particular it shows that the present theory will

give again Sommerfeld's formula for the relativ-
istic doublets. In the derivation of the result it is

s M. S. Plesset, Phys. Rev. 41, 278 (1932).

scalar potential which is a polynomial in r and
1/r, the Coulomb field alone' permits this classi-
fication. As for the states A, which in the Dirac
theory are simply rejected, we shall see that in
the present theory, as we should expect, these
define the states of the positive in the field, and
give —E& for the corresponding energy levels.

In the present formalism the energies EL,, Eg,
the wave functions u~ and u~, do not appear di-
rectly at all. Rather (2.33) determines the states
of the system when it is known that there are
just as many electrons as positives present; (2.34)
when it is known that there is one electron more;
(2.35) when there is one extra positive, and so on.
And the energies E~ must be connected with the
differences in energy levels of (2.34) and (2.33),
those of the positive with differences between
(2.35) and (2.33). Now just in the case of fields
for which, on the Dirac theory, the classification
of states as L or A is possible, there is a unique
state (0), for which the energy is a minimum, and
which corresponds to the normal state of the
pairs in that field. The interpretation of the wave
function for this state has already been discussed;
to the question of the interpretation of the energy
we shall return in the next section. Let us call
this energy Z( ), and the wave functions for this
state /&0&. For i =1, (2.34) will give us a set of
energies Z(~) and corresponding wave functions;
for v= —1, we shall get the energies E(~). We
shall now show that the differences between the
B(~) and 8( ) are just the L energy values given
us by the Dirac equation:
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for v=1:

2 I
Il"—I

'l(& &.)—
r, p

(3 3)

&'"= —2 E III"I'/(&. —&.) ' (3 4)
r+l p

and for v = —1

&"&= —Z Z I
II .I

'(& —& ) (3.5)

essential that we neglect the eGect of the electro-
magnetic interaction of the particles of the pairs. '

For the proof of (3.2) one can on the one hand
use perturbation methods, treating the odd parts
of II as small. If we let the states r, p diagonalize
the even part of @, we f&nd, to the second order
in H„:for v=o:

Eq for those states I. and A. which go over into
l, t when the odd part of H vanishes. In interpre-
tation of this result it may be remarked that that
contribution to the energy which in the Dirac
theory may formally be ascribed to transitions to
states of negative kinetic energy, here appears
because of the interdiction, on introduction of the
electron, of the formation of such pairs as have
electrons in the state in which the electron was
introduced. This perturbation method can be
extended to prove (3.2) in all orders, but soon
becomes unwieldy.

We may obtain a more powerful method of
solving the wave equations (2.32) by the follow-

ing construction. We introduce the components
of the Dirac wave functions u&r& in the (r) space:

C(& )
= ' dTD(t )N( I )The differences between (3.4) and (3.3) on the

one hand, and (3.3) and (3.5) on the other, are
however just the terms of this order in EL, and and form the wave functions

(3.6)

%+1
f~gi', ~ (r; p) = (X+1) ' Q (—)' 'Cr,'"P& &~, ~( r; ir;+, ; p)

+(&+I)' 2 CP' 4N+1, N+i(~; ' 'Pivp ),
pl

%+1
4'&, N+i (r; p) = (&+I) ' 2 ( —)"+' 'C.*'"4"&, &i'(" ' ' 'p lp +1' )'— '

(3 &)

—(&+I)' 2 C,'"ON+1, w+l(r'ri; p)

It may be shown then that P"~&' o' and P&o' ~~&&

satisfy (2.34) and (2.35), respectively, with en-

ergy values respectively Bio&+E&i& and Z&o&

—E(z). The proof is straig'htforward and gives
us, for cases to which the Dirac equation is di-
rectly applicable, a method of constructing the
wave functions of the present theory. Here all the
solutions of the Dirac equation appear: the solu-
tions I. give us the wave functions for an elec-
tron, the solutions A those for a positive.

We must of course demand that

(h; 0) (0; I)
O'N+1, K 0 i O'N, N+1 Oy (3.8)

for these functions would correspond to the addi-
tion of an electron in a genetically negative state
or a positive corresponding to a genetically posi-

9 Cf. Section 4.

O'"o, o=lC, 'I;
y'"i, i(ri'Pi) =

I
C '-&C., 'I

(3.9)

tive state. It is easy to see by direct inspection
that (3.8) must be satisfied; and we obtain a
proof by constructing the p~o&z, z in terms of the
C't '&, &. This construction of the P' &&i, &i is sug-
gested by the original formulation which Dirac
gave to the present theory, according to which
"all negative energy states" should normally be
full. Alternatively we may characterize the state
(0) by saying that all the "negative energy
states" of the positive are full. If then we are
given a complete set of solutions Nl, and N~ and
form the quantities C~(„), C~(„) for all these states,
we may write. the solutions as infinite determi-
nants, as follows:
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and generally

4«'N, N(rl rN, Pl . PN)

=(X!)—'I C.; mC, (3 9)

The P'0& so defined, if we avoid questions intro-
duced by the convergence of the determinants,
formally satisfies (2.32), with the energy value

&' 'l, &(r' P)ll' '0, 0 (3 11)

where, in these determinants, in all the rows L
the C„. are replaced by the C p~+, , ', here r's
and p's should be ordered. Alternatively we may
write

N, N(r&. ' ' 'rN Pl. ' ' 'PN)

From these expressions for /&0& the vanishing of
& and P&~' 0& follows.

We may now generalize (3.7) to give us the
wave functions which correspond to the addition
of n electrons in the states LI L„and m posi-
tives in the states A& A . These functions
vanish unless all the L's and all the A's are
distinct:

x
( L1"' L ( L'); ~1"'~m) ( L1 ~ ~ In; A)

(r, rN', pl PN) =X ' P ( —1)'—C„& '&PN l w
'

( r;,r;+, , p)

+(—)"+"(&+1)'P C "'P&I~'~q~" (r'; p»rp')

=0 unless X—M =n+1 —m;
3f

( L1'' ' Ln ~1' ''~m(L ~ Lr ( L: ~1' ' 'Am)
(rl rN, p& PN) =ALII * p ( )'—Cv, ' 'pN&lr l , '(ri ' ' 'P &P +&' ' '—)'

(3.12)

—(—)"+"(%+1)'Q C ' '&pN+&, N (r'rl' ' ' '
p)

=0 unless X—M=n —m —1.
The identities corresponding to (3.8) are now of the form

( L1 ~ ~ Lng $1' ~ 'gm) —Q ~ (L1 ~ ~ ~ Ln', &1 ~ &mL') —0 (3.13)

and follow, as before, from (3.9). In this way we can construct a series of solutions, corresponding to
different values of n, for all of which n =m and v =0.The transition from a state n to n+1 corresponds
to the creation of a pair; that from n to n —1 to its annihilation. Similarly the transition, with
m =0, n = 1, from the state L to L' gives just the transition of the electron from one "genetically
positive" state to another, and that from A to A. ', with m = 1, n = 0, gives the corresponding transition
for the positives.

With the help of the functions (3.12) we can establish another useful result. Let us consider an
operator of the form (2.5). To this there will correspond an operator co on the P(X, ; cV,), and from
this, according to (2.31), we can construct the corresponding operator as a matrix in the scheme L,
A. The only elements of this matrix which do not vanish are those for which (I.)m(L'), (A) m(A'),
(L„' A) m(O), or (0)—&(L; A). By using the functions (3.12) we can now prove that

(I-
I

(v
I
I.') = (p& z& coll & z'&) = Q I, I, =,I dr u I Qu r. ,
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In this proof one has to make repeated use of the
identities (3.13). For operators of the form (2.21)
we may thus use the Dirac functions u& and N~

to compute the matrix elements for states (L),
(A), (0), and (I; A). In general &dg&~&"'~": ~'"~")
gives us wave functions
$(r'1"'r n, Al"'&(m 1A')-, l, (r'1" '&mr"; &(l." AmA')

In constructing the corre-
sponding matrix elements of cv, the antisymmetry
of the f's in all I. and all A. must be considered.

Let us now consider transitions induced in the
system by perturbations. For the present argu-
ment it does not matter whether these perturba-
tions arise from the coupling of the system with
another system, such as the radiation field, or by
a direct introduction of time dependent forces. In
either case, to a transition of the system in which
the energy of the system changes by DE there will

correspond a perturbing term in the Hamiltonian
of the system which is of the form (2.5), and is
given by the matrix r&,.&(.& exp(iAEt/h). The per-
turbation theory then tells us, that, to the first
orders in v, and with suitable normalization, the
transition probability JmJ ' induced by the
perturbation will be

From (3.14) we see that to this order the transi-
tion probabilities are given by

P(i) (i) =(1/&') I~i il'-

P(&) (&') = (1/A')
I
»&'

I

P& o& & r, ; x) = (1/@')
I

(&r.x
I

P(.: ~)-o = (1/A')
I ~«l '

(~);
(3.16)

(f)

(~)
(3.17)

(f).

This result shows that in the problems where the
Dirac theory may be applied to determine the
stationary states of the system, the first order
transition probabilities, which give the probabil-
ities of radiative and collision transitions, may be
computed with the help of the Dirac wave func-
tions N(&) just as in nonrelativistic theory. For
these cases (3.16b) also shows that analogous

P(L) (z )
——(1/0')

I

(I-'
I

(& I L)
I

' (3.15)

with E(~' —E'~) necessarily equal to hE.
Similarly

methods may be applied to positives, and gives
(3.17a) for the probability of pair production; it is
this formula which is applied in computing the
production of pairs by gamma-rays and electrons.

This result cannot be generally extended to the
calculation of higher order transition probabili-
ties, as is at once clear when we remember that a
system which, when unperturbed, may very well
admit the application of the Dirac equation, may,
under the influence of the perturbation, cease to
have this property. Thus the free electron or the
electron in a Coulomb field may as is well known
be treated by the Dirac equation; but when this
system is coupled to the radiation field, the
catastrophic transitions to negative energy states
occur, and we cannot expect that a theory in
which these transitions cannot be unambiguously
excluded will give correct results. One can show,
however, that to the second order in v, for any
perturbation whatever, the direct use of the
wave functions u~, Nq and their corresponding
energy values E&, Ez gives, upon application of
the usual perturbation methods, the correct re-
sult. For the proof of this the antisymmetry of the
P&~"" ~"') in the I.'s and A's is essential.

This result is suAiciently general to validate all
the calculations made on the basis of the Dirac
equation which have been compared with experi-
ment. In particular it furnishes a generalization
of Dirac's proof that "filling the states of nega-
tive energy" would not affect the scattering
formulae of Thomson and Klein-Nishina. As far
as perturbations induced by coupling an electron
with the radiation field are concerned, calcula-
tions of transition to orders higher than the
second cannot in any case be made, because in
these higher orders the difficulties of the magnetic
proper energy make an insurmountable am-
biguity. For this magnetic proper energy the
present theory, of course, gives new results; but
these in no way remove the familiar difficulties of
the radiation theory.

The limitation on the nature of the system
which makes possible an unambiguous applica-
tion of Dirac's equation, and which has played so
large a part in the arguments of this section,
admits a very simple interpretation. For this
limitation means only that in such systems no
genuine transitions to states of negative energy
should, on the Dirac theory, be possible; on the
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present theory these are the systems in which,
though pairs may be present, their presence may
be unambiguously detected only by disturbing
the system with high energy radiations. To prob-
lems in which pairs are constantly being created
by the fields present, the Dirac equation in its
original form cannot be simply applied.

Throughout this section we have consistently
neglected the interaction of the particles with
each other, and supposed them to be affected only
by given external fields. When these interactions
are considered, the proofs which we have given of
the applicability of the Dirac equation no longer
hold, for in the original Dirac theory these inter-
actions have of course no analogue. In particular,
when these interactions are considered, one can
no longer establish the rigorous validity of the
scattering formulae, and the energy levels of
electrons in static fields cease to be given correctly
by the Dirac equation. The effects of these inter-
actions are in general small and cannot, as we
have seen, be unambiguously formulated in all
cases. But within the limits here discussed, which
from a physical point of view seem inevitable, we
have shown that the Dirac equation, wherever it
can consistently be applied, leads to the same
results as the present theory. For such problems,
and within these limits, it is thus not in general
necessary to use the wave functions P~, ~(r; p)
at all; and this is fortunate, since the wave equa-
tions which determine them are in general in-
tractable.

4,

In this section we have to consider some of the
applications of the theory which have no analogue
in the Dirac theory of the electron in its original
form. We shall make no attempt to treat these
exhaustively, but try only in a few simple cases
to see how the results may be interpreted, and in
what way the application of the theory is limited.

Let us look first at B~ &. In a system in which
directly observable pairs are not being created
and in which therefore the solutions of Dirac's
equations may be classified as I.or A. , there exists
as we have seen a unique normal state for the
pairs; the energy of this state is E& & and is given
by (3.11).This is the energy of these "nascent"
pairs in the given field; when the field vanishes
B& ~-+0; when the field does not vanish B( & is in

general negative. To establish the field, therefore,
we do not in general have to do quite as much
work as electromagnetic theory predicts; for in
addition to the electromagnetic energy

Z. = (1/Sm. )JI d7(K'+Q') (4.1)

A=O; 5= —grad V. (4.2)

When the field strength is not too great, we should

in the electromagnetic field, there is an energy
E& ' in the pairs formed by the field. This is in no
sense a discrepancy with Maxwell's theory, ac-
cording to which E, should give the energy in
empty space of the field 5, @; for, as we have
seen, the field will not be empty. This then is the
simplest general interpretation of E& '.

If the field is itself produced by a charged
particle —and here we shall assume that this par-
ticle is not an electron, but is so heavy that the
reaction of the pairs upon it may be neglected—
then the corresponding energy E' ' must be in-
terpreted as proper energy of the particle. The
only way in which E& ' here could be directly ob-
servable is by the creation or destruction of the
particle; it could be inferred from the mass of the
particle if the specifically electromagnetic energy
of the particle could be computed in a satisfactory
manner. For a point charge with a Coulomb field
this proper energy E~ ' is infinite and negative.
It does not appear to be possible to interpret the
difference between the electromagnetic and the
pair energy of the particle in such a way that
this difference should correspond to a finite mass;
and in general it may be said that the present
theory, which presupposes the particulate nature
of the electron and positive, throws absolutely no
light on their ultimate stability.

When more than one heavy charged particle
produces the field, the energy E& & will depend
upon their relative positions. This dependence of
the energy on the positions of the particles will
correspond to a new term in the potential be-
tween them: i.e. , to new forces. These forces will
not in general be Coulomb forces and the devia-
tions may be computed, and should ultimately be
observable.

To make these considerations quantitative, let
us consider the case of an electrostatic field, for
which
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expect to be able to solve (2.33) and compute
f&~&, by perpurbation methods, and use (3.3) for
Et' ~. A sufficient condition on the field strength
is that it should always be small compared to
nz'c'/ek. In this case it will be permissible to
neglect entirely the even part of V which can
give effects only in higher order and corresponds
to the nonuniform motion of the pairs when they
are accelerated by the field. Then we find

p

(4.3)

where now r, p index the positive and negative
states of a free electron. The energy density in the
pairs is of the order o. compared to the electro-
magnetic energy. For the case that the potential
varies relatively little in regions of the order of
the Compton wave-length we find for the ratio of
the two energy densities:

E' &/E. ——n~.

Here ~ is given by the integral

(4 4)

+ (4/3~) k'(1+ k') '~'dk, (4.5—)

where in turn k is (1/2mc) times the magnitude of
the vector difference of the momenta of the two
particles of a pair. The second integral diverges
for large values of k: the contribution of pairs of
large momentum does not fall off rapidly enough
to give a determinate result. This divergence does
not depend upon the special simplifications intro-
duced into the problem and arises from a genuine
limitation of the present theory.

This limitation is of the same kind as that met
in all applications of the quantum mechanical
formalism to wave fields, and comes in the di-
vergence of A. to a similar expression; it has its
analogue in the now familiar divergence difficul-
ties of dispersion theory which may be schemati-
cally formulated as the failure of such theories
when applied to extremely small lengths or inter-
vals of time. The difficulty here has nothing to do
with the introduction of point singularities in the
field; the electromagnetic field we are studying is
slowly varying and nowhere infinite. An analo-
gous failure of 6eld theory in a problem jn which

no singularities occur is known in gravitational
theory, where the quantum theoretic calculation
of the gravitational energy of an electromagnetic
wave gives a divergent result. "These difficulties
thus tend to appear in all problems in which ex-
tremely small lengths are involved; the critical
lengths are presumably of the order of the cia s-
sical electron radius. The difficulties are of such a
character that they are apparently not to be
overcome merely by modifying the electromag-
netic field of an electron within these small dis-
tances, but require here a more profound change
in our notions of space and time, on which ulti-
mately the quantum mechanical methods rest,
and which in turn require the existence of stable
particles for their definition. At present neither
the precise point at which the theory breaks down
nor the nature of the needed modifications can be
determined; but it is clear that the sort of thing
we must do with expressions like (4.5) is to break
off the integral as it stands at some upper limit X
corresponding roughly to the critical length
e'/mc', and trust a future theory to show that
the contributions from k values greater than
this are small. It is from this at once apparent
that the theory in its present form can make no
predictions whatever about the fields within the
critical distance e'/mc' of a charge.

In the case of the production of pairs, there is
direct evidence that the present theory gives too
large a probability for high energy pairs. For the
probability of production of pairs by a beam of
gamma-rays in the field of nuclei, when computed
on the basis of the present theory, turns out to be
much larger than any value which could be rec-
onciled with the known penetrating power of
high energy gamma-rays. And in this case too the
failure of the theory seems in no way connected
with the magnitude of the nuclear field in the im-
mediate neighborhood of the nuclei. The fact
that the theory should fail here is not very sur-
prising when we remember that even on classical
theory the model of a point electron, which un-
derlies the present theory, would give altogether
wrong results for the reaction of the electron to
light of wave-length appreciably shorter than the
critical length e'/nzc'.

With this understanding, then, ~ is given by

"I., Rosenfeld, Zeits, f. Physik 65, 589 (1930),
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(4/3m) ln 2X—10/9ir and is about 2 with X 1/u.
The result then tells us that the work we must do
to establish an electrostatic field is about 2 per-
cent less than the energy stored in the electro-
magnetic field; the difference is supplied by the
pairs. One might at first suppose that this result
would have catastrophic consequences for elec-
tromagnetic theory. But one sees at once that the
forces exerted upon a point charge (by a field
which still varies little within Xo), which serve
to define the field strengths in terms of the unit
of charge, are reduced by the pairs formed about
the charge in just the ratio (4.4). And we may
readily see that the forces exerted by two charges
upon each other (again at distances large com-
pared to ),o), which serve to define the unit of

charge, are similarly reduced; so that as long as
we do not consider lengths smaller than Xo-
which vanishes as h goes to zero as the corre-
spondence principle requires —the consistency of
classical electromagnetic theory is not affected
at all, and the difference between the "true"
charges, and "true" fields and those which in-
clude the effect of the pairs, are not, under these
circumstances, observable. "'

We may calculate simply this dependence of
pair energy on the separation of two charges.
If the charge on the particles is not greater than
Ze, then the condition

~
K

~

(m'c'/he means only
that the particles shall stay far apart compared to
(nZ) iXO. If the two particles are separated by a
distance R, then

[«'—(k.k') —1]g'&&—&'& ~& & o

Z;„i.———(ne, e2/47r9 o) dkdk'
«'(e+c') ~k —k ~4

(4.6)

with k, k' = (27r/nzc) times the momentum of the
positive and electron, and e=(1+k')'*. When
R))) o, this may be evaluated and gives just

(4 7)

This result shows that if we define the unit
charge" in the usual way and the field strengths
in terms of this charge, then the energy in the
field will be given by E, of electromagnetic
theory. In situations where the charges are not
strongly accelerated and in which no lengths
small compared to ) g enter, the difference be-
tween the charge so defined and the true charge

'O' Note added in proof: Because of the gauge dependence
of the theory no unambiguous calculation of the polariza-
tion energy of the pairs in a magnetostatic field can be
made; and in fact no straightforward choice of gauge gives
for this energy that value formally equal to (4.4), which
alone is consistent with relativity. This consideration
shows that, quite apart from the ambiguities discussed
above, the present calculations of the reaction of the pairs
on the field may have to be essentially mod&fied.

"Through the kindness of Professor Lawrence, we have
just seen Dirac's report to the Solvay Congress. In this
report, Dirac, from a different point of view, is led to a
result that the charge of an electron defined in the usual
way is not the true charge. The expression which Dirac
derives for the difference between these charges is in com-
plete agreement with (4.7).

Ze, will not be observable. "In principle a detec-
tion of this difference between true and apparent
charge could be expected for a violently accel-
erated electron; the effects would be of the order
n for accelerations of the order nzc'/h But for.
such accelerations the electron theoretic behavior
of an electron is uncertain by. effects of just the
order n which is the ratio of the acceleration to
mc4/e'. Although, therefore, the effects here dis-
cussed would in principle be capable of observa-
tion if we had an adequate electromagnetic
theory with which to compare them and would in
that case have to be taken into account in descrit
ing the behavior of the electron, they would aI.
pear in fact in the present state of the theory not
to be unambiguously detectable by observation.

A similar argument shows that the deviations
from (4.7) given by (4.6) for the field at dis-
tances R&) p from an electron are also in this
sense unobservable, that they are masked by the

"This can be said in another way: Because of the polar-
izability of the nascent pairs, the dielectric constant of
space into which no matter has been introduced differs
'from that of truly empty space. For fields which are
neither too strong nor too rapidly varying the dielectric
constant of a vacuum then has the constant value ~ (1+~a).
Because it is in practice impossible not to have pairs pres-
ent, we may redefine all dielectric constants, as is cus-
tomarily done, by taking that of a vacuum to be unity.
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electron theoretic uncertainties in the behavior of
an accelerated electron. Thus these deviations in
the field give a shift in the energy levels of an
atomic electron predicted by the Dirac theory;
but these shifts are never greater than the un-
certainties in the energy levels which arise from
our ignorance of the reaction of the electron to its
own radiation field.

For protons, for which we may perhaps sup-
pose that the electron theoretic ambiguities arise
only for the far larger accelerations cVc'/e' the
deviations from the Coulomb law should in prin-
ciple be detectable. These deviations arise at dis-
tances R ) 0. For R&() 0, but still, in order that
ICE may be regarded as large, large compared to
e'/nc', (4.6) gives:

& - = —( s'/&)t:~+((Io/9)~)
+ ((4/3) m) (In (2vrR/Xo)+p) $ (4.8)

with y = Euler's constant. This corresponds to an
increase of effective charge of the proton of

Be (2ne/37r) In (X 0/25R). (4.9)

The effect is small, but may perhaps be detected
by scattering experiments. For the scattering of
protons by protons, deviations from the scatter-
ing for a Coulomb field of the order of one percent
should appear for proton energies of a hundred
thousand volts. It must again be emphasized that
for very close distances of approach, where these
deviations may be large, the theory may not be
applied; for the methods here used to give a
meaning to a must rather be thought of as the
first steps in an approximation based upon the
actual smallness of a.


