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Abstract. We use a minimisation principle to analyse the variational stability of the
translationally invariant vacuum of quantum electrodynamics, with a Coulomb two-body
interaction. We show how the magnitude of the coupling constant a determines the
existence of a stable variational ground state. This ground state does exist within the
considered variational space, provided that « is smaller than a critical value a.. The
ground state collapses if a is larger than a.. Bounds on the critical value «, are given,
and the physical value « = 1/137 is shown to be undercritical.

1. Introduction

The Dirac-Fock (DF) theory has led to calculations of impressive accuracy and to
numerous successes in the study of atomic and molecular structures (Grant 1970,
Lindgren and Rosen 1974, Quiney et al 1987, Gorceix et al 1987). However, this theory
presents features that make its interpretation and implementation delicate, leading for
example to continuum dissolution (Brown and Ravenhall 1951, Sucher 1985), to
variational collapse (Wallmeier and Kutzelnigg 1981, Schwarz and Wallmeier 1982,
Stanton and Havriliak 1984) and to the appearance of spurious states in finite-basis
calculations unless specific constraints are imposed on the basis sets (Grant 1986).
These difficulties all originate from the fact that the free Dirac Hamiltonian hp=
« - p+ Bm describing the kinetic energy is not bounded below. That is to say that pr
theory does not take into account Dirac’s reinterpretation of the vacuum. This reinter-
pretation, which is most naturally expressed in the language of second quantisation,
leads to quantum electrodynamics (QeD) and to a positive kinetic energy Hamiltonian
in Fock space. Consequently, a minimisation procedure in Fock space does not suffer
from the same difficulties as a minimisation in the space of bispinor wavefunctions.
Such a procedure allows one to establish the relativistic mean-field theory upon QED
via a minimisation principle, as was developed in the previous paper (Chaix and
Iracane 1989, hereafter referred to as I). The stationarity equations associated with
this formalism are very similar to standard pF equations, but include additional terms
that are interpreted as describing vacuum polarisation effects. However, the bounded-
ness of the complete Fock-space Hamiltonian including interactions will in general
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depend on the interactions that are considered. Itis therefore necessary, for a minimisa-
tion procedure to make sense, that the interactions do not spoil the boundedness of
the electron-positron Fock-space Hamiltonian.

The interaction terms that may be added to the kinetic energy to form the total
electron-positron Hamiltonian are of two kinds: there is the one-body interaction, or
external potential, resulting from given charged sources, and there is the interaction
between electrons and positrons. In Coulomb-gauge QED, electrons and positrons
interact via the instantaneous Coulomb two-body interaction and via the exchange of
photons. In this paper, like in I, we consider the minimisation problem within a
variational subspace of Fock space that contains no photon, so that the electron-
positron interaction reduces to the Coulomb contribution.

Since the study of the vacuum is the necessary first step for building more compli-
cated states describing charged systems, in the present work we focus our attention
on this point. Depending upon the form and intensity of the interactions, three
situations can happen: (i) the bare vacuum is stable and remains the lowest energy
state; (ii) the bare vacuum is unstable, and the lowest energy state is a non-trivial Fock
state; and (iii) the bare vacuum is unstable, the energy has no minimum and the theory
‘collapses’. This collapse does not arise from the ‘negative energy states’ of the Dirac
Hamiltonian since there are no longer negative kinetic energies in QED, but is due to
the interactions. As a first step, we consider the effects of the Coulomb two-body
interaction on vacuum stability, no one-body external potential being applied. The
question that arises is whether the bare vacuum |0) is the lowest energy translationally
invariant uncharged state in Fock space.

We discuss this issue by means of the ‘Bogoliubov-Dirac-Fock’ (BDF) variational
method described in I, and wonder whether or not the bare vacuum [0) is the lowest
energy translationally invariant uncharged state within the BDF variational space. There-
fore, the work presented in this paper is a variational study of the vacuum of QED
from a non-perturbative point of view, and a first illustration of the specific aspects
of BDF mean-field theory.

We proceed through the following steps. First we describe the momentum-diagonal
Bogoliubov rotation in Fock space, which allows one to define the variational dresssed
BDF vacuum. Then we explicitly give the energy of the dressed vacuum and the BDF
mean-field Hamiltonian as functionals of the Bogoliubov angles. As described in I,
the BDF stationarity equations for the energy involve this BDF Hamiltonian and the
vacuum density. We cast these equations in the form of a set of two coupled integral
equations, the gap equations. Finally, for the specific case of the Coulomb two-body
interaction, we carry on the explicit study of the minimum BDF energy and show under
which conditions on the coupling constant « the minimisation problem has a solution.

2. The BpF Hamiltonian and the variational BDF energy

The physical system under study, that is the vacuum, is assumed to be translationally
invariant. Therefore, we only consider translationally invariant variational BDF states
and momentum-diagonal Bogoliubov transformations. It must be noted that allowing
non-translationally invariant BDF variational states may enable us to lower the energy,
due to the non-linearity of the BDF equations; however a study of this possible
spontaneous symmetry breaking is beyond the scope of the present paper.
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The momentum representation is of course best suited to state the problem, and
we begin by rewriting in this representation the main quantities that appear in the
formalism. The kinetic Dirac Hamiltonian is momentum-diagonal and, for a given
momentum k,

(1)

h[)(k)Ea-k+Bm=< m (U"k))

(o k) -m

where o are the Pauli matrices. hp(k) can be diagonalised and its eigenvalues are w,

Rﬂf)hxk)R(k%=<wk 0 )

0 — Wy

R(k)=< P ‘“"'”) k=k/k (2)
(o k) Ch
where

ce=cos O, =[(w+m)/2w]"? sc=sin 6, =[(w—m)/2w]"?

w=w,=(k*+m?)"2

The plane-wave expansion of the electron-positron operator field is
v, = J (27) 2 dk ¥ e

and ¥, can be expanded over the four eigenvectors of the Dirac Hamiltonian (1), that
is over the four columns of the matrix R(k) (2). The components corresponding to
the positive eigenvalue are denoted b and are interpreted as bare electron destruction
operators, while the components corresponding to the negative eigenvalue are denoted
d™ and are interpreted as bare positron creation operators:

wo-rW( ;) K=k @)
k
The operator b} creates a charge —e and a momentum k, and the operator d; creates
a charge +e and a momentum k. Therefore b,, di and ¥, all correspond to an
increment of momentum —k, and to an increment of electric charge +e. The rotation
R(k) (4) between the Fourier component ¥, of the electron field and the bare particle
operators b and d” is a particular Bogoliubov transformation (see 1), characterised
by the ‘bare vacuum Bogoliubov angle’ 6, (3). 6, depends only on w,, and takes on
values ranging from O to #/4. 6 = 0 corresponds to the static limit (the ‘large’ component
¢, is large and the ‘small’ component s, is small), and 8 = w/4 corresponds to the
ultra-relativistic limit (the ‘large’ and ‘small’ components are of the same order of
magnitude).

The bare vacuum is the Fock state [0) characterised by 5{0) = d|0) = 0, and the Dirac
sea is described by the projection operator upon the negative eigenvalue eigenstates
of hi(k), that is the vacuum expectation value of the tensor product ¥ ®W¥:

A“’E<01w+®~lf|o>sR(g ?)R*. (5)
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A charge-conserving momentum-diagonal Bogoliubov transformation mixes the b’s
and d7’s, and leads to dressed electron destruction operators b and dressed positron
creation operators d:

Ek> ( b;\> ( COS ny sin "7k>( b;\)
.~ | =Tk = . 6
(dE (k) dz —~sin 7, cos m/\dE (6)

This transformation combines with R(k), leading to an expansion of the Fourier
component ¥, of the electron field over a new basis:

~

wo=Rw(3) ™
where the matrix R = RT™ of the rotated wavefunctions is also momentum-diagonal:

~ ¢ —Si(o -k

(o 0 ®
with

G =cos(n+ 6) S =sin(n, + 6;).

The vacuum [0) of the dressed particle operators is characterised by 60)=d|0)=0. It
corresponds to the transformed Dirag sea described by its ‘density matrix’, which is
the transformed projection operator A '(k):

~ ~ ~ ~/0 0\ «
AT =0 V|0 = R<O 1>R+. (9
The vacuum density p has been defined in I (§ 3) as the expectation value in the

dressed vacuum |6> of the normally ordered tensor product N[¥ " ®¥], where N is
the normal ordering corresponding to the bare vacuum |0). Therefore, g is the difference

A7 = A" between the operators that project upon the transformed and initial Dirac
seas, respectively. Here, g is momentum-diagonal and expressed as
~2 2 oo~ i
. ~ ~ Sp— sk —(8kCr — s Mo+ k
p(k)E<ON[‘IfT®‘If]O>=< . kT Sk . ( ktk B k I\z)( )) (10)
=88 — sie ) (o - k) Cr— Ck

This density represents the modification of the Dirac sea under the action of the BDF
transformation.

The Fock-space Hamiltonian under consideration has a term describing the kinetic
energy, and a term describing the two-body interaction between the charges at different
points x and y:

H =NU dx «y:hD\If,\.JrJ dx dy V(x—y)(¥L W )T \P)] (11)

Note that QeD in Coulomb gauge leads to such an electron-positron Hamiltonian.
Photons appear in other terms that do not contribute in the considered variational space.
In momentum space the Dirac operator is

k
ho(ag) = hp (k) .p8 (k= g) (12)

and the antisymmetrical scalar local two-body interaction can be written as

k 1
V(a;”;g) =3[V (p—k)8..8s5 ~ V(r—k)8,:84,16(k+q—p—r) (13)
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where k, p, q, r are momenta and «, B, y, § are bispinor component indices. The two
terms in the square brackets are the direct and exchange contributions, respectively.

The energy 15"0 = (6|H|6> of the dressed vacuum is infinite since a ‘6(0)’ factor arises
from integration over momentum. This infinite factor is interpreted as the volume of
position space. As usual for translation-invariant problems, one works with the vacuum
energy per unit of volume, which is IS‘OEI dk f?o(k), with

Eo(k)= 4['" —j dg Vi(k-q)(5 —s:’,)J(s'i -5%)

—-4[1(-6-_[ dq V'(k—q)(5,¢, —sch)(lz- ﬁ)}(s”ké'k — 51Cx ). (14)

As described in I, and as usual in mean-field theories, the stationarity equations
involve a density 5 and a mean-field Hamiltonian A. The BDF mean-field Hamiltonian
is h = hp+1, where I is the vacuum polarisation potential due to the vacuum density.
Here [ is expressed (summation over repeated indices is assumed) as

~{ kq _ rkpg \ [ pr
F(aﬂ)”“oV(aayﬁ)p(ya)‘ (13

The direct part vanishes since the local charge is zero everywhere due to the translational
invariance of the variational vacuum, and there only remains the exchange part

f( kq)=—25(k~q)7/(k—p)ﬁ(p)ag. (16)
ap

This vacuum polarisation potential is momentum-diagonal, and therefore so will be
the BDF Hamiltonian h = hp+1', which can be written

. M, A )
h(k)= 17
(k) (Ak ~M, (17)
where
M, =m-2 J dq V' (k—q)(5,—s.)
(18)
Av=(o-k)+2 J. dq V'(k —q)(5,¢, = s,c,) (o §).
3. Gap equations
The stationarity condition for the BDF energy is the BDF equation
[A,A7]=0. (19)

’Ihis implies that the rotation R~(k)~(8) can be choser~1 to diagonalise simul}aneously
A" (9) and the BDF Hamiltonian A(k). The matrix h(k) transformed by R(k) is

-~ ~

R™A
_( cos[2(6+n)IM +sin[2(6+1n)]8 cos[2(9+n)]A—sin[Z(B-l—n)]M(o--IQ))
“ \cos[2(8+n)]A—sin[2(8+ )M (o - k) —cos{2(60+n)IM —sin[2(6+7)]s
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where we have introduced
S=YAdo B+ (o - kAJ=k+2 J dq V' (k—q)k- §(5,¢, - s,c,). (20)

For each momentum k, R*AhR is diagonal when the off-diagonal terms vanish,
cos[2(6+n)]1A—sin[2(6 +1)]M (o - k) =0

which implies after multiplication on both sides by o - k that
cos[2(60+7)]8 —sin[2(6+n) M =0.

The eigenvalues =A of the BDF Hamiltonian and the corresponding stationary
Bogoliubov angles 7 (6) are characterised by (we repeat between parentheses definitions
from (3) for comparison):

Ai=Mi+ 6} (0} =m*+K%)
sin[2(6y + 1)) = 6i/ Ax (sin(26y) = k/ wy) (21)
cos[2(8, + )] = M,/ A, (cos(26,) =m/ wy).

Since M and 8 given by (18) and (20) are functionals of the angles n, equations (21)
are functional equations for the BDF angle . One can also get rid of the Bogoliubov
angles by inserting the last two relations (21) into (18). One obtains a set of two
integral equations for the functions M and 8, which determine the spectrum of the
BDF Hamiltonian via the first relation of (21):

M, = m—J dq V(k-q)(ﬁ—M>

w‘l )\‘l
(22)

5 = k—J dg °V(k—q)<i—ﬂ>1€- i
Wy Aq

The equations (22) may be considered as a relativistic generalisation of the non-
relativistic ‘gap equations’, characterising the changes in a mean-field spectrum due
to pairing correlations (Bardeen et al 1957, Ring and Schuck 1980). The Hamiltonian
(11), which is normally ordered with respect to the bare vacuum, can be reordered
with respect to the variational dressed vacuum (I, § 4). Then, H is written as the sum
of (i) the c-number EQ, (ii) a one-body term where the Dirac Hamiltonian hy has been
replaced by the BDF Hamiltonian h, and (jii) the residual two-body interaction. At
the stationary point, that is when the gap equations are satisfied, this reduces to

H= E~0+ J dk /\k(I;ZI;k + 5;3,() +residual two-body interaction.

Therefore, the spectrum of the one-body part of the Hamiltonian in the BDF representa-
tion is given by the eigenvalues =A, of the BDF Hamiltonian, and the relation A, =
(M32+83)"? is the new dispersion relation between energy and momentum.

The gap equations (22) have the trivial solution M, =m and 8, = k. This means
that the bare vacuum is a stationary point of the energy functional in the present
variational space. However, this stationary point may be unstable and there may exist
non-trivial solutions, depending on the form and intensity of the two-body interaction
Y. In order to illustrate this, we may specify the two-body interaction (Coulomb
interaction with a coupling constant «) and consider special forms of the functions
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-200f

Figure 1. Vacuum energy in a restricted variational space of BDF states labelled by a single
parameter M, for a Coulomb two-body interaction. Two values a, < a, of the coupling
constant are considered. The bare vacuum corresponds to M/m =1, and is a stationary
point of the energy. For a small coupling constant a, the bare vacuum is stable against
variations of M (full curve). For a large coupling constant «, the bare vacuum becomes
unstable (broken curve); in this case, the energy exhibits a minimum for a given value of
the parameter M. This minimum may itself be unstable within the complete BDF variational

space (see § 4).

M, and 8, with two free parameters M and A (see §4). We plot in figure 1 the BDF
vacuum energy against M for a given value A and for two values «, and a; of the
coupling constant a, such that a@; <a,. The bare vacuum corresponds to M/m =1
and is always a stationary point. It is stable for @ = a,, at least within the considered
restricted variational space (full curve). It becomes unstable for a, large enough
(broken curve). In this latter case the BDF energy exhibits a new minimum, which is
stable within the considered restricted variational space, but may be unstable in the
complete BDF variational space (this is indeed what happens, as shown in § 4). As we
shall see in the following two sections, this example shows that, provided the coupling
constant is large enough, the vacuum is unstable in the BDF variational space, and a

fortiori in the complete Fock space.

4. Minimisation of the BDF energy: the Coulomb case

We now restrict the discussion to a pure Coulomb interaction, and we look for a
minimum of the BDF energy density E, (14). The two-body interaction ¥ can be

written as
V(x—y)=jalx—y|™
or in momentum space
V(k—q)=3a(2m)  4nlk—q|™ (23)

where a is the electromagnetic coupling constant. In the following discussion, the
coupling constant a as well as the electron-positron mass m are considered as
parameters. The vacuum energy E, (14) is then a functional E of the Bogoliubov
angles n, (6), and a function of the parameters « and m:

l:fo=l:?(m, a,m). (24)



3822 P Chaix, D Iracane and P L Lions

We look for an infimum of l:?(a, m, ) as a functional of 7:
I(m,a)=1Inf E(m, a, n). (25)
n

The vacuum energy (24) can be written as
E(m, a,n)=T(m,n)-a27)V(m, n) (26)

where T corresponds to the kinetic part of the Hamiltonian and V to the two-body
interaction. The kinetic energy is

T(m, n)=4J- dk w, sin® 7, (27)

where w, is the kinetic energy of a particle with momentum k, and 4 sin’ 7, is the
number of particles with momentum k (there are two spin orientations for each particle,
two particles in each pair and sin® », pairs for a given momentum k and a given spin
orientation). Finally the potential energy is

dk d
V(im,n)=4 J “(——_—;I—%Sin M sin ng[sin{n, +26) sin(n, +246,)

+cos( 7y +26,) cos(n, +26,) k- §1. (28)

Although the functional form % (23) of the two-body interaction does not depend on
m, this parameter does appear in the Coulomb contribution V(m, n) to the energy.
This is due to the normal ordering, that is to the vacuum subtraction, which depends
on m since the bare vacuum is defined relative to the free Dirac Hamiltonian.

The mass of the electron is the only scale parameter in the problem. This implies
the following scaling behaviour:

E(m, a,n(-))=AE(m/), a,n(1)). (29)
Since n(-) and n(A+) run over the same variational space, the infimum (25) fulfils
I(m,a)=AI(m/\, a). (30)

This scaling law has important consequences:

(i) For A =m, this gives the scaling law I(m, a)=m*I(1, a).

(ii) For m =0, this gives I(0, a) = A*I(0, ) for every A, and then, since I (m, @) <0,
I(0, «) is either 0 or —c0.

(iii) If I(0, @) =~o0, then I(m, a)=A*T(m/A, a)=lim,_ A I(m/A, a)=—x,

Since V(m, n)=0, I(m, «) is a decreasing function of a. As a consequence, there
exists a critical value a.(m) such that I(m, a)=0 if a <a.(m), and I(m, a)<0 if
a > a(m). Because of (i), the critical value does not depend on m; therefore a.(m) =
a(0)=a.. Because of (ii) and (iii),

I(m,a)=0 if o <a, (31)
I(m, a)=—c if a>a.. (32)

Furthermore, one can see that I(m, a.)=0; indeed, if I(m, a.) = — there exists a
function n such that

T(m, 1) —a27) 2 V(m, 1) =E(m, a., n)<—e <0,

a.=(2m) e+ T(m,n)l/ V(m, n).
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Then let us consider
a=(2m)[e/2+ T(m,m))/ V(m, 7).
One has a < a., and
E(mya,n)=T(m n)—am)>V(m, n)=—¢/2<0

which contradicts (31).

To summarise, we have shown that the BDF vacuum exhibits a stability-instability
transition behaviour. There is a critical value a.= 0 of the coupling constant, indepen-
dent of m, such that

if o> a, then I(m, o) =— (33)
if a<a, then I{m, ) =0. (34)

It is remarkable that . does not depend on the electron-positron mass m. This stems
from the absence of scale in the two-body interaction.

We can conclude that the bare vacuum |0) is the lowest energy state of our variational
space if the two-body Coulomb interaction is not too strong (that is if @ <a.). On
the contrary, if « is large enough, the negative electron-positron Coulomb energy
exceeds the sum of the kinetic energy and of the electron-electron and positron-positron
repulsive energies. It then becomes energetically favourable to increase the Bogoliubov
angles and the number of pairs in the vacuum. In this case the energy is not bounded
below in the variational space.

In principle, like in perturbative field theory, the parameters « and m appearing
in the Hamiltonian must be chosen to fit experimental values of observable quantities,
for instance the physical electron mass m. or a binding energy. This can lead to
choosing input values of « and m that differ from 1/137 and m,, respectively, and
these input values in general depend on the variational space. The problem of
order-by-order renormalisation in perturbative theory is here replaced by the problem
of non-perturbative renormalisation in a variational space. In the BDF variational
space used for the description of the translationally invariant vacuum, the collapse for
an overcritical input value of a occurs whatever the input value of m. Therefore no
mass renormalisation will be able to compensate for it, that is to say that the input
value of a has to be undercritical for the theory to make sense.

5. Bounds on the critical coupling constant

To ensure that the Hamiltonian (11) is bounded below in the electron-positron Fock
space and that an atomic-structure calculation via a minimisation procedure is legiti-
mate, it is necessary that the coupling constant a appearing in the Hamiltonian be
undercritical. It is therefore necessary to look for bounds on a.. A heuristic argument
shows that one can expect «, to be of the order of magnitude unity: the ground-state
energy of a ‘positron-electron’ system, as given by the fine-structure formula with a
reduced mass m/2, goes to zero when a goes to unity. Therefore, it becomes gradually
easier to create a real pair when « approaches unity, and pairs will be spontaneously
created for @ > 1. Greiner and coworkers (Reinhard et al 1971, Greiner et al 1985)
have used and refined the argument, applied to the ‘electron-external field’ system:
there the coupling constant is Za (@ =1/137, Z =nuclear charge), and the argument
shows that spontaneous pair creation might occur for Z greater than a critical value
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of the order 1/a. In our case, this kind of argument based on one-particle theory is
unreliable. Since there is no simple general procedure to separate the motion of two
interacting relativistic particles into a centre-of-mass motion and a relative motion with
reduced mass (Bodwin et al 1985), the use of the fine-structure formula for positronium
and with a large coupling constant is not justified. However we will give bounds on
a., and show that indeed «. is of the order of magnitude unity. First we give a finite
upper bound on the critical coupling constant and therefore show that variational
collapse in the BDF space may occur, provided that « is large enough. Next, we give
a non-vanishing lower bound to the critical coupling constant, and show that the energy
is stable in the BDF variational space provided that ¢ is small enough.

5.1. Upper bound on o and possibility of variational collapse

Here we study the energy functional in a restricted variational space, and we consider
Bogoliubov angles such that

for k<A cos 6, =[(Q+M)/20]"? sin 6, =[(Q - M)/2Q]"2
Q.= (K*+MH?
for k=A (5k =0,

where A and M are variational parameters.

In the restricted space, the energy functional E~(m, a, ) (26) becomes a function
E~(m, a, A, M). One can check after tedious but straightforward calculations that, for
a given M, the behaviour of E for large A is

E(m, a, A, M)=7ZT<1—%a)(M—m)zAzwLo(Az). (35)

This shows that if @ > 7/In 4, E has no minimum unbounded in the restricted space,
and a fortiori in the complete Bogoliubov space. Therefore the critical coupling constant
is finite, and a. < 7/In 4.

As an illustration we can compute E(m, a, A, M) explicitly, and figure 1 represents
E as a function of M for a given value A, of the variational parameter A, and for two
values a, and a, of the coupling constant @. (i) For a,<w/In4, one can see that
E(m, a,,Ag, M) is minimum for M =m, and the bare vacuum is stable; (ii) for
a>> 7/1n 4, the bare vacuum is unstable, and E~(m, a,, Ay, M) has a minimum for a
non-trivial value M., of the variational parameter M. However, the above analysis
shows that the energy functional actually is not bounded below, and that the dressed
vacuum corresponding to Ay and M, is unstable.

5.2. Lower bound on a. and possibility of variational stability

The energy functional (26) can be bounded below in the following way:
E(m, a,n)= T(m,n)=a@m) 7| V(m, ). (36)

Now, the kinetic energy increases with m:

T(m,77)=4J‘dka),< sin’ 77,<24J‘dkksin2 Nk (37)
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and on the other hand

dkd . . . .
[V(m, n)|<4 J’ “‘“q—‘rz!sm M) |sin | isin(n, +26,)sin(n, +26,)

|k -
+ cos{ny +26;)cos(n,+26,) k- ql

where the last absolute value is smaller than unity since it is the scalar product of two
normalised 4-vectors:

dk dq . .
IV(m,n)|$4J‘k_—qisz il [sin n,l. (38)
This majorisation is related to the fermionic character of the electron field, for which
the densities are smaller than unity, and for which the squared density can be majorised
by the density itself. Let s(x) be the Fourier transform of |sin 7,|; we have

E(ma,n)=4 J dxs(x)[(=A)"?=3alx|']s(x). (39)

Then we use the following lemma, which allows a comparison between kinetic and
potential energies (a derivation of this lemma is outlined in a mathematical note in
the appendix at the end of the paper).

‘Lemma. For any real function s such that s(x)(—A)"?s(x) is integrable over R®, then
s(x)|x|"'s(x) is also integrable over R’, and one has

[ dx s(x)|x{ 7 s(x) = (7/2) J‘ dx s(x)(=A)"?s(x) (40)

o

(furthermore 7/2 is the smallest constant for which this inequality holds for every s).

Therefore, if a <4/, then E~(m, a, n)=0, and hence I(m, «)=0. Then one can
conclude that the critical coupling constant is greater than 4/ .
Finally we showed that the critical coupling constant «. satisfies:

4/ m<a.<m/ln4. (41)

The behaviour of the BDF vacuum energy depending on the numerical value of the
coupling constant is summed up in figure 2. (From a somewhat different point of
view, Hardekopf and Sucher (1985) analysed the question of spontaneous positronium
creation on the basis of the no-pair two-particle theory, and found a critical coupling
constant =1.8.)

It is noteworthy that (39) brought us back to the study of (—A)">—y|x|™!, for a
given value of the parameter y. The ‘0 or —o¢” behaviour of the BDF vacuum energy
is reminiscent of the ‘stability-instability’ alternative for this ‘semi-relativistic’ one-
particle Hamiltonian (—A)"?—y|x|™" (Kato 1966, Weder 1975, Herbst 1977a, b,
Daubechies 1984). This Hamiltonian has been introduced in the mathematical physics
literature as an ersatz of the one-particle Dirac~-Coulomb Hamiltonian a -« p+8m —
y|x|™", for m = 0. It is remarkable that it occurs here, not as an ersatz, but in the study
of a minimisation procedure applied to the Hamiltonian of Qep. Therefore we have
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Figure 2. The stability of the BDF vacuum with a Coulomb two-body interaction depends
on the value « assigned to the coupling constant. For « larger than the critical coupling
constant a., the bare vacuum is unstable and the energy functional has no minimum. A
fortiori, the Hamiltonian of QED in Coulomb gauge is not bounded below in this case. For
a smaller than the critical value «, the bare vacuum is the translationally invariant
uncharged Fock state of lowest energy, and the Hamiltonian is bounded below within the
considered variational space. However, this does not mean that it is bounded below in
the complete Fock space. Itisshownin § 4 that the physical value @ = 1/137 is undercritical.

here an unexpected interpretation of the results concerning the academic Hamiltonian
(—8)"% = ylx| ™",

6. Concluding remarks

Since the physical value « =1/137 is subcritical, the variational procedure leads one
to choose the bare vacuum |0) for the description of the empty space in BDF theory.
However, the collapse of the BDF vacuum energy for a > « . is of a more general
significance. The BDF variational space is a subspace of the ‘electron-positron’ Fock
space, and of the ‘electron-positron-transverse photon’ Fock space of Coulomb-gauge
QED. If the BDF vacuum energy collapses in the BDF variational space, and this does
happen for « > a., then a fortiori the complete Coulomb-gauge Qep Hamiltonian is
not bounded below. Since no photons are included in the BDF variational space, a.
cannot be considered as a reliable estimate of a possible critical value for the stability
of Coulomb-gauge QED, but only as an upper bound: the critical value of the coupling
constant for the collapse of QED is smaller than «..

This result may be compared to those deduced from perturbative approaches. The
question of the stability of the bare vacuum in quantum-field theories where fermions
are coupled via scalar or vector bosons has yet been addressed by several authors
(Cohen et al 1987, Soni 1987). It can be shown within the perturbative approximation
at the one-loop level that the bare vacuum is not the uncharged Fock state of lowest
energy, even after one-loop renormalisation. Whether or not this instability of the bare
vacuum is an artefact of the one-loop approximation remains an open question since
higher-order terms of the perturbative expansions may change this result. Although
itleaves the status of a ‘renormalisation’ in Hamiltonian non-perturbative quantum-field
theory to be investigated, our demonstration of the collapse of Coulomb-gauge QeD
for a large enough coupling constant does noi rely on a perturbative expansion; it
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therefore gives a complementary view on the question of vacuum stability in quantum-
field theory.

Appendix. Mathematical note

Here we outline a proof of the following result that we used in the study of the BDF
vacuum.

Lemma. There exists a constant C such that for any smooth real function s with a
compact support, we have

J dxs(x)|x|"'s(x)<C J dxs(x)(—A)/*s(x).

By density, such an inequality holds for the homogeneous Sobolev space #'/**(R%),
which is the closure of the space of compactly supported smooth real functions with
respect to the norm

1/2
Hsll=(J dxs(x)(—m”zsu)) |

Furthermore, C = 7/2 is the smallest constant such that the inequality holds for
all s.

One proof of the above inequality relies on delicate convolution properties, and
we only sketch it.

First of all, if s belongs to #'/>*(R*), by Sobolev embeddings s belongs not only
to L’(R?) but also to the Lorentz space L**(R*). Hence, s° belongs to L**'(R*). Since
|x|”' belongs to L>*(R*), by Holder inequalities, the product s*(x)|x|™" belongs to
L"'(R*) = L'(R?), that is s(x)|x|™'s(x) is integrable over R®.

Since Sobolev embeddings define a continuous embedding from %"/**(R?) into
L**(R*), the above argument also yields the existence of a positive constant C indepen-
dent of s such that the above inequality holds.

For the value C = #/2, the inequality holds for every s: if it were not the case, one
could find a positive real number E and a compactly supported smooth real function
s, such that

J dxs(x)[(=A)?=(2/m)|x| "]s(x)< -2E J‘ dxs?(x)=1.

Introducing a decreasing sequence V,, of smooth compactly supported negative poten-
tials such that

-(2/m)x|"'sV, <0 V> -2/ 7)|x|"

we could deduce by continuity that for n large enough
J‘ dxs(x)[(=A)"*+ V,]s(x)<—-E J dxs*(x) = 1.

Next, consider the ground state of (—A)'/?+ V,,, which exists in view of the properties
of V, and the above irequality. It satisfies

[(_A)1/2+Vn]sn=6nsn 8,,$“E J dxsi(x)zl
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and has a fixed sign, say positive (this characterisation of the fundamental is easy to

prove for the Schrédinger operator —A+ V; in the present case, it follows from the

fact that ||¢]| < | s| if 7=|s|, where the norm has been defined above).
Multiplying this equation by s(x)=|x|"", which satisfies

[(=2)"%=(2/m)|x|"1s(x) =0

and integrating by parts (integration which can be justified by a tedious argument),
we deduce

j dx s, ([ mlx "+ Ve = e, f dx x5, (%)

This is a contradiction since the first term is positive and the second one is negative.
In summary, we proved that

J dxs(x)|x| " s(x)<(7/2) J dx s(x)(=A)"%s(x).

In this derivation, we used the fact that, in a loose sense, s(x) is the ‘fundamental’
of (—=A)Y?—(2/m)|x|"", with zero eigenvalue. This implies that C = /2 actually is
the smallest C value for which this inequality holds.
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