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Abstract In this chapter we consider the extension of 4-component relativistic
methods from atomic to molecular systems, in particular the challenges
arising from the introduction of the algebraic approximation. In order to
analyze the variational stability of the relativistic many-electron Hamil-
tonian we derive a variational theory of QED in the semiclassical limit
using the second quantization formalism and exponential parametriza-
tion. In QED the negative-energy orbitals are filled leading to a true
minimization principle for the electronic ground state, whereas in the
standard 4-component approach these orbitals are empty and treated as
an orthogonal complement, thus leading to a minimax principle. We em-
phasize the non-uniqueness of the resulting no-pair Hamiltonian of the
standard approach. 4-component methods allow the continuous update
of the Hamiltonian and thereby complete relaxation of the electronic
wave function. We also discuss more practical aspects of the imple-
mentation of 4-component relativistic methods. We carefully analyze
their computational cost and conclude that the difference with respect
to non-relativistic methods constitute a prefactor and not a difference in
order. We furthermore discuss how computational cost may be reduced
while staying at the 4-component level, e.g. by exploiting the atomic
nature of the small component density.
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Introduction

4-component electronic structure methods for atoms were introduced
in chapter six. In the present chapter we consider the extension of these
methods to molecular systems (see [116] and references therein for recent
reviews). It is therefore natural in this chapter to focus on the addi-
tional complexities added when going from single atoms to polyatomic
systems. An obvious difference is the lack of spherical symmetry. In the
atomic case the high symmetry allows the separation of radial and an-
gular degrees of freedom. The angular part can be solved completely by
symmetry, particularly facilitated by the introduction of Racah algebra
[38], whereas radial equations can be solved by finite difference methods.
In molecular calculations one generally has to resort to the algebraic ap-
proximation, that is the use of finite basis set expansions. The first basis
set calculations led to rather disastrous results (see [88] for references).
Schwarz and Wechsel-Trakowski [89] identified two problems connected
with 4-component relativistic calculations in the algebraic approach:

1 The coupling of the large and small components of the Dirac equa-
tion requires separate basis set expansions for each component.

2 The relativistic many-electron Hamiltonian is not bounded from
below and, according to an argument given Brown and Ravenhall
[10], gives only continuum solutions. This has been referred to as
the “Brown-Ravenhall disease”.

In the atomic case the first problem is avoided by the use of finite differ-
ence methods, and the second problem is solved by imposing the bound-
ary conditions at » = 0 and r — oo for bound solutions [39]. In practice
the above two problems have also been solved in the algebraic approxi-
mations, and 4-component relativistic molecular calculations are thereby
routinely carried out today. On the theoretical side things have appar-
ently not been completely straightened out, as witnessed by a number
of misunderstandings in the literature. After an initial overview of the
relativistic many-electron Hamiltonian in section 1, we therefore give a
variational formulation of QED in the semiclassical limit, that is with
continuous electromagnetic fields, in section 2. At this level of theory a
true minimization principle is assumed to exist [30], and this puts the
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discussion of the variational stability of the relativistic many-electron
Hamiltonian on firm grounds.

The separate basis set expansion of the large and small components
needed to solve the second problem above leads to increased computa-
tional cost. 4-component calculations are therefore considered limited
to benchmark calculations, and more cost-efficient methods are sought
by reducing the 4-component Hamiltonian to 1- or 2-component approx-
imate forms. There is, however, another approach which consists of
staying within the 4-component form and instead seek reduction of com-
putational cost by reduction or elimination of intermediate quantities
(e.g. two-electron integrals) appearing in the actual calculations. The
current status and perspectives of this approach are discussed in section
3.

Notation and units: Unless otherwise stated, all formulas appearing
in this chapter are in atomic units. In these units the electron mass m
and the elementary charge e are both unity. We have, however, chosen
to retain their symbols so that the reader can see how the fundamental
characteristics of the electrons enter the equations. This is particular
important for the electron charge since it provides the coupling to ex-
ternal fields as will be discussed in section 1.1.1. In this manner one
can distinguish equations describing electrons from those describing its
antiparticle, the positron. Operators generally come with operator hats,
and vectors are written in bold characters. We shall also make extensive
use of the Einstein summation convention or implicit summation, which
means that a repeated index signals free summation over this index. A
dot product is accordingly written u - v = u;v;. This convention allows
formulas to be written in a more compact manner, which is particularly
useful in the section on QED.

1. The Hamiltonian
The general form of the many-electron Hamiltonian is
N R 0 ZaZpe?
H:Zh’( + - 297'] +Vnn) nn: Z |R _BR |
i 'L;é] A;éB A B (11)

where iL(Z) are one-electron operators, §(i, ) represents the two-electron
interaction and Vj,, is the classical repulsion of fixed nuclei. This form is
valid in both the relativistic and the non-relativistic domain to the ex-
tent that three-particle and higher interactions can be ignored. For the
development of the various methods of quantum chemistry it is rarely
necessary to be more specific regarding the form of the many-electron
Hamiltonian. This holds particularly true if the operator is recast in sec-

DRAFT 6th December 2002, 5:04pm DRAFT



4

ond quantized form, as will be discussed in section 1.3. This observation
signals that one should carefully distinguish Hamiltonians from meth-
ods. At the 4-component relativistic molecular level of theory one now
finds an almost complete set of methods analogous to the arsenal devel-
oped in the non-relativistic domain, such as Hartree-Fock (HF) (see e.g.
[95, 61, 3, 64, 102, 23, 81, 73, 117] and references therein), second-order
Mgller-Plesset perturbation theory (MP2) 25, 57|, Multi-Configuration
Self Consistent Field (MCSCF) [47, 98], Restricted Active Space Con-
figuration Interaction (RASCI) [101], Coupled Cluster (CC) [106, 109]
and Density Functional Theory (DFT) (see e.g. [99, 60, 118, 84]). We
therefore find it unnecessary to elaborate on the general principles of
these methods since this information is available in a number of text-
books [96, 66, 76, 43]. We shall rather try to point out the specific
adaptions and considerations needed to carry these methods over into
the 4-component relativistic realm. We would also like to point out that
in view of the distinction between Hamiltonians and methods emphasized
above, we advise against the use of method names such as Dirac-Hartree-
Fock and the shorter version Dirac-Fock (which is not very fair to Douglas
Hartree who first suggested to Bertha Swirles the extension of the SCF
method to the Dirac equation [33]) and instead recommend “the Hartree-
Fock method at the 4-component relativistic level” or, more specifically,
DC-HF (the Hartree-Fock method based on the Dirac-Coulomb Hamil-
tonian).

1.1 The one-electron part

1.1.1 The Dirac equation in an electromagnetic field.
The starting point for 4-component molecular calculations is Dirac’s cel-
ebrated relativistic wave equation [18, 19]. In covariant form (that is the
form in which the equation “looks the same” in all Lorentz frames [77])
it is given by

i 0
o, — (v._19
(9 —me) =05 (v-ca) (1:2)
fYIJ/ = ,B(a,zI4)

in which appears the 4-gradient 0,. Note that we do not distinguish
between covariant and contravariant 4-vectors, as this is not necessary
at the level of special relativity [77, p.6]. The quantity v, is given in
terms of the 4 x 4 identity matrix I4 and the Dirac matrices

a:[?f 62] and ﬁ:{éz _0;2] (1.3)
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and generates the Cy Clifford algebra [72], the algebra of gamma matri-
ces. The Pauli spin matrices

o R (e Y B

are themselves generators of the C3 Clifford algebra, that is the algebra
of complex quaternions, a property that we shall make use of in section
1.1.2. Note also that the Dirac o matrices can be expressed in terms of
the 4 x 4 spin matrices

I P B F A B

upon the introduction of the auxiliary matrix ¢[68]. In order to align the
relativistic and non-relativistic energy scales one usually performs the
substitution

B = p=p-1L (1.6)
but we will for the moment retain the original form of the Dirac equation.

The free-particle Dirac equation in its more familiar form is obtained
by multiplication by B¢ from the left

A 0 A
{hD;o - ZE] Y =0; hpo=pPmc*+c(o-p) (L.7)

External fields are introduced through the principle of minimal elec-
tromagnetic interaction [37]

Py — Ty =DPu — qA, (1.8)
in which appears 4-momentum p, = —id, and the 4-potential A, =
(A, 2¢). We are interested in electrons and therefore choose the charge
q = —e. The Dirac equation then attains the form

D"/) - [}ALD;AM - Z%] P =0; ilD;Au = /BmCZ +e(la-m)—ep  (19)

It is important to note that the minimal substitution (1.8) follows from
the term
Ling = JuAu (1.10)

in the Lagrangian describing the interaction between the particle and the
electromagnetic field as the product of the 4-current j, = (j,icp) and the
4-potential. This term was first proposed by Schwarzschild [90] to satisfy
Lorentz covariance. It is employed in ad hoc basis in the non-relativistic
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domain, even though it does not represent the proper non-relativistic
limit, which is electrostatics (see [78] and references therein). Comparing
(1.9) and (1.10) we can identify the 4-current as

Ju=—ech By p=—ey Ly j=—ecplay (1.11)

Classically the current density is given as charge multiplied by velocity
and indeed one finds from Heisenbergs equation of motion that the veloc-
ity operator in the relativistic domain is cax. This may appear somewhat
surprising, but may be interpreted as the electron oscillating at the speed
of light ¢ about its mean position (“Zitterbewegung” [86, 68]). Note that
just as we may identify —eca as the operator of current density, we may
identify —ely as the operator of charge density. This identification will
prove useful in section 1.2.
External electric E and magnetic B fields appear in the Hamiltonian
only indirectly through the scalar ¢ and vector A potentials
E=—V¢—aa—?; B=VxA (1.12)
This can be considered an advantage as the freedom of gauge [46] leaves
room to choose the most convenient form of the potentials. For instance,
a uniform electric field may be represented by A, = (0, —%E : r) as well

as A, = (—Et,0), but the former choice is usually preferred since it can
be handled by time-independent theory [7]. Quantum chemistry, be it
relativistic or not, is usually expressed in Coulomb gauge, that is through
the transversality condition V - A = 0. From Maxwell’s equations and
the definitions (1.12) the field equations in the presence of a density p
and a current j can then be expressed as [41]

Vi = —4mp (1.13)
2
(VQA—aQ%—t?>—Va2?9—f = —4ma? (1.14)

where « is the fine-structure constant. The equation for the scalar po-
tential is simply the Poisson equation with solution

p(r,t) = / %d# (1.15)

At first sight, this result appears to be in contradiction with the theory of
special relativity since the scalar potential is given by the instantaneous
charge density. However, one must bear in mind that the scalar potential
itself is not an observable. The effects of retardation, as well as magnetic
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interactions, enter through the vector potential. The Coulomb gauge
bears its name because it singles out the instantaneous Coulomb interac-
tion which is the proper non-relativistic limit of classical electrodynamics
and which is the dominant interaction of chemistry. All retardation and
magnetic interactions enter as higher-order terms in a perturbation ex-
pansion of the total interaction in terms of the fine-structure constant
a [14]. For instance, to first order the interaction between two point
charges g1 and ¢ is in Coulomb gauge given by [42, 15, 46]

Lint = he [—1 + 2% {(V1 . V2) + % (I‘12 . V1) (I‘12 . VQ)}:| (116)
c Ty
where vy and vy are their velocities. The first term can be identified as a
charge-charge interaction, whereas the second term is a current-current
interaction.
In molecular theory we shall employ iLD;V, the Dirac operator in the
molecular field. It corresponds to the introduction of the 4-potential

Zm Rl A(r;) = 0. (1.17)

where Z e and R4 is charge and position, respectively, of nucleus A.
The nuclei are accordingly treated as sources of external scalar potentials
and nuclear spins are ignored. This "clamped nucleus" approximation is
essentially the same as the one introduced by Born and Oppenheimer [§]
in non-relativistic theory in which the main assumption is that electrons
follow the slower movements of nuclei adiabatically. However, in the
relativistic domain two consequences of this approximation should be
kept in mind. The first is that the restriction to a particular frame in
which the nuclei are at rest invalidates Lorentz covariance. In reality,
though, nuclei will always move relative to each other so that no frame
can be found in which all nuclei are stationary. Second, from (1.16) it is
clear that all charge-charge interactions involving nuclei will be neglected
in the "clamped nucleus" approximation.

The operators appearing in the Dirac equation (1.9) are 4 x 4 ma-
trix operators and the corresponding wave function is therefore a 4-
component vector function

L Xa
P = wsl wX=wX5], X =I5 (1.18)

The four degrees of freedom come from the fact that the Dirac equation
describes both electrons and positrons and explicitly includes spin. For
a given potential the positive-energy solutions correspond to electronic
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solutions, and in the non-relativistic limit (to be discussed in section
1.1.4) the lower two components of these solutions go to zero, whereas
the upper two components reduce to a spin orbital in which the spatial
part becomes a solution of the corresponding non-relativistic Schrédinger
equation. The upper and lower two components are therefore generally
referred to as the large and small components, respectively. For the same
potential the negative-energy branch of the spectrum gives the positronic
solutions indirectly, that is by charge conjugation (see section 1.1.3) and
in the non-relativistic limit it is now the large components that go to zero.
For this reason it has been suggested [56] that one should rather speak of
upper and lower components than large and small ones. However, since
focus in chemistry is on electronic solutions we will retain the common
terminology. On the other hand one should not forget that the large
components of positive-energy solutions of the Dirac equation are large
by a factor ¢~! only in an averaged sense; there may be regions in space
where the small components dominate.

It is important to realize that the four degrees of freedom in the Dirac
spinor (1.18), as compared to the scalar eigenfunctions of the Schrodinger
equation, are not to be associated with specific components. It is a
common mistake to associate the small components with the positronic
degrees of freedom. For instance, one cannot simply delete the small
components of a given electronic solution. One can also see from (1.18)
that spin (a or () is associated with two components and not one.

1.1.2 Time reversal symmetry. In this and the following
section we shall analyze two features of the Dirac equation (1.9) that are
related to the four degrees of freedom in the relativistic wave equation.
The first feature is charge conjugation symmetry, which reflects that
the Dirac equation describes both electrons and positrons, but generally,
as we shall see, not of the same system. The second feature is time
reversal symmetry which to some extent can recover the lack of spin
symmetry in the relativistic domain. It is interesting to note that both
features involve a pairing of eigenfunctions of the Dirac equation. As we
shall see, in the case of time reversal symmetry this pairing is broken by
the introduction of an external vector potential. In the case of charge
conjugation symmetry the pairing is broken by the introduction of any
4-potential. ~
Both features are represented by antiunitary operators K defined by

K (W1 | o) = (K | Kipo) = (2| 1) = (1 | 1p0)” (1.19)

An example of an antiunitary operator is provided by the complex con-
jugation operator Kp. In the non-relativistic domain this operator com-
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mutes with the Hamiltonian in the absence of external magnetic fields.
It’s effect on the non-relativistic Schrédinger equation in the molecular
field (1.17)is thereby

T 07~ -
Ko [hNR - l—] Ko ' Koynr (r,t)

. 91—
ot {hNR + Za] Yyr(r,t) (1.20)

= {BNR - Z%] Ynp(r,—t) =0

where EN R = IEm/;NR. Through the substitution ¢ — —¢ one recovers
the form of the original equation. The complex conjugation operator
is therefore identified as the time-reversal operator in non-relativistic
systems [115]. Consider now the effect of ICy on the Dirac equation (1.9).
Proceeding as in (1.20) we obtain

Bmc + c(T* - (—p + eA) —eqﬁ—l—i% Kot (r, ) =0 (1.21)
In this case the substitution £ — —¢ is not enough to recover the original
equation and so the complex conjugation operator can not be identi-
fied as the time-reversal operator in the relativistic domain. To find the
proper form we may note that the product of a unitary and an antiuni-
tary operator is an antiunitary operator. We may therefore take as our
starting point the generic form

K =UK, (1.22)

where U is a 4 X 4 unitary matrix. Next, we note that the problem
with (1.21) is that 3, changes sign under complex conjugation, whereas
the other 4 x 4 spin matrices (1.5) do not. If one wants an antiunitary
transformation under which the individual terms of the Dirac equation
are either symmetric or antisymmetric the unitary operator U (1.22)
must therefore contain ¥,. We then finally arrive at the choice Ur =
—1%, which gives the time reversal operator K for relativistic systems.
Its application gives

ot

/

N J

{,Bm02+c(a-p)—e¢}—{ec(a-A)—ig} P (r,t) =0 (1.23)

-~

) (-)

where 1) = I&ﬁ and one can see that in the absence of external vector
potentials, one recovers the correct form of the Dirac equation through
the substitution ¢ — —t.
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Equation (1.23) shows that under time reversal the Dirac equation
splits into a symmetric (+) and an antisymmetric (—) part. Further
insight is obtained by reordering the Dirac equation

La ,¢La
L Lj ,¢Sa 1/)04
FREE A N
U 5P
The time-symmetric part of the Dirac equation can then be written as
me® — e¢ —icd, 0 —icd
—icd, —mc? —edp  —icd_ 0
Dy = 0 —iedy mc? — eg icd, (1.25)
—icd 0 —icd, —mc® —ed
where we have introduced the notation
0 0 0
dy=—; dy=—=+1i—. 1.26
T 0 T o Zay (1.26)

In the same manner we find that the time-antisymmetric part can be

written as
0 ecA, 0 ecA_

_iAm 2 ecA 0

_ | ecA; —ig  ecA-

D- 0 ecAy —i% —ecA, (1.27)
ecA; 0 —ecA, —i%

where Ay = A; £ 1A,. The above two forms can be summarized by the
matrix structure

A B

D, = { B oia ]; t=+1. (1.28)

It is then a simple exercise to show that if

A | e 1 ) IOV
then
(A E ] =] )= am

This shows that the time symmetric part of the Dirac equation has dou-
bly degenerate eigensolutions. In the reordered equation (1.24) the time
reversal operator has the form

[0y —-I
K= [ L o ]/co (1.31)
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and one therefore easily sees that the eigenvectors ¢ and 1 are related by
time reversal symmetry. They will therefore be referred to as Kramers
partners. A orthonormal Kramers paired basis can be constructed from
a spinor set {1;} and the corresponding Kramers partners {%} With
the introduction of an external vector potential the double degeneracy
is lifted. One may use degenerate perturbation theory to obtain the
splitting. To zeroth order one obtains the eigenvalues via diagonalization
of the 2 x 2 Hamiltonian matrix in the space of the two Kramers partners
as

Ei=etec|(yl(a-A)Y).

The double degeneracy of the time symmetric Dirac equation suggests
that a block diagonalization of the matrix operator is possible. This is
indeed true, but at the expense of going from complex to quaternion
algebra. First, let us recall the definition of a (real) quaternion number

3
q= Zv/\e/\ =y + 11 +j’l)2+1v<’l)3; A ER (1.32)
A=0

The quaternion units 1, ] and k are equivalent in the sense that they may
be interchanged by cyclic permutation 1 — j — k — 1. It was observed
already by Jordan [69] that the algebra of imaginary i times the Pauli
spin matrices is that of the quaternion units, that is

{io,, jerioy, koo, (1.33)

The link between time reversal symmetry can then be established by
noting that the time-symmetric form of (1.28) can be written in terms
of Pauli spin matrices

Dy =[I:® Ag] + [(i0,) ® Ar] + [(iay) ® Bgr| + [(i0,) ® Br]  (1.34)

clearly showing the quaternion structure of the matrix operator. The
block diagonalization is achieved through the unitary quaternion trans-
formation

~

U'D.U = 0 -k (A + Bj) k

A+ Bj 0 1 H
! LU= | g g
NARLLERE

For the upper block of the quaternion Dirac operator we find the struc-
ture
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One observes that the rest mass term and the scalar potential enter the
real part of the operator whereas the kinetic energy is represented by
the quaternion imaginary part. The quaternion Dirac operator has no
preferential axis, in contrast to the conventional form (1.25) where the
Pauli spin matrices in their standard form correspond to spin quantiza-
tion along the z-axis.

Time reversal symmetry provides only a partial compensation for the
loss of spin symmetry in the relativistic domain. The coupling of the
spin and spatial degrees of freedom by the spin-orbit interaction changes
the structure of the equations relative to those of non-relativistic theory.
The extra price to be paid due to this coupling can be directly related
to the algebra needed to solve the Dirac equation by matrix diagonaliza-
tion using a finite real basis expansion. In the general case the matrix
representation of the symmetric Dirac operator can be block diagonal-
ized through the quaternion unitary transformation (1.35) and one then
needs to diagonalize the quaternion subblock A 4+ Bj. In the absence of
spin-orbit coupling, as in the non-relativistic limit, this subblock becomes
real. However, in the relativistic domain symmetry reduction in terms
of going from quaternion to complex or real algebra can be achieved by
combining time reversal and spatial symmetry [82, 83]. One further thing
to note is that Kramers partners do not map directly on to spin a and 8
orbitals. For instance the Kramers partner of a py« orbital is p_13 and

not p1 3.

1.1.3 Charge conjugation symmetry. _The choice U =
iBay in (1.22) gives the charge conjugation operator C (usually this term
is reserved for the unitary part Ues only). Its application gives

— {Bm02 +c(a-p)— z%} +§{c(a -VA) — ¢}, Cy(r,t) =0 (1.36)

(‘_') (+)

It can be seen that the term containing the 4-potential is symmetric
(4) under charge conjugation, whereas the free-particle Dirac equation
(1.7) is antisymmetric (—). It follows that if 4 is a solution of the Dirac
equation for an electron (thus with charge —e) in the 4-potential A,
then &ﬁ is a solution of the Dirac equation for a particle with charge +e
in the same potential. In the stationary case the eigenvalues of 1 and
Cv have the same magnitude, but opposite sign. After an initial false
identification with the proton [20], Dirac boldly predicted the existence
of the positron [17], confirmed experimentally by Anderson in 1932 [2].
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Note, however, that for a given 4-potential the Dirac operator describing
an electron is mnot identical to the one describing a positron since the
particles couple to the 4-potential through their charge (1.8). Only in
the absence of external fields do the two equations become identical.

To see charge conjugation “at work” let us consider a stationary elec-
tronic solution 1 of the free-particle Dirac equation (1.7) with eigen-
value € (positive continuum) and it’s charge conjugated partner 5’(/) with
eigenvalue —e (negative continuum). We now introduce an external 4-
potential through minimal coupling (1.8) with the electron charge —e ,
thus adding the term V= —ecfyu,A, to the free-particle Hamiltonian
h p;o. The eigenvalues of the 2 x 2 Hamiltonian matrix in the space of
the two charge conjugated partners is then

A= (|vlv)
Ei=A+Ve+ Q2 o . (1.37)
@ = [(v|v]cv)

The positive sign gives the electronic solution which can be expanded as

1 Q\?
The corresponding positronic solution can be obtained by introducing
the 4-potential through minimal coupling with the positronic charge +e.
Alternatively, it can be obtained through charge conjugation of the so-
lution corresponding to E_ of (1.37). The corresponding energy is

1
By=-BE_=e¢-A+on+ O(n?) (1.39)

One can easily see that if the electron is attracted by the 4-potential, that
is A is negative, then the positron is repulsed, due to it’s opposite charge.
Unless the coupling term €2 dominates A the electronic solution descends
below +mc? and the negative energy solution descends further down the
negative continuum. However, this does not imply, as is often stated,
that for systems with bound electrons all negative energy orbitals can
be identified as having energies below —mc?. Potentials are not always
purely attractive or repulsive, e.g. in an anion one may observe negative-
energy orbitals entering the gap as such solutions far from the nucleus
see a negative and thus attractive potential.

1.1.4 Towards the non-relativistic limit. 4-component op-
erators and wave functions are usually taken to imply relativistic theory.
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In this section we shall, however, show that also non-relativistic calcu-
lations may be carried out at the 4-component level. In fact, as has
been discussed extensively by Visscher and Saue [104], a multitude of
Hamiltonians, with and without spin-orbit interaction included, may be
formulated at the 4-component level of theory. These Hamiltonians are
obtained from non-unitary transformations W of the Dirac equation [31]

- 0
p=wy¢ = W {hD;A# - ZE] W' =0, (1.40)
possibly followed by the deletion of certain parts of the transformed
operators. As starting point for these Hamiltonians we choose the time-
independent Dirac equation in the molecular field (1.17)

1% c(o-p) " | I 0 Y- .U
c(o-p) V—zm(:?HW]_{Oz I;HW]E’ Vi=-ep
(1.41)

where the metric is explicitly included since non-unitary transformations
will be performed. We have also performed the substitution (1.6) to align
relativistic and non-relativistic energy scales.

Consider first the non-relativistic limit, generally obtained as ¢ — oo.
The Dirac operator hp,y has terms linear and even quadratic in the speed
of light and one can therefore not apply this limit directly. Instead, one
first performs the non-unitary transformation

L T 0 L
[ Zs ] = [ 02 0—12[2 ] [ gs ] (142)
which gives the transformed equation
174 .
(o p)f/ %L _ [ I, 09 ] %L .
(0-p) —2m (1 - 2m02> U 0 ¢ || 9
(1.43)

The speed of light now appears only in inverse powers and the proper
non-relativistic limit may be obtained, but with the following restrictions
[55]:

1 |E| < ¢?, that is we restrict attention to the positive-energy solu-
tions. This also means that a separate non-relativistic limit exists
for the negative-energy solutions.

2 The potential ¢ in V must be non-singular. This does not hold
for the potential of point charges, but does hold for the extended
nuclei commonly used in 4-component relativistic calculations.
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With the above restrictions we arrive in the non-relativistic limit at the
Levy-Leblond equation [58|

l V. (o-p)
(6-p) —2m

)14

02 02

L
l gs ] E (1.44)
which forms the starting point of the direct perturbation theory of Kutzel-
nigg [55]. By elimination of the modified small component v°we obtain
the more familiar non-relativistic Schrédinger equation in the molecular
field using the identity (o - p) (o - p) = p?. However, in some cases the 4-
component non-relativistic form (1.44) may be more advantageous than
the conventional 1-component form, in particular upon the introduction
of external magnetic fields [44].

Another route to the non-relativistic limit, with an interesting stop on
the way, is provided by the non-unitary transformation

¢§ = - 1 " %z (1.45)
(G 02 5 —(o-p) (4
me
which leads to what has been called the modified Dirac equation |24]
V j:’ L IQ 02 L
Am2c2 (O’ ' p) Vv (U ' p) -T ’([} 02 2m02T ’([}
(1.46)

where T is the kinetic energy operator. The speed of light again appears
only in inverse powers which facilitates taking the non-relativistic limit.
Another possibility is to use the identity

(a-p)V(a-p)sz-p—l—ia-(ppr) (1.47)

By dropping the spin-dependent term on the right hand side one ob-
tains the spin-free form of the modified Dirac equation. It allows scalar
relativistic calculations within a 4-component framework, although the
uniqueness of the distinction between scalar and spin-orbit relativistic
effects has been questioned [103].

1.2 The two-electron part

The extension from one-electron systems to fully interacting many-
electron systems is more complicated in the relativistic domain than in
the non-relativistic one. From our discussion of Coulomb gauge in section
1.1.1 this can be understood since in the relativistic framework we have
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to add the effects of retardation and magnetic interaction to the non-
relativistic limit represented by the instantaneous Coulomb interaction.
The necessary correction terms can be obtained rigorously by invoking
the full machinery of QED where the interaction is described in terms
of the exchange of virtual photons. We shall however restrict ourselves
to the semiclassical limit, that is continuous electromagnetic fields. To
first order the electron-electron interaction is then given by the Coulomb-
Breit interaction

g(l’ 2) — gCoulomb + gBreit (148)

The zeroth order term is the Coulomb term

Iy- I
gCOulOmb — 62 4 4. (149)
12

We have inserted 4 x 4 times identity matrices I to remind the reader
that, although at first sight the Coulomb term appears to be identical
to the non-relativistic electron-electron interaction, it’s physical content
is different. Upon reduction to non-relativistic form [13, 4, 68, 45, 91|
through a Foldy-Wouthuysen transformation one finds that the relativis-
tic operator contains for instance spin-own orbit interaction in addition
to the instantaneous Coulomb interaction.
The first order term is the Breit interaction [9]

2

: 1
ghreit — _2027’12 (cay - cas) + 7 (cay - r19) (cas - r12)| . (1.50)

We have written the Breit term in a slightly unusual form using ex-
plicitly the relativistic velocity operator ca. In this manner one easily
recognizes (1.48) as the quantum mechanical analogue of the classical ex-
pression (1.16). It is important to note that although the Breit term can
be derived as the low-frequency limit of the full electron-electron inter-
action as described by QED, it can equally well [68] be derived from the
quantization of (1.16), which is essentially how it was derived by Breit.
In this chapter we will not go beyond the semiclassical limit of QED, that
is we will not consider quantization of the electromagnetic field since this
would open up a whole new level of complexity. The Breit term can be
rewritten in the form

gBreit _ sGaunt 4 sgauge (1.51)

The first term is the Gaunt term

cQp - Cx
gGaunt — —62 12 2 (152)
Cc°T12
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whereas the second term

geauge — _ o2 (cai - Vi) (caz - Vi) rip
2¢? ’

(1.53)

where Viand Vs act only on ri2 and not on the wave function, dis-
appears in Lorentz (Feynman) gauge. By comparison with (1.11) one
sees that the Coulomb and Gaunt terms represent charge-charge and
current-current interactions, respectively. One can furthermore show by
reduction to the non-relativistic form that the Gaunt term carries all
spin-other orbit interaction [79].

The experience accumulated so far indicates that the Breit term has
rather minor effects on the spectroscopic constants of molecular systems
[112, 101, 74] so that the Coulomb term is usually sufficient. However,
it is needed to get spin-orbit splittings correctly, in particular for light
systems. From a practical point of view the Gaunt term is then preferred
since it involves the same two-electron integrals as the Coulomb term (at
least in a scalar basis) and provides the full spin-other orbit interaction.

1.3 Second quantization

Creation and annihilation operators were first introduced by Dirac to
describe absorption and emission of photons [16], and the formalism was
later extended to fermions by Jordan and Wigner [49, 51]. Although
originally conceived to describe processes in which the particle number
is not conserved, the second quantization formalism [34, 50| is widely
used in molecular electronic-structure theory [43] that considers systems
with a fixed particle number. This is so because it allows the derivation
and expression of the methodology in an elegant manner, in particular
when combined with exponential parametrization. In this section we will
consider the second quantized form of the many-electron Hamiltonian at
the 4-component relativistic level.

The second-quantized Hamiltonian is obtained from the first-quantized
form (1.1) upon the introduction of field operators

V(1) = pp (r1) ap = @p (r1) dp. (1.54)

In the above expression the field operator has been expanded in two
different orbital sets {¢,} and {@,} related by a unitary transforma-
tion which then defines two different sets of annihilation operators, {a,}
and {a,}, related by the inverse transformation. In QED parlance the
orbital set obtained as the solution of the free-particle Dirac equation
corresponds to the “free” picture, whereas the one obtained with the
molecular field (1.17) leads to the Furry [36] or bound-state interaction
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picture (93, 94]. The general form of the second-quantized Hamiltonian

is
o= /\Iﬁ(1)ﬁ(1)xy(1)dﬁ +%//\I/T(l)\I/T(Z)g(l,2)\11(2)\11(1)d71d72
(1.55)
where §(1,2) is the chosen form of the electron-electron interaction. We
will for the moment limit attention to the Coulomb (1.49) and Gaunt
term (1.52). At the 4-component level the direct product ¥(2)W¥(1)
leads to an expansion in terms of vector functions with sixteen compo-
nents. From this one sees that the two-electron operator g(1,2) should
be considered a 16 x 16 matrix operator [68], so that the dot products
appearing in the Coulomb and Gaunt terms should be replaced by direct
products. Expanding the field operators in a specific orbital basis the
second-quantized Dirac-Coulomb-(Gaunt) Hamiltonian is written as

- 1
H = hpqa;aq + Zﬁpq,rsa;ﬁalasaq (1.56)

in which appear one-electron integrals over the Dirac operator in the
molecular field

oo = [ 100Dy (D) (1.57)
and where we have introduced antisymmetrized two-electron integrals
Lpgrs = (pg| r5) — (ps| 7q) = Lrspg = —Lps,rg- (1.58)
We write the two-electron integrals as
Q Q
(pq|rs) = //—”q(rl) 152 g1 o, (1.59)
T12

where we introduce generalized overlap distributions (including charge)

Qpg(r) = @} (r)Supq(r); Sy =iefy, = —e(—ie, I1). (1.60)

The time-like part corresponds to standard overlap distributions and
contributes to the Coulomb term, whereas the space part corresponds to
current distributions and contributes to the Gaunt term.

2. Variational procedures

There has been considerable discussion as to the variational stability
of the Dirac-Coulomb-(Gaunt) Hamiltonian. The discussion originated
from an argument put forward by Brown and Ravenhall [10]. They
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considered the interaction of two electrons described by this Hamilto-
nian. Consider for instance the helium atom. In a perturbational ap-
proach one can start with the non-interacting system and thus a Slater-
determinant consisting of the 1s orbitals obtained as solutions of the
hydrogenic atom with Z = 2. This Slater determinant is, however,
degenerate with an in principle infinite number of Slater determinants
containing one orbital from the positive continuum and one from the
negative continuum. When the electron-electron interaction is turned
on, these determinants will mix in and lead to what has been called a
continuum dissolution, meaning that no bound state is obtained. Brown
and Ravenhall suggested the use of projection operators to avoid the
mixing in of these continuum determinants, a proposal that has been
further explored by Sucher and others (see [54] for a review). In this
section we will carefully consider variational approaches based on the
Dirac-Coulomb-(Gaunt) Hamiltonian using the second quantization for-
malism introduced in the previous section. This will allow us to employ
an exponential parametrization of the wave function in terms of orbital
rotations and furthermore make the connection to QED where a true
minimization principle is assumed to exist.

2.1 The standard approach

In the second quantization formalism [43] Slater determinants are re-
placed by occupation-number vectors in Fock space as the fundamental
entity. The antisymmetry of the wave function under particle exchange
follows from the anticommutation properties of the creation- and anni-
hilation operators

[ap, aq], = [a;,a;]+ = 0; [a;,aq]+ = dpq (1.61)

Starting with a given set of orthonormal orbitals {¢,} the Fock space
equivalent of a Slater determinant is generated by acting with the corre-
sponding creation operators on the vacuum state |0)

|®) = alal...al |0) (1.62)
where the vacuum state itself is defined by the relation
a; |0> = 0; Vai. (1.63)

The occupation-number vector |®) is an eigenfunction of the number
operator

A

N =adla, (1.64)
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with eigenvalue N corresponding to the number of occupied orbitals. The

Fock space formalism goes beyond expansions in Slater determinants by

allowing the coupling of vectors with different occupation numbers.
The variational ansatz at the Hartree-Fock level of theory is

@) = exp 7] |@) (1.65)

where exp [—K] is an orbital rotation operator which is the negative ex-
ponential of the single replacement operator

R = Kpga) (1.66)

. Lk
paq, Kpg = —K

ap
It is readily shown that K commutes with the number operator (1.64)
which implies that the orbital rotation operator conserves particle num-
ber. The antihermiticity of the matrix containing the single replacement
amplitudes {x,,} guarantees the unitarity of the orbital rotation opera-
tor. Using (1.62) we can therefore rewrite the HF wavefunction as

@) =alaj...al o) (1.67)
in which appear transformed creation operators
5}; = exp [—FK] a;; exp [k] = aqup; U = exp[—k]. (1.68)

To derive (1.67) we have used the result
exp [~+][0) = [0) (1.69)

which follows from the fact that annihilation operators appear on the
right in the first and higher order terms of the exponential expansion of
the orbital rotation operator.

The orbital set corresponding to the transformed creation operators
(1.68) is given by

Pp = 9qUyp (1.70)

and demonstrates that the orbital rotation operator provides a means of
parameterizing the wave function in such a manner that orthonormality
of the orbitals is assured without the need to introduce Lagrange mul-
tipliers. The orbital rotation operator furthermore allows the use of un-
constrained optimization techniques by choosing a linearly independent
set of elements of the x matrix as variational parameters. Due to the
antihermiticity of the x matrix this is straightforwardly accomplished by
choosing e.g. the upper triangle and the (imaginary) diagonal elements.
The K operator can then be written as

K= Z [Kupqa;ﬁaq — Ku;qa:gap] . (1.71)
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Table 1.1. Classes of variational parameters in the standard 4-component approach
compared to QED.

‘ Generic ‘ Standard QED
_ FF - F _—-F
A Kia Kia Jﬁ'iia +’iia iK’ia
B Kij Kij Kij s Kij o Kij
++ = ++
C Kab Kab 1 Bap s Kg Kab

We have discarded the diagonal elements since they only introduce a com-
plex phase in the wave function and do not change the energy. Other
redundant parameters should also be eliminated from the set of varia-
tional parameters. Within the chosen parametrization this is an easy
task, as will be seen shortly. For this purpose it is convenient to intro-
duce classes of orbitals and thereby the elements of the x matrix. We
shall use indices %, j, k and [ to identify occupied orbitals. We further-
more employ indices a, b, ¢ and d for virtual orbitals and p, ¢, r and s as
general indices. When needed we shall use superscripts + and — to dis-
tinguish positive- and negative-energy orbitals. This of course assumes
that the actual potential allows this distinction. We can then identify
three classes of variational parameters as given in table 1.1 (the column
marked QED should be ignored for the moment). It should be noted
that the direct use of the elements of the U matrix (1.68) as variational
parameters is less advantageous since they are related in a non-linear
manner by the unitary condition UU = I. Tt is furthermore difficult to
identify redundant parameters in this alternative parametrization.

We now gather the chosen, generally complex variational parameters
in the vector

K = { " ] (1.72)

and consider a Taylor expansion of the energy in terms of these. Let
K = 0 correspond to the current expansion point, that is the reference
determinant (1.62) and the corresponding orbital set. We then have

E(K) = B9 + K'EU + %KfE[ﬂK +O(RP). (1.73)

The various terms of the Taylor expansion can be easily found by com-
paring with a Baker-Campbell-Hausdorff (BCH) expansion of the energy
expectation value

E = <'5 ‘f[‘ '5> = <'1> ‘exp [7] H exp [—R]‘ <I>>
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The zeroth order term is the expectation value of the energy with
respect to the current Slater determinant

1
B = by + §Fz‘i [pils Tpglwil = Lpgii (1.75)

where we have introduced the mean-field potential T [p;] involving sum-
mation over the orbital set {¢;}. It will turn out to be useful to also
consider the explicit form of the energy expression in the algebraic ap-
proximation. Consider the expansion of the current orbital set in some
set of suitable basis functions (to be discussed in section 3.1) ¢, = xuCup
where Greek indices are used for the AO-basis. The energy (1.75) can
then be re-expressed as

1
E = Duuhuu + §D;w£uu)\nDn)\; Dy = C/\iCZi (176)

in which appears the AO-density matrix D.
The first-order term can be expressed as

KEl' = ; {—K;q <<I> ‘ [a;ap, f[] ‘ <I)> + Kpg <<I> ‘ [a;aq, f[] ‘ <I)>}
p<q
= (Fipm;i — nprpi) +c.c. (1.77)

in which appears the Fock matrix

Fpqg = hpg + I'pq [pi] = hpq + qun/\D/\n- (1.78)

From (1.77) one can easily see that derivatives of the energy at the cur-
rent expansion point (K = 0) with respect to parameter classes B and C
(see table 1.1) are identically zero. Since this will hold for any expansion
point the two parameter classes can be eliminated as redundant. The
only non-redundant parameters are rotations between occupied (+) and
virtual (+) orbitals, that is parameter class A, and the K can accordingly
be written in terms of non-redundant parameters as

f

k= niaa:‘zai — KpiQ, Qg (1.79)

Note that in order to ensure unitarity of the orbital rotation operator
the K operator contains de-excitation operators {a;r aa} in addition to

excitation operators {alai}. This can be contrasted with the exponen-
tial operator in a coupled-cluster expansion which is entirely based on
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excitation operators. In terms of non-redundant parameters the gradient
vector can be written as

oF
E[l]:|:g*:|; Gai =

g = (@|[-alaw A][ @) = —Fus (150)

K=0

The current expansion point corresponds to a stationary value of the
energy when all the elements of the gradient vector are zero. From the
above expression we can see that this corresponds to the occupied-virtual
blocks of the Fock matrix being zero. This can be accomplished by diag-
onalization of the Fock matrix (until convergence of the SCF procedure)
and then leads to the canonical Hartree-Fock orbitals with associated or-
bital energies {€,}. Alternatively one can proceed by second-order meth-
ods such as Newton-Raphson. These are generally more expensive since
they involve calculation of the Hessian matrix E, but are also more
robust. The second-order methods lead to a set of orthonormal orbitals
not necessarily equal to, but related through a unitary transformation,
to the canonical HF orbitals.

To characterize the stationary points we must consider the eigenvalues
of the Hessian matrix. It has been defined in such a manner that it is
Hermitian and diagonal dominant. It has the structure

) A B Aginig = 0ijFap — 0ab Fi5 — Labij
B2 = { o ]; (1.81)
Buipi = —Lajpi

Consider first a non-interacting system, i.e. §(i,7) = 0. Then all two-

electron terms disappear. In canonical orbitals the Hessian furthermore
becomes diagonal with diagonal elements
>0 for {njj’}

Agigi = €q — € (no summation !) (1.82)
<0 for {,k;;z_}

One sees that the stationary point is a minimum with respect to rota-
tions {/{H’} between occupied (+) and positive-energy virtual orbitals,

ia
+_

but a mazimum with respect to rotations {K’ia } between occupied and

(virtual) negative-energy orbitals.

For an interacting system the diagonal elements of the Hessian cor-
respond to energy differences between singly excited determinants ®;_,,
and the reference determinant

Aviai = E(Pie) —E(®) =€, — € — Lggii  (no summation !) (1.83)
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Since the excited determinant is calculated in the orbitals optimized for
the reference determinant the diagonal elements of the Hessian constitute
a rather poor approximation to excitation energies that goes under the
name of the single-transition approximation [21|. A better approxima-
tion of the energies needed to reach the manifold of singly excited states
with respect to the ground state is obtained at the RPA (random-phase
approximation) level (coupled Hartree-Fock) where the single excitation
energies from a closed-shell ground state are the eigenvalues of the Hes-
sian matrix. In view of this, it is clearly reasonable to claim that the
minimax principle (1.82) applies to interacting systems as well.

The minimax principle for non-interacting systems is not identical
to the minimax principle for the Dirac equation proposed by Talman
[97] which states that the expectation value of the Dirac operator is
a minimum with respect to variations in the large components and a
maximum with respect to variations in the small components

E = min | max M (1.84)

L [0S (P [)

This minimax principle has been justly criticized by Kutzelnigg [56]. The
problem is that the coupling between the large and the small components
of the Dirac spinor means that some variations of the large component
may lead to energies below the exact energy. We shall discuss this further
in section 3.1, but one should note that the minimax principle (1.82) is
susceptible to the same problem unless the chosen basis set expansion
allows the proper coupling of large and small components. There is a sig-
nificant difference, though. The Talman minimax principle operationally
implies the separate variation of the large and small components. How-
ever, due to their coupling variations must be done in a concerted manner
and this is achieved by the minimax defined in (1.82).

2.2 Towards QED

The standard approach to 4-component relativistic molecular calcula-
tions is not quantum electrodynamics and does not even constitute its
semiclassical limit, that is the level of theory in which the electromag-
netic field is not quantized. In this section we shall explore a variational
description of the proper semiclassical limit of QED. This section is very
much inspired by two rarely cited papers by Chaix and Iracane [12] on
the transition from quantum electrodynamics to mean-field theory, but
whereas these authors employ the elements of the U matrix (1.68) as
variational parameters, leading to what they call the Bogoliubov-Dirac-
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Fock formalism, we shall employ the more advantageous parametrization
in terms of elements of the x matrix.

In the previous section we have seen that the standard approach to
4-component relativistic molecular calculations leads to a minimax prin-
ciple at the Hartree-Fock level. This means that the bound electronic
states at this level of theory are excited states and may therefore de-
cay through an infinite succession of transition through various states of
the negative-energy continuum, thereby causing a radiative catastrophe
[40]. To avoid this difficulty Dirac postulated that the negative-energy
orbitals are all occupied so that transitions into the negative-energy con-
tinuum, “the Dirac sea”, is forbidden by the Pauli exclusion principle.
On the other hand, the excitation of an electron from the Dirac sea to a
positive-energy orbital, requiring an energy on the order of 2mc?, leaves
a hole with opposite charge that in time was identified as the positron.

The first step towards proper QED is to introduce a particle-hole for-
malism. The field operators (1.54) are rewritten as

U =plb, + ¢, d (1.85)
in which appears electron annihilation operators b, associated with the
positive-energy orbitals cp;;," and positron creation operators d;‘, describing
the creation of positrons whose orbitals are obtained by charge conjugat-
ing the associated negative-energy orbitals ¢,". This distinction leads to
a more involved expression for the second quantized form of the Hamil-
tonian

H = kI bibg + bl bldl + by dpbg + by dpdl  (1.86)

1 1.
+ S Lpard Tblblbbg + 2 L5 bblbed]

| |-
T Coarsbjoldlbg + Lo bjoldld]

4 pars p-r—s pars

| — | a—
+ g Loabs Tbdrbaby + L0l dnbyd]

1oy |

+ g Loats bpdedlbg + 5 LT bydydid)

Tt L bbb, + e d bl
4 pqrs pYrvs’q 4 pqrs pYrYsHq
. [

+ 7Lpars d,bidib, + 7 Loars d,bldid]
| —— | —

+ L T dpdrbiby + T Lygr s dydrbyd)
1 1

Lo dydedib, +

1Loers Loys  dpdrdid]

4 pqrs
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By inspection one immediately sees that the QED Hamiltonian couples
occupation-number vectors with different particle number. However, we
will demonstrate later that charge is conserved.

As in the previous section we consider the description of bound elec-
tronic states in terms of a single Slater determinant or, equivalently, in
terms of a single occupation-number vector in Fock space

|®) = bibl...bf |0). (1.87)

The vacuum state |0) is in this formalism defined by
(by|0) =0, Vby,) and (d,|0) =0, Vdp). (1.88)
In analogy with (1.65) we now consider the following variational ansatz
@ = exp[—7] |®) (1.89)

The K operator appearing in the orbital rotation operator now has the
form

R =kl A lby + kAT bdl 4 ko Fdyby + K dydyg (1.90)
— e e —
R R R e

We may next introduce number operators Ne and NP for electrons and
positrons, respectively

N®=blby; NP =did,. (1.91)
One finds that the & operator commutes with neither number operator
(5, N = [, NP] == — it (1.92)

but with the linear combination
O=c¢ (1\71’ - 2\76) (1.93)

which can be identified as the charge operator. From this we can conclude
that the orbital rotation operator of QED conserves charge but not the
particle number. The charge operator furthermore commutes with the
QED Hamiltonian (1.86), thus demonstrating that the latter conserves

charge as well.
Using the unitarity of the orbital rotation operator we may now rewrite
the HF ansatz as _ e N
@) =bfb} ... 5},

0) (1.94)
where appear the transformed creation operators

5;, = exp [—&] b}, exp [K] = b;qu; U =exp|[—k]. (1.95)
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Note that due to charge conservation we can identify the transformed
creation operators with dressed electrons. Equation (1.94) contains not
only dressed electrons, but also a dressed vacuum

0) = exp [-110) = {1~ ry iy — s+ O(2)}[0) #10). (1.96)

This relation may be compared with (1.69) and shows the effect of vac-
uum polarization which is not present in the standard approach described
in the previous section.

If we evaluate the expectation value of the Hamiltonian (1.86) with re-
spect to the reference determinant (1.87) we obtain the expression (1.75),
but with all the negative-energy orbitals included amongst the occupied
orbitals, thus leading to an infinite negative energy. In order to avoid
working with infinite energies renormalization procedures are introduced
in QED. In the present case the infinite negative energy is avoided by
writing the Hamiltonian on reordered form, that is all creation operators
are shifted to the left and all annihilation operators are shifted to the
right as if they anticommuted. Using the notation of Chaix and Iracane
[12] we write the reordered QED Hamiltonian as

H = /N[qﬁ(1)ﬁ(1)qf(1)dn] (1.97)
+ %//N[\Iff(l)\IfT(Q)g(l,2)\1/(2)\11(1)] drydr

In the orbital set which diagonalizes iL, the one-electron part, can be
written as

— ptt +- —+ —
ho = i blby + bl bldl + by tdyby — by, did,

e biby + (—ey ) didy (1.98)

One may observe that on this reordered form electrons and positrons
both appear with positive energies, but with opposite charges.

To relate the original Hamiltonian (1.86) to the reordered form (1.97)
one may employ Wick’s theorem [114, 35]. For the one-electron part this
gives

N e () )] = wfn)e) - (oD ‘\Iﬂ(l)\y@)‘ o)) (1.99)

which shows that normal ordering of a one-electron operator corresponds
to the subtraction of its vacuum expectation value. We have inserted a
superscript (ref) on the vacuum to remind the reader that the definition
of the vacuum and thus the reordering depends on the choice of orbital set
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in which the field operators are expanded. As reference vacuum the bare
vacuum is employed, corresponding to the orbital sets generated from
the solution of the free-particle Dirac equation (1.7). Normal ordering of
the two-electron part gives

N[wrmeteueeE] = vio)efe)ue)ve) (1.100)
— N[E e v2)ueE)
~ N [\I/T(2)\If(3)] (1) W (4)
+ N [eh)eE)] vie)ee
+ N [Uh@uE)] vi(1)uE)

<0(ref) ‘\I/T(l)\I/T(2)\I/(3)\I/(4)‘ (ref )>

which does not correspond to simple subtraction of the vacuum expecta-
tion value, even though one readily sees that the bare vacuum expectation
value of the reordered Hamiltonian (1.97) is zero.

We have already seen that the particle-hole formalism leads to a rather
complicated expression for the Hamiltonian (1.86). With the introduc-
tion of reordering more complexity is added and manipulations involving
the reordered Hamiltonian become extremely tedious. In order to sim-
plify the ensuing manipulations it is therefore advantageous to go back
to the form of the field operators (1.54) introduced in the previous sec-
tion and instead explicitly define the bare vacuum as filled with all the
negative-energy solutions of the free-particle Dirac equation

‘O(TQf )> = agq]ag—z] e agfoo] lempty) . (1.101)

The empty state |empty) corresponds to the vacuum (1.63) of the stan-
dard approach to 4-component relativistic molecular theory. In the above
expression as in the following we use square brackets (e.g. h[;;]) around
indices referring to the negative-energy solutions of the free-particle Dirac
equation. We can now write the reordered QED Hamiltonian as

. _ 1 I R

H = {hpq —Tpq [‘P[z’]] } “zT)“q"‘Zﬁpqrﬂ;alasaq_h[ii} +§£[z’z‘j]‘} (1.102)
What we loose by this approach is the physical picture of electron-
positron pair creation that was provided by the particle-hole formalism.

Using this reordered Hamiltonian we can now easily find the terms
appearing in the Taylor expansion (1.73). The energy at the current
expansion point is given by

(0] _ ptt —— R .
Borp = hit+hi™ = hir + 575 i) (1.103)
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+ %F;ﬁ of] + %F;ﬁ 7] + %1“;.— of] + %Fi_i_ (7]

1 1 1 1

T o — 205 oo — =007 lof| = 2157 o7
ST el = 5T lom] = 3T ] - 5T L]
This rather formidable expression becomes quite a lot more intelligible
when expressed in AO-basis

1 ED
EFQO]ED = DSVEDhVM + §D8/ED£UM)\;§D,9)\ (1-104)

in which appears the AO-density matrix of QED

DD = D+ D2 DI = 3 (cnich — caclyy) - (1105)
(3
Comparing with (1.76) one sees that the standard AO-density matrix
D has been replaced by the QED counterpart DRED (htained by the
addition of the vacuum polarization density DPOl which reflects how the
vacuum density is modified with respect to the reference vacuum upon
the introduction of the actual potential.

The gradient vector in semiclassical QED is given by a formula iden-
tical to (1.80), except that the Fock matrix of the standard approach
is to be replaced by its QED counterpart FQED which is obtained by
the substitution D — DRFP in (1.78). Once again we find that the
non-redundant orbital rotations are given by the parameter class A of
table 1.1. However, the reader should carefully note that the distri-
bution of the elements of the k-matrix on the three parameter classes
changes when going from the standard approach to QED, reflecting that
the negative-energy orbitals are now filled and not empty.

The Hessian in semiclassical QED has the same form as in (1.81), but
with the substitution # — FQED_ For a non-interacting system the
Hessian becomes diagonal like in the standard approach (1.82)

Aai,ai = €q — € > 0; VFGz’a (1.106)

Following the same line of argument as in section 2.1 we may conclude
that the Hessian of the interacting systems has all eigenvalues positive
as well. We have thereby shown that the electronic ground state of
semiclassical QED is characterized by a minimization principle at the
Hartree-Fock level of theory.

2.3 Discussion

In the previous two subsections we have developed variational the-
ory at the closed-shell Hartree-Fock level according to the standard 4-
component approach and QED in the semiclassical limit. In this section
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we will summarize and discuss our findings. This will allow us to return
to and study in more detail the argument of Brown and Ravenhall. It
furthermore allows us to consider the extension to the correlated level of
theory in the next subsection.

In QED the negative-energy orbitals are filled, in accordance with
Dirac’s proposal. This allows, at sufficiently large energies, to create
electron-positron pairs out of the vacuum. Such processes do not con-
serve particle number, but do conserve charge. The energies of interac-
tion in chemistry are generally too low for real pair creation processes, but
the Dirac sea manifests itself through the phenomenon of vacuum polar-
ization. As we have seen, at the closed-shell Hartree-Fock level the QED
electronic ground state corresponds to a true minimum of the energy and
this allows for instance the relativistic extension of the Hohenberg-Kohn
theorem of DFT [75]. In contrast, the electronic ground state in the
standard approach is characterized by a minimaz principle. The vacuum
is then empty, and the negative-energy orbitals are accordingly treated
as an orthogonal complement to the electronic orbitals. However, and
this is a crucial point, retaining the additional degrees of freedom pro-
vided by this orthogonal complement (the positronic degrees of freedom)
allows the complete relaxation of the electronic ground state.

With the notation and machinery introduced in the two previous sub-
sections we may now revisit the argument of Brown and Ravenhall. We
consider a system of two non-interacting electrons and in the standard
approach (std) write the ground state as

o) = alal 0)4q (1.107)

corresponding to the Slater determinant of the degenerate Kramers part-

ners ¢; and ;. The ground state energy is Eéo) = ¢; +¢€; = 2¢;. We then
turn on the two-electron interaction. By standard Rayleigh-Schrodinger
perturbation theory the first order amplitudes of the perturbed wave

function are
®,1g(1,2)| D
EY — B

n

One can now straightforwardly construct doubly-excited determinants

[®0) = @204 ) = afaf [0)geq (1.109)

i—at

with one orbital ¢ from the positive continuum and one orbital ¢, from
the negative continuum such that the energy E,(IU) = €/ + ¢, becomes

identical with ESO) and perturbation theory breaks down. The solution
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proposed by Brown and Ravenhall was to embed the Hamiltonian in
projection operators A, onto positive energy orbitals

H — A_HA,. (1.110)

This corresponds to retaining only the purely electronic terms of the
QED Hamiltonian (1.86)
HO P = Bt Epih, + %E;qf.j*b;bibsbq. (1.111)

Pair creation and annihilation is thereby excluded and this approxima-
tion has therefore been referred to as the mno-pair approximation. How-
ever, the no-pair Hamiltonian is not unique since the distinction between
electronic and positronic creation and annihilation operators depends on
the orbital set in which the field operators are expanded. One possible
choice is the solutions of the free-particle Dirac equation (1.7), giving the
“free” picture. Another choice is the solutions of the Dirac equation in the
molecular field (1.17) leading to the Furry picture. A third possibility is
to continuously update the projection operators through SCF iterations
so that they at convergence correspond to the solutions of the combined
molecular and mean-field potentials of the Hartree-Fock equations. We
shall see that this choice, the “fuzzy” picture, as proposed by Mittleman
[67], corresponds to the standard 4-component approach.

Let us, however, first consider the two-electron system discussed by
Brown and Ravenhall as described by QED. We write the reference de-
terminant as

|0)qED = bibl 10)qED (1.112)
where the vacuum is defined by (1.88) and thereby the complete orbital

set of the non-interacting system. Using (1.102) we find the QED ground
state energy to be

(=)
0 o
B =267+ 2 (6 —hyyp) - (1.113)
J

Let us next consider the QED analogues of the troublesome doubly ex-
cited determinants (1.109). From the reinterpretation of the field op-
erators (1.85) and the definition of the vacuum (1.88) we immediately
obtain

|Pn)qED = bids [0)qrp =0 (), (1.114)
showing that these determinants simply do not occur since all the negative-

energy orbitals are already occupied. One may attempt the alternative
form

|0)0ED = bhd} 10)grD (1.115)
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corresponding to the creation of a true electron-positron pair out of the
vacuum. However, this determinant corresponds to a different charge
(zero and not —2) and does therefore not interact with the two-electron
reference determinant since the QED Hamiltonian conserves charge. Such
determinants are thus excluded on physical grounds. We can therefore
conclude that at the QED level the Brown-Ravenhall disease is easily
cured; the reference determinant (1.112) mixes only with purely elec-
tronic determinants for fized particle number N. The two-electron part of
the QED Hamiltonian (1.86) allows coupling of the reference occupation-
number vector to vectors to which are added one or two electron-positron
pairs. These can again couple to vectors with more pairs at higher order
in perturbation theory. It is perhaps easier to analyze these interacting
occupation-number vectors by going from the particle-hole formalism
to the original form of the field operators (1.54) and instead fill up all
the negative-energy orbitals of the interacting system. The occupation-
number vector of the particle-hole formalism containing one and two
electron-positron pair(s) then correspond to determinants

k——at

1By _,,+) and ‘qﬂ‘%”w, (1.116)

respectively. The first class of determinants contain the excitation of an
electron from the negative-energy orbital k to the virtual positive-energy
orbital a. Using the form (1.102) of the reordered QED Hamiltonian
with all two-electron terms deleted we find that the unperturbed energy
of the determinant |®,,) = |®)-_,,+) is

()
E(O}ED;H =26 +ef —e + > (5 —hi7) (1.117)
j

Using the full Hamiltonian we can determine the transition moment, that
is the numerator of (1.108), and thus obtain the following expression for
the first-order amplitude of the perturbed wave function

Lot
Gy = —#“]Jr (no summation !) (1.118)
€, — €
The denominator is clearly of order O(c?). The numerator E,;;[ri;]* =

(kalii) — (kilia) contains two-electron integrals in which the integration
over one electron contains the overlap of one positive-energy and one
negative-energy orbital. To determine the order of this contribution let
us recall from the discussion in section 1.1.1 that for positive-energy
solutions the large component is in an averaged sense a factor ¢ larger
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than the small component, and that for negative-energy solution this role
is reversed. We can then conclude that the numerator is on the order of
O(c™!) and thus the amplitude (1.118) is of order O(¢=?). By similar
arguments we find that the amplitude of doubly-excited determinants

@) = |@L 20 ) is

k——at

£—+—+

kalb
A, = 1.119
" e,; + el_ — e[l" — e;' ( )

and is of order O(c™*). It is important to note that the determinants of
(1.116) contain excitations from occupied negative-energy orbitals to vir-
tual positive-energy orbitals. They are therefore absent in the standard
approach since in this approach the vacuum is empty and the negative-
energy orbitals only serve as an orthogonal complement. The presence
of the determinants (1.116) constitute a pure QED effect and our order
analysis shows the minuteness of their contribution.

We have seen that the standard approach differs from QED in the
semiclassical limit only by the absence of vacuum polarization. This is a
rather minute effect, giving rise to the Uehling effect, which is a minor
contribution to the Lamb shift [77], and it would therefore be surprising if
the elimination of vacuum polarization should lead to a complete break-
down of the theory. In subsection 2.1 we have seen that the electronic
ground state in the standard approach can be found by the minimax
principle (1.83). However, in practice the solutions are found by vector
selection, that is in each iteration of the SCF cycle vectors for the next
iteration are not selected according to an aufbau principle, rather one
selects the lower electronic orbitals that are generally easily identified
through the energy gap down to the negative-energy orbitals. This pro-
cedure corresponds precisely to the use of a no-pair Hamiltonian (1.111)
with continuously updated projection operators as proposed by Mittle-
man. Another way of seeing this procedure is to note that the formulas
of the standard approach can be recovered from QED by choosing the
reference vacuum as the vacuum defined by the self-consistent mean-
field potential. The vacuum polarization density ppol (1.105) then goes
to zero. Having identified the electronic Hamiltonian of the standard
4-component approach with the no-pair Hamiltonian in the “fuzzy” pic-
ture, we can see that the Brown-Ravenhall disease is cured, since the
doubly excited determinants (1.109) leading to continuum dissolution
are projected out.

The no-pair Hamiltonian (1.111) depends on the orbital set in which
the field operators (1.85) are expanded and thus on the potential gen-
erating this orbital. This non-unigqueness of the no-pair Hamiltonian
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is an important point that seems to escape a number of authors. In
particular when deriving various approximate 1- or 2-component rela-
tivistic Hamiltonians a number of authors embed the Dirac-Coulomb-
(Gaunt/Breit) Hamiltonian in projection operators (1.110) without speci-
fying the reference orbitals. In an otherwise excellent paper by M. Barysz
and A.J.Sadlej [5] one reads: “[...] one should mention that the methods
of relativistic quantum chemistry, which are based directly on 4-spinors
[...], also neglect the positronic (negative energy) solutions. This is
generally known as the no-pair approzimation |...] and makes the ezact
electronic 2-spinor solutions fully equivalent to four-component electronic
solutions. Hence, as long as our knowledge of the pure electronic spec-
trum of the Dirac equation is sufficient, the 4-spinor formalism becomes
obsolete.” What the authors miss is the fact that the 4-component meth-
ods update the projection operators of the no-pair Hamiltonian until self-
consistency and therefore achieve a complete relaxation of orbitals to the
actual potential. The approximate 1- and 2- component methods freeze
the projection operators before performing an approximate decoupling
of the electronic and positronic degrees of freedom. This may lead to
excellent approximations that allow relativistic calculations at reduced
computational cost, but it is incorrect to state they provide complete
equivalence with the 4-component methods.

Just how good these approximations with fixed projection operators
are can be easily investigated at the 4-component level in the algebraic
approximation. It suffices to generate the orbital set corresponding to the
reference potential defining the projection operator and then delete the
negative energy vectors from the ensuing calculation in the actual poten-
tial. In table 1.2 this procedure is illustrated by 4-component relativistic
Hartree-Fock calculations on the radon atom. It can be seen that the
use of projection operators defined by the free-particle Dirac equation,
the “free” picture, gives rather large deviations, in particular in the core
region, compared to the standard approach, the “fuzzy” picture, based
on fully relaxed projection operators. On the other hand, the use of pro-
jection operators defined by the molecular field (1.17), the Furry picture,
compare fairly well with the standard approach. For reference we have
also included the results of a 1-component (scalar) second-order Douglas-
Kroll calculation in the same basis. Apart from the lack of spin-orbit
interaction one can see that the result is rather close to the Furry pic-
ture, which can be considered as infinite-order Douglas-Kroll. An at first
sight surprising result is obtained by projecting the standard or “fuzzy”
occupied orbitals onto the negative-energy free particle solutions in the
same basis. On then finds that the negative-energy free particle solutions
contribute only 0.0053 to the total density of 86 electrons! However, al-
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Table 1.2. The effect of embedding the Dirac-Coulomb Hamiltonian by projection
operators onto positive energy orbitals as illustrated by a Hartree-Fock calculation
on the radon atom. The calculations were carried out using a point nucleus and
an uncontracted 32s32p17d11f family Gaussian large component basis. The small
component basis was generated by restricted kinetic balance. For comparison we
have included the results of a scalar second-order Douglas-Kroll calculation (DK2) in
the same basis.

| | Fuzzy Furry Free | DK2
E(total) | -23610.98632 -23611.01630 -24153.25409 | -23533.64569
1s1/2 -3644.74282 -3644.75635 -3859.56081 -3626.81594
28179 -669.37883 -669.38209 -694.44791 -667.27997
2p1/2 -642.35771 -642.36308 -650.93434 -570.13212
2p3/2 -541.08440 -541.08776 -540.98657 idem
3s1/2 -166.96715 -166.96783 -172.50957 -166.54445
3D1/2 -154.90291 -154.90395 -156.89683 -138.48586
3p3/2 -131.72668 -131.72734 -131.61723 idem
3ds/2 -112.56321 -112.56374 -112.25150 -109.69442
3ds/2 -107.75599 -107.75642 -107.45065 idem
dsy /9 -41.34840 -41.34854 -42.76820 -41.25251
4p1/2 -36.02132 -36.02153 -36.50780 -31.85484
4ps;/2 -30.11915 -30.11927 -30.06259 idem
4ds/2 -21.54718 -21.54726 -21.44792 -20.89499
4d5,/2 -20.43800 -20.43805 -20.34020 idem
af5 /o -9.19411 -9.19409 -9.11432 -9.06496
4f7 /5 -8.92842 -8.92840 -8.85031 idem
5s1/2 -8.41670 -8.41671 -8.72474 -8.39894
5p1/2 -6.40907 -6.40910 -6.49582 -5.54050
5P3/2 -5.17528 -5.17529 -5.14742 idem
5ds/2 -2.18932 -2.18932 -2.15957 -2.09081
5ds/2 -2.01625 -2.01625 -1.98766 idem
6s1/2 -1.07263 -1.07263 -1.12104 -1.06787
6p1/2 -0.54033 -0.54033 -0.54932 -0.42777
6ps/2 -0.38390 -0.38390 -0.37708 idem

beit minute, one should keep in mind that the negative-energy orbitals
contribute very large energies and this explains the large deviations of
the “free” picture result from the standard approach.

2.4 The correlated level

Let us now consider the extension to the correlated level. The most
general variational parametrization is provided by the MCSCF ansatz

‘\IJMCSCF> —exp [-R] S ¢ |®;) (1.120)
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in which the orbital rotation parameters {«y,} are supplemented by the
coefficients {c;} of the CI expansion in Slater-determinants {|®;)}. At
the Hartree-Fock level the orbital rotation parameters provide relaxation
of orbitals. At the correlated level orbital relaxation, in addition to cor-
relation, is also provided by the CI expansion coefficients. In fact, in
the non-relativistic domain the orbital rotation parameters become re-
dundant in the limit of a complete Cl-expansion within the given orbital
basis, showing that in this domain the exact solution within a given
1-particle basis is provided by full CI.

At the 4-component relativistic level the choice of Cl-expansion be-
comes more difficult since one employs a no-pair Hamiltonian with pro-
jection operators that in principle should be allowed to relax completely
to the actual potential of the system. At the MCSCF level the relaxation
is provided by the orbital rotation parameters that can be employed in
conjunction with an expansion in purely electronic determinants, that
is containing only positive-energy orbitals. In CI and CC methods the
orbital basis is frozen, and the conventional approach is to employ the no-
pair Hamiltonian (1.111) defined by Hartree-Fock orbitals. This means
that determinantal expansions are restricted to purely electronic determi-
nants generated from this orbital set. Complete relaxation of the projec-
tion operators is therefore not possible, although the projection operators
defined by the Hartree-Fock orbitals can be expected to constitute a very
good approximation. In the limit of full CI the orbital parameters njj’
describing rotations between occupied and virtual positive energy or-
bitals become redundant, but the parameters /@Zj , describing rotations
between occupied positive energy orbitals and virtual negative energy
orbitals are not accounted for by the Cl-expansion. This tells us that at
the 4-component relativistic level the exact solution in a given 1-particle
basis is not provided by full CI, but by MCSCF.

Bunge et al. [11] has advocated 4-component relativistic CI using in
addition to purely electronic determinants also mixed determinants, that
is Slater determinants containing both positive- and negative-energy or-
bitals. A subclass of these determinants are precisely the doubly excited
determinants that appear in the argument of Brown and Ravenhall ana-
lyzed in the previous section. It is our firm conviction that the methods
advocated by Bunge et al. are plain wrong and our argument against the
use of these methods runs as follows: Consider CI at the QED level of
theory, or rather in the semiclassical limit that was analyzed in section
2.2. The CI ansatz is

‘\1101> =Y cile) (1.121)
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which is simply the MCSCF ansatz (1.120) with the orbital rotation oper-
ator deleted. We may assume that we start with the orbital set generated
at the Hartree-Fock level. We want to describe a system of N electrons
and so our Hartree-Fock reference is simply an occupation-number vec-
tor of N electrons as in (1.87). The QED Hamiltonian (1.97) does not
conserve particle number and so the Cl-expansion (1.121) will contain
occupation-number vectors with particle number N + 2n, where n is the
number of electron-positron pairs generated from the reference determi-
nant. On the other hand, the QED Hamiltonian does conserve charge
and so the occupation-number vectors with N particles must all be purely
electronic since they are the only ones that couple to the reference deter-
minant through the QED Hamiltonian. The occupation-number vectors
with more than N particles correspond to determinants (1.116) involv-
ing one or more excitations of electrons from occupied negative-energy
orbitals to virtual positive-energy orbitals. The inclusion of these de-
terminants will provide complete relaxation of the orbital set. However,
as emphasized already in the previous section, these determinants are
absent in the standard approach since all the negative-energy states are
empty. The mixed determinants included by Bunge et al. in the CI-
expansion simply do not exist at the QED level. They are forbidden
by the Pauli exclusion principle since they involve the double occupa-
tion of negative-energy orbitals. Their inclusion can precisely lead to the
continuum dissolution predicted by Brown and Ravenhall. Bunge et al.
claims variational control using the Hylleraas-Undheim theorem which
implies that the ordered sequence of eigenvalues of a Cl-matrix with one
determinant added to the expansion are interlaced with those of the orig-
inal Cl-matrix. However, the Hylleraas-Undheim theorem only connects
sequences of eigenvalues and not eigenstates. It is well known in direct-
CI methods that upon enlarging the trial vector space root flipping can
occur, that is two states may change order, and this is precisely the pos-
sibility that precludes variational control in the approach advocated by
Bunge et al. [11].

3. Implementation and Computational Scaling

Now that the necessary general theory has been introduced in the
preceding sections we can direct our attention to the application to
molecules. This concerns both the implementation of algorithms and
their computational scaling in comparison to the "spinfree" algorithms
that are used in non-relativistic quantum chemistry. We start by consid-
ering basis set expansion techniques.
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3.1 The algebraic approximation

While Hartree-Fock equations for atoms can be solved via numerical
integration one needs a basis set expansion to apply the method to gen-
eral molecular systems. In order to obtain a viable scheme one would like
to choose functions that are readily integrated, preferably using the same
techniques as employed in non-relativistic quantum chemistry, so that
one can benefit from the large body of experience and implementations
that are available in this field. Non-relativistic orbitals are, however, usu-
ally chosen as real functions of the space coordinates only, whereas the
Dirac spinors are complex functions of space and spin coordinates. How
can one best exploit the available basis set technology in this domain 7

Basis set expansion is usually done in the LCAO approximation where
the molecular orbitals are expressed as linear combinations of atomic or-
bitals. These atomic orbitals are in turn expressed as fixed linear com-
binations of simpler functions called primitives. Consider the solution of
the time-independent Dirac equation for a molecular field (1.41) in the
algebraic approximation. We expand the large and small component in
two different sets of primitives

¥ =xnxcp: X =L,S. (1.122)

We then obtain the eigenvalue equation

i s c;g _ SEE 0 cg .
1ot V99 — 2mc? 899 c;? 0 859 cg P
(1.123)
in which appear the matrix elements

S =00l 1) vy =Oa V) Y = (e p)x)
(1.124)
The first attempts along these lines failed rather miserably, even for
one-electron systems. The origin of the problem was the neglect of the
coupling of the large and small components in the Dirac equation

A~

ep—V

1
+ 2mc?

~1
2mc¢5 (r) = ﬁ%,, (o p) 1/)5 (r); ﬁp = ] (1.125)

We obtain the finite basis equivalent of this relation by first writing out
(1.123) in terms of two matrix equations

VIbel {bSeS — SMcle,  (1.126)
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and solve for the vector cg of small component expansion coefficients.
This gives the relation

1 €,8°5 — V5SS !
S SS p SL L

=— |5 B 11 . 1.128
“p 2mec + 2mc? “p ( )

From (1.125) or, alternatively, (1.128) we see that the small component
wave function can be regarded as the result of the consecutive action
of the operators (o - p) and R, on the large component wave function.
The energy-dependent operator Rp is totally symmetric, but the operator
(o - p) couples functions of opposite parity which indicates that separate
basis set expansions are needed for the large and small components,
as was anticipated by (1.122). We thus see that the coupling of the
large and small components generally leads to the use of larger basis sets
and thereby increased computational cost at the 4-component relativistic
level compared to non-relativistic methods. For instance, at the Hartree-
Fock level three classes of integrals over the Coulomb operator (1.49)
appear — (LL |LL), (SS|LL) and (SS|SS) — where the first and
smaller class (all indices correspond to large component basis functions)
constitute the two-electron integrals of a non-relativistic calculation. On
the other hand, we shall see that a closer study of the coupling relation
provides suggestions as how to reduce computational cost.

Before entering a detailed discussion of the coupling (1.125), let us first
consider the choice of primitives in the basis set expansions in relativistic
calculations. We know that the exact solutions of the relativistic hydro-
genic atom [6] differ from the non-relativistic ones in having a singularity
at the nucleus and having a coupling between the spatial and spin co-
ordinates. The singularity is somewhat artificial because it appears in
the exact solution for a model in which the nucleus is represented by a
point charge. A more realistic finite nucleus model [108] gives the wave
functions an approximately Gaussian shape in this region. The second
difference, coupling of the spatial and spin degrees of freedom, leads to
more complications. An expansion in 2-spinor functions was suggested
by the Oxford group|73] who defined basis functions as

Xi(ra) = NIfi(ra)ée,m, (04,04)
(1.129)
Xa (ta) = NJf2(ra)ér,m, (04,04)

The radial functions fﬁ (ra) and flf (ra) depend only on the distance
to expansion center A, all the angular and spin dependence is carried
by the 2-spinor functions &k, m, (64,9a) for which the analytic form is
known [39]. The problem with this approach is that, due to the changed
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angular dependence relative to non-relativistic theory, completely new
integral evaluation routines need to be developed. This made the actual
implementation for molecular systems appear relatively late[73, 117]. Im-
plementations of a more pragmatic approach with scalar expansion func-
tions were available about a decade earlier[1, 23, 62, 24, 81| because
they employed non-relativistic integral evaluation packages [65]. In such
schemes one chooses expansion functions in which only one component
of the 4-spinor is non-zero :
X0
X

X

X _
,()[)p_ 0 X

CXa
l cf)fﬂ ] . X=1L,S (1.130)

Here x~ is a row vector of primitives and ci(o‘ and c;(ﬁ are column

vectors of the corresponding expansion coefficients. Note that the same
set of primitives is used for the o and 8 components. The scalar functions
Xu (ra) are again chosen as functions of the position of the electron
relative to expansion centers A. One may still separate the radial and
angular parts by choosing the spherical form

l
X (£4) = N £ (74) Yo m, (01, 0.4) (1.131)
but this gives now only a marginal advantage over the Cartesian form

xu (£4) = Ny 0 1 (ra) (1.132)
since neither has the correct angular dependence. The correct angular
dependence is in this approach of course still achieved at the Hartree-
Fock stage once the actual spinors are found.

In all three models — 2-spinor, spherical or Cartesian — one still needs
to choose the specific form of the radial expansion functions f, (ra).
Again one can take the exact solutions for the hydrogenic atom as a
guideline. Slater functions f,, (ra) = e ‘#"4 have the correct long range
behavior, but do not have the correct shape close to the nuclei. They
neither represent the singularity found in the point nucleus model nor
the approximate Gaussian shape appropriate for finite nuclear models.
There may thus be an advantage for expansion in Gaussian type func-
tions f, (ra) = e=Curi for properties that depend on the precise shape
near extended nuclei, while properties that depend on the electron den-
sity in the outer regions of the molecule are better described using Slater
type functions. In practice, however, decisive is the more efficient evalu-
ation of multi-center integrals that makes Gaussian based expansions the
method of choice for both kind of properties. In both the scalar and the
two-spinor expansion schemes one can then employ integration schemes
developed for Gaussian type functions [43].
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As said before, the advantage of the scalar function approach is that
they require very little adaptation of existing non-relativistic integral
evaluation routines. A disadvantage is, however, that the expansion in
N' large and N° small component primitives is unnecessarily long. To
see why this is so we need to consider the relation (1.125) between the
large and the small component part of the wavefunction in more detail.
For electronic orbitals and non-singular potentials ¢, e.g. finite nuclei,
the coupling reduces in the non-relativistic limit to

lim 2me 1/)5 (r) = (o p) ¢£ (r) (1.133)

c— 00

and equivalently, in the algebraic approximation, to

lim 2me c5 = [555]_1 mtek (1.134)
c— 00

since the operator Rp then goes to unity. In practice one obtains this
result for point nuclei as well in the algebraic approximation because
Gaussian basis functions are not able to describe the singularities at
nuclei. When using basis set expansions, one usually ignores the effect of
Rp since this operator, even in the relativistic regime, is close to unity due
to the large value of 2mc?. This is called the kinetic balance procedure
[88, 92| since it guarantees proper representation of the operator identity
(o -p) (o -p) = p? in matrix form. We can see this better by inserting
the non-relativistic coupling (1.134) into the matrix equation (1.126).
We then obtain

1 -1
Viey + oM [595] ey = SMepe, (1.135)
m

which gives the matrix representation of the non-relativistic Schrodinger
equation provided that the relation

(xi[p?| ) = (i l(e - p) 2 (@ Pl ) (1.136)

holds. The term
S [ e

has the form of the resolution of identity in a non-orthogonal basis. As
carefully analyzed by Dyall et al. [22] it is not necessary to have a
complete small component basis in order for relation (1.136) to hold;
it suffices that the small component basis spans the result of the op-
erator (o - p) acting on the large component basis. This observation
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explains the weakness of the Talman minimax principle (1.84) alluded
to in section 2.1. Assume that we have the exact solution. If the large
component function is now varied by adding new primitives without con-
jointly adding small component primitives that span the effect of (o - p)
on these new functions, then relation (1.136) will not hold. The kinetic
energy will be underestimated, and one may observe that the energy
falls below the exact energy, contrary to the Talman minimax principle.
The kinetic balance recipe in practice prevents this so-called variational
collapse. It does not mean that kinetically balanced basis sets always
provide an upper limit of the true energy since the relation (1.134) does
not represent the exact coupling (1.128). The effect of the operator Rp
can be seen in figure 1.1 where we compare the small component ra-
dial function of the 1s; /5 orbital of the radon atom from a Hartree-Fock
calculation using a finite nucleus with the function generated by kinetic
balance from the corresponding large component radial function. It can
be seen that close to the nucleus there is a marked discrepancy between
the two functions, illustrating that the kinetic balance prescription gives
a rather poor description of the coupling of the large and small compo-
nents in this region. However, since this breakdown occurs in the close
vicinity of nuclei, well within the radial expectation value of the 1s; , or-
bital, it is reasonable to assume that it occurs in a region of local atomic
symmetry, even for molecular systems. This implies that large compo-
nent s functions then only couple to small component p functions and
not to other angular momentum types. With a sufficiently flexible basis
the kinetic balance prescription will therefore allow the establishment
of the correct coupling. In most cases energy optimizing a sequence of
uncontracted kinetically balanced basis sets shows monotonous conver-
gence from above upon extending the basis. For very large basis sets one
sometimes sees that the energy in a kinetic balance basis set expansion
is slightly lower than the reference value that is obtained via numeric
integration [32]. There is, however, ample numerical evidence that such
small deviations do not present a real problem, and the kinetic balance
procedure has therefore become the standard approach in developing
basis sets for 4-component relativistic calculations.

Since it suffices to span the range of functions XgA (r) = (o p) XﬁA (r)
in the small component basis, kinetic balance can be realized in differ-
ent ways. In 2-component basis sets one can directly include one small
component expansion function for each large component function . This
1:1 relation between the large and small component basis functions has
been denoted restricted kinetic balance. In scalar basis sets one usually
considers all three components of the p separately, which is then denoted
unrestricted kinetic balance. Still, the separate one-component functions
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can be recombined in the transformation to the orthogonal basis when
the Hartree-Fock matrix equation is solved. If this is done, the final
result becomes identical to that of the 2-component procedure, with as
only difference the calculation of primitive integrals and the construction
of the Fock matrix. In these steps the scalar expansion method needs
significantly more primitive functions than needed in the comparable
two-spinor expansion. As example we take the representation of the 2p
spinors. The large component is expressed as a linear combination of 2p,,
2py, and 2p, Cartesian Gaussian functions using the same exponents for
the whole set of p-functions. The small component is then expanded in
the set of functions that are generated by operation with the three com-
ponents of the gradient operator on the three scalar 2p functions. This
gives seven unique functions (1s, 3s and 3d) to balance three large com-
ponent functions. This overrepresentation can be reduced using so-called
dual family basis sets [32] in which the exponents of the d-functions are
a subset of those of s-functions, and the exponents of f-functions a subset
of those of p-functions, etc. This is efficient because small component
scalar functions are then used to balance two large component functions
at the same time. Still, one always ends up with a longer expansion than
used in an qualitatively equivalent two-spinor expansion. The superflu-
ous linear combinations are usually projected away because they may
give problems with linear dependencies. The problem is enhanced in
heavier elements because the p;/5 and p3/o orbitals then have markedly
different radial extent [80]. A scalar expansion scheme does not permit
distinction between these subshells which means that the tight functions
needed in the expansion set for the py/p will also be included in the
set used for the p3o. This illustrates that a two-spinor expansion is to
be preferred on theoretical grounds . It is, however, also a matter of
strategy whether this reduction in application time really warrants the
additional effort in constructing and maintaining a dedicated integral
evaluation implementation for relativistic calculations. An implementa-
tion of the scalar expansion scheme that shares most of its inner kernels
with a non-relativistic implementation will benefit easily from new ad-
vances in non-relativistic integral evaluation techniques, while these need
to be rederived and separately implemented in a two-spinor scheme. An-
other issue is the interface of non-relativistic and relativistic schemes, an
approach advocated by Dyall [26, 27, 28, 29|, where it also may be easier
to work with primitive scalar expansion functions throughout.

Let us now direct attention to the R operator (1.125) that modifies the
function (o - p) ¢ (r) in regions where the potential ¢ (r) is large. This
is the case in the vicinity of nuclei and has important implications for the
kinetic balance procedure for contracted basis sets. The kinetic balance
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prescription has proven to be a valid method to generate primitive small
component basis sets. However, it is clear from figure 1.1 that it fails
when applied to the large component part of an eigenspinor. The dra-
matic consequences can easily be verified for hydrogenic systems [100].
It means that the simple kinetic balance procedure can not be applied to
heavily contracted basis functions (that approach the exact large compo-
nent solution) because the generated small component functions do not
provide sufficient flexibility to establish the correct coupling. The proper
procedure is to take both the large and the small component coefficients
directly from uncontracted atomic reference calculations. This has been
referred to as atomic balance [100]. As a side remark we note that the
sometimes advocated [63] use of non-relativistic functions to expand the
large component, combined with application of the kinetic balance pre-
scription for the small component, also prevents the divergences but at
the expense of having wrong expansion functions for both the large and
the small component. Again, contraction with the atomic spinor coeffi-
cients is easier in two-spinor expansion schemes than in scalar expansion
schemes because the former makes it possible to define specific contrac-
tions for the spin-orbit split subshells (j =1 —1/2 and j =1+ 1/2). In
the latter scheme one needs to give one set of contraction coefficients for
a given nl shell which makes it necessary to compromise.

The R-operator is also of interest when studying the long-range be-
havior of the small component wave function. In regions of negligible
potential it reduces to a constant factor of

2mc?

R, = [1+ » ]_1 (1.138)

Since the amplitude of the large component wave function in this region
is dominated by that from the HOMO with a small value of ¢, and only
a small gradient, the small component wave function will have nearly
zero amplitude in this region. The small component density is therefore
rather localized and atomic in nature. This observation has made it pos-
sible to calculate spectroscopic constants of molecular systems where the
complete set of (SS | SS) integrals is eliminated and the potential curve
is corrected by a simple Coulombic correction [107]. This constitute a
perturbational correction, but more elaborate schemes of integral model-
ing have been developed in order to reduce computational cost. Recently
a scheme was presented in which all overlap between small component
basis functions located on different expansion centers was neglected in
the evaluation of potential energy matrix elements [48]. The promising
results obtained in these pilot calculations indicate that in the long run
it will probably suffice to restrict evaluation of potential energy inte-
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Figure 1.1. The actual small component radial function [r~'Q(r) | of the 1s; /5 or-
bital of radon obtained from a numerical GRASP calculation with Gaussian nucleus,
as compared with the radial small component function [r~'P(r) | generated from
restricted kinetic balance (RKB). For comparison the radial expectation value of the
1s;/2 orbital is 0.0015 a.u.
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grals in the small component basis to those that share a common center.
In this approximation the scaling of integral evaluation then becomes
aNé + bNgN,% + ¢Ng where the first term is comparable to that of a
non-relativistic all-electron calculation. This means that the preceding
discussion on the efficiency of integral evaluation in two-spinor versus
scalar expansion schemes looses some of its significance because it will
apply mainly to small systems. For larger systems the integral evalu-
ation cost will be dominated by the "non-relativistic" first term and it
becomes more important to employ efficient integral-direct or multipole
expansion techniques to improve the computational efficiency than to
optimize the calculation of integrals over the small component basis.

For small molecules, molecular symmetry may of course also help to
increase computational efficiency. In the two-spinors expansion one can
resort directly to double group symmetry and apply projection opera-
tors or other techniques to create the appropriate symmetric linear com-
binations of atomic two-spinors. When scalar functions are chosen as
expansion basis it is natural to first adapt these using non-relativistic
point group symmetry and then combine the resulting functions to ob-
tain double group symmetry adapted functions. In that case one may
combine the symmetry adaption of scalar basis functions to single point
groups with time reversal symmetry in a quaternion symmetry scheme
[82, 83]. The sidestep via non-relativistic symmetry adapted functions
also has advantages when approximate, in particular so-called spinfree,
algorithms are considered. If one has defined a basis in which the large
component scalar functions transform according to the irreps of the ap-
propriate single point group and the small component functions are re-
lated by the kinetic balance relation, it becomes possible to identify spin-
orbit couplings as arising due to the off-diagonal matrix elements of the
Fock operator. Neglecting these contributions becomes then identical to
solving the spinfree modified Dirac equation of section 1.1.4 [24, 104]

While this is not very important in the Hartree-Fock stage it offers
major saving in the electron correlation procedure. It means that cor-
relation calculations can be carried out using non-relativistic algorithms
and implementations. This will be discussed in more detail in the next
section.

3.2 Electron correlation methods

The electron correlation methods available for 4-component methods
are derived from non-relativistic counterparts. As discussed in section 2.4
a no-pair Hamiltonian (1.110) with fully relaxed projection operators is
accessible only at the MCSCEF level, where orbital rotations are included.
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At the CI or CC level the “best” choice of no-pair Hamiltonian is the one
defined by the Hartree-Fock (or MCSCF) orbitals. The generation of the
matrix elements appearing in the no-pair Hamiltonian (1.111) is rather
costly since it involves summation of integrals over both the large and
small component type basis sets. In the scalar expansion scheme this is
conveniently expressed in quaternion algebra [110] and gives the following
expression in terms of electron repulsion integrals over scalar functions

L,S L,S Nx Ny

Gpats ™ = D20 00D By i Bungs™ (M2, Az =0,1,2,3)
X Y mV g
(1.139)

where the B-matrices are quaternion density matrices

XX Alz XAl X AZ
By Cen, = Z Z Cup " Cog 2 €A, CA- (1.140)
A1=0A1=0

Each quaternion integral gp(;,?sj\34 can be expressed as a sum of 16 indi-
vidual real numbers multiplied by a quaternion phase ey,, for electron 1
and a quaternion phase ey, for electron 2. This is fully equivalent to the
more conventional notation in terms of barred and unbarred partners of
Kramers pairs. One can see that the effect of spin-orbit coupling trans-
lates into making the density matrices complex instead of real, while the
use of a 4-component instead of a 2-component formalism leads to the ad-
ditional summation over the small component basis functions. Together
this makes the 4-index formation step, though still scaling as a fifth power
with the number of basis functions, much more costly than the same step
in non-relativistic calculations. Let M be the number of active Kramers
pairs (or spatial orbitals in the non-relativistic case) in a correlated cal-
culation. Pernpointner et al. [70] take the realistic assumption that the
primitive small component basis is about twice the size of the primitive
large component basis, that is Ng ~ 2Ny, and arrive using M = N, at
a non-relativistic/relativistic operation count ratio of 1:130 for the first
halftransformation and a ratio of 1:88 for the second halftransformation.
The increase in the first steps is largely due to the presence of the small
component basis set, while that in the last steps is caused by the cou-
pling of the spin and spatial degrees of freedom. The computational
scaling in the first steps can be reduced by using two-spinor expansion
functions (so that Ng = Nz,) and/or by using one-center approximations
and it is probable that this will not present a major problem in the near
future. The limiting ratio will then be that of a two-spinor algorithm
that gives a scaling of 1:10 in the first halftransformation and 1:24 in
the second. The later steps remain more demanding due to the fact that
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spin-orbit couplings, that are neglected in a purely non-relativistic the-
ory, are taken into account. This gives a shift from real to complex or
quaternion algebra and a loss of permutational symmetry. Here one may
only improve the scaling in cases that these couplings are so small that
approximate algorithms can be used. This is similar to the situation with
2-component methods where spin-orbit coupling are often neglected in
the Hartree-Fock procedure and introduced in a CI step. Precisely the
same treatment with similar computational gains (and loss of accuracy
in some cases) is possible for the 4-component scheme. After the index
transformation we end up with a second quantized Hamiltonian that can
be used in various correlation treatments. The computations are then
identical to those necessary in 2-component calculations.

A number of algorithms and implementations have been developed
that tackle the electron correlation problem in the 2- or 4-component
no-pair approximation. We will here only consider the algorithms that
assume true 4- or 2-spinors and not the methods that neglect the effect
on spin-orbit couplings in the Hartree-Fock stage. For more complete
descriptions of the algorithms we refer to a recent overview by one of us
[111]. In this review we will focus on the computational scaling of these
methods.

The computationally most efficient treatment is given by many-body
perturbation theory, in particular MP2. Since one only needs to sum
transformed integrals divided by the orbital energy differences, this method
allows for integral-direct implementations, thus opening up for applica-
tion to larger systems. The method has as drawback that it is only
applicable in cases were a single determinant reference already gives a
reasonable description of the system. The computational scaling is iden-
tical to that of the index transformation step because the summation of
the transformed integrals themselves takes a negligible amount of time.

The Cl-type methods are more flexible but computationally less ef-
ficient and, more importantly, lack the correct scaling of energy with
system size. This restricts their application to relatively small model
systems in which they can give results close enough to the full CI limit.
As orbital generator usually an average-of-configuration Hartree-Fock
procedure is used, but work MCSCF algorithms is underway [98]. The
computational scaling depends much on the actual implementation and
on the type of CI that is used.

The last class of ab initio correlated method are the coupled cluster
type approaches. They share with the perturbation theory type methods
the features of size-extensivity and reasonable computational efficiency,
but also the requirement that the reference wave function should be sim-
ple. Application of these type of relativistic methods to atoms has been
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pioneered by the groups of Lindgren [59] and Kaldor [52, 53] who have
shown that almost arbitrary accuracy can be reached once a sufficient
number of one-particle functions (up to i-type functions) and excitation
level is used. While such accurate treatments are feasible due to the
high symmetry and relatively few electrons to be correlated in atomic
systems, this is still out of reach for molecular applications. It is possible
to formulate the theory entirely in terms of Kramers’ pairs instead of
individual spinors but the corresponding algorithms have not yet been
fully developed for the general case. The unrestricted CCSD(T) algo-
rithm that has been implemented can be routinely applied to diatomics
but larger systems and basis sets beyond triple or quadruple zeta level
are usually still too demanding. These systems are smaller than feasible
with efficient non-relativistic implementations of CC methods, which is
mainly due to the limiting steps in the necessary index transformation
that make this step often more expensive or cumbersome (due to the
necessary diskspace and I/O) than the coupled cluster step itself. This
situation will improve due to the increasing performance of computer
hardware and the development of more efficient (parallel) algorithms,
but unless approximations are made that break the notorious seventh
power scaling with system size the coupled cluster algorithms will re-
main only applicable to relatively small systems.

The latter problem is in fact shared among all the correlation methods
and is no different from the situation in non-relativistic quantum chem-
istry. However, while in non-relativistic quantum chemistry rewriting of
the algorithms in the atomic orbital basis combined with approximation
of long-range interactions via multipole expansions [113, 85| permits the
development of algorithms that scale much better with system size [87],
this is cumbersome in the relativistic case. In order to make AO-direct
algorithms feasible one also needs to take into account the large differ-
ence in size between the active spinor set and the complete basis set.
It is quite common to correlate only 10 % of the electrons in a system,
using only the lowest lying virtual spinors. This makes the AO list of
functions much longer than MO-list and it takes larger systems before
the gain due to approximate treatment of long-range effects starts to pay
off. This leaves the implementers of methods with a difficult choice : In
the long run one will see that computations for system sizes for which the
effort of using AO-based algorithms pays off are easily feasible and that
this then enables much larger computations. In the current situation it
is, however, still more efficient to use MO-based algorithms.

The observations regarding the computational scaling of the various
steps in a conventional ab initio calculation (using scalar basis functions)
are summarized in table 1.3. The first steps show a linear dependence
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on the number of primitive integrals that need to be calculated and con-
tracted with the density matrix. The factors a, b and ¢ depend on the
type of basis functions contained in the integrals. Factor ¢ will in gen-
eral be larger then a because the small component basis contains higher
angular momentum type functions than the large component basis. This
is the main reason that relativistic Hartree-Fock calculations for small
molecules are so much more expensive than comparable non-relativistic
calculations. The difference in algebra (quaternion instead of real) fur-
thermore reduces the permutational symmetry of the density matrix
making the Fock matrix building and diagonalization procedure more
expensive. This algebra difference also shows up in two-spinor meth-
ods where the presence of two-electron spin-orbit integrals increases the
computation time by a constant factor relative to non-relativistic cal-
culations. Index transformation of two-electron integrals exhibits the
well-known fifth order scaling with the number of basis functions. In
the transformation of the first two indices one sees mainly the effects
of the small component basis set. In the second halftransformation the
effect of spin-orbit couplings start to dominate making the scaling of full
Dirac-Coulomb and two-spinor approaches comparable. They become
fully equivalent in the last step (taken here as a CCSD calculation since
this algorithm has been analyzed in detail previously [105]) where the
variational inclusion of spin-orbit coupling leads to a 32-fold increase in
operation count. The numbers presented here are theoretical estimates
and actual measurements may give a somewhat different picture depend-
ing on efficiency of implementation and convergence of iterative proce-
dures. Still, we think that it is useful to have such estimates, — both
as a guideline for the efficiency of implementation and for the develop-
ment of a long term strategy. We can for instance deduce that molecules
may as well be treated with relativistic coupled cluster methods based on
the spinfree Dirac-Coulomb equation than by other scalar relativistic or
non-relativistic counterparts since the rate-determining step is the CCSD
step which outscales the preliminary Hartree-Fock or index transforma-
tion steps. Including spin-orbit coupling increases the computational
time, regardless of whether this is done in a 2- or a 4-spinor algorithm.
This trend that is already visible in large basis set calculation on di-
atomics will become even stronger once more powerful computers that
allow larger molecules to be treated become available. On the other
hand, if we move to the large systems still inaccessible by current cou-
pled cluster algorithms and use only Hartree-Fock or DFT methods we
see that the inclusion of spin-orbit couplings is less crucial. The effort
should go into the efficient evaluation or approximation of integrals over
the small component basis set. For such larger systems one can then use
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Table 1.3. Theoretical operation counts of steps in a correlated calculation for dif-
ferent approximation of the Dirac Coulomb no-pair Hamiltonian. 2-Spinor is any
method that works with frozen no-pair projection operators but keeps the spin-orbit
couplings, Spinfree is any method that varies the projection operators but neglects
spin-orbit couplings. N is the number of basis functions (with subscripts referring
to Large or Small component where appropriate). M is the number of active or-
bitals or Kramers’ pairs (with the subscripts for the CCSD algorithm referring to
the subsets of Occupied or Virtual orbitals). The steps considered are: A)Integral
evaluation/Hartree-Fock/DFT, B)Index transformation, step 1, C)Index transforma-
tion, step 2, D) CCSD

Non-Relativistic Spinfree
A| laN? L (aN{ +4bNZN7 + 4cNg)
B | LMN*+ 1M?N? 1M (N7 +4ANZN7 +4N§) + $M? (N} + 4NsN7 + 4N§)
C| iM*N?+1iM'N 3M® (N7 +4N3) + $M* (N, + 4Ns)
D | MM +AMIM,) + MM, TMJM) +4My M, + SM2M,
2-spinor Dirac-Coulomb
Al IaNt 3 (aN{ + bNZN} + cN5)
B | 2MN* 4+ 8M*N? 2M (N} + NZN7 + N§) +8M” (N} + NsNi + N§)
C | 4AM®N? 4+ 16M*N AM?® (N7 + NZ) 4+ 16M* (N1, 4+ Ns)
D | SMIM? +128M2IM? + 16 M2 MY | SM2IM? + 128M2M? + 16 M2 M}

the effect of the locality of the small component wave function making
integrals prescreening and/or one-center expansion methods take effect.

4. Conclusion

In this chapter we have discussed 4-component relativistic methods
and in particular the challenges that arise when extending the applica-
tion of these methods from atomic to molecular systems, notably arising
from the introduction of the algebraic approximation. We have analyzed
in detail the variational stability of the Dirac-Coulomb-(Gaunt/Breit)
Hamiltonian by comparing the standard approach to 4-component rela-
tivistic molecular calculations with QED in the semiclassical limit. We
find that we recover the formulas of the standard approach by deleting
vacuum polarization from semiclassical QED. The effect is, however, that
the minimization principle of QED is replaced by a minimax principle
in the standard approach, due to the fact that in QED all negative-
energy orbitals are filled whereas they are empty and treated as an or-
thogonal complement in the standard approach. The standard approach
employs a (and not “the” !) no-pair Hamiltonian which corresponds to
surrounding the relativistic many-electron Hamiltonian by projection op-
erators. Contrary to approximate 1-or 2-component approximations the
4-component methods allows a continuous update of the projection oper-
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ators and thereby of the no-pair Hamiltonian and thus allows a complete
relaxation of the electronic wave function to the actual potential of the
system.

We insist on the distinction between Hamiltonians and methods. It is
then easier to see that the difference in computational cost of relativistic
and non-relativistic calculations is a difference in prefactor rather than
order, and so it is not like comparing DFT with CCSD. Through a careful
analysis of computational cost we furthermore show that one must distin-
guish the extra computational cost arising from the introduction of larger
basis sets, notably the separate expansion of the large and small com-
ponents, from the cost arising from the transition from non-relativistic
to relativistic symmetry, that is the introduction of spin-orbit coupling.
This latter contribution is identical at the 2- and 4-component level of
theory. We consider how the computational cost can be reduced by ex-
ploiting symmetry, in particular time reversal symmetry, and the atomic
nature of the small component density. We also outline the dilemma
facing the programmer on whether he should choose a scalar basis ex-
pansion which allows him to benefit from the continuous development
of (integral) codes in the non-relativistic domain or whether he should
choose the more natural expansion in terms of 2-spinors which requires a
more dedicated programming effort. The area of 4-component relativistic
molecular methods continues to be an area of challenge and promise.
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