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her�
hem.vu.nlAbstra
t In this 
hapter we 
onsider the extension of 4-
omponent relativisti
methods from atomi
 to mole
ular systems, in parti
ular the 
hallengesarising from the introdu
tion of the algebrai
 approximation. In order toanalyze the variational stability of the relativisti
 many-ele
tron Hamil-tonian we derive a variational theory of QED in the semi
lassi
al limitusing the se
ond quantization formalism and exponential parametriza-tion. In QED the negative-energy orbitals are �lled leading to a trueminimization prin
iple for the ele
troni
 ground state, whereas in thestandard 4-
omponent approa
h these orbitals are empty and treated asan orthogonal 
omplement, thus leading to a minimax prin
iple. We em-phasize the non-uniqueness of the resulting no-pair Hamiltonian of thestandard approa
h. 4-
omponent methods allow the 
ontinuous updateof the Hamiltonian and thereby 
omplete relaxation of the ele
troni
wave fun
tion. We also dis
uss more pra
ti
al aspe
ts of the imple-mentation of 4-
omponent relativisti
 methods. We 
arefully analyzetheir 
omputational 
ost and 
on
lude that the di�eren
e with respe
tto non-relativisti
 methods 
onstitute a prefa
tor and not a di�eren
e inorder. We furthermore dis
uss how 
omputational 
ost may be redu
edwhile staying at the 4-
omponent level, e.g. by exploiting the atomi
nature of the small 
omponent density.
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troni
 Stru
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omponent methods, variational 
ollapse, quan-tum ele
trodynami
s, basis sets 
al
ulations, algebrai
 approximation,Dira
 equation, mole
ulesIntrodu
tion4-
omponent ele
troni
 stru
ture methods for atoms were introdu
edin 
hapter six. In the present 
hapter we 
onsider the extension of thesemethods to mole
ular systems (see [116℄ and referen
es therein for re
entreviews). It is therefore natural in this 
hapter to fo
us on the addi-tional 
omplexities added when going from single atoms to polyatomi
systems. An obvious di�eren
e is the la
k of spheri
al symmetry. In theatomi
 
ase the high symmetry allows the separation of radial and an-gular degrees of freedom. The angular part 
an be solved 
ompletely bysymmetry, parti
ularly fa
ilitated by the introdu
tion of Ra
ah algebra[38℄, whereas radial equations 
an be solved by �nite di�eren
e methods.In mole
ular 
al
ulations one generally has to resort to the algebrai
 ap-proximation, that is the use of �nite basis set expansions. The �rst basisset 
al
ulations led to rather disastrous results (see [88℄ for referen
es).S
hwarz and We
hsel-Trakowski [89℄ identi�ed two problems 
onne
tedwith 4-
omponent relativisti
 
al
ulations in the algebrai
 approa
h:1 The 
oupling of the large and small 
omponents of the Dira
 equa-tion requires separate basis set expansions for ea
h 
omponent.2 The relativisti
 many-ele
tron Hamiltonian is not bounded frombelow and, a

ording to an argument given Brown and Ravenhall[10℄, gives only 
ontinuum solutions. This has been referred to asthe �Brown-Ravenhall disease�.In the atomi
 
ase the �rst problem is avoided by the use of �nite di�er-en
e methods, and the se
ond problem is solved by imposing the bound-ary 
onditions at r = 0 and r !1 for bound solutions [39℄. In pra
ti
ethe above two problems have also been solved in the algebrai
 approxi-mations, and 4-
omponent relativisti
 mole
ular 
al
ulations are therebyroutinely 
arried out today. On the theoreti
al side things have appar-ently not been 
ompletely straightened out, as witnessed by a numberof misunderstandings in the literature. After an initial overview of therelativisti
 many-ele
tron Hamiltonian in se
tion 1, we therefore give avariational formulation of QED in the semi
lassi
al limit, that is with
ontinuous ele
tromagneti
 �elds, in se
tion 2. At this level of theory atrue minimization prin
iple is assumed to exist [30℄, and this puts theD R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 3dis
ussion of the variational stability of the relativisti
 many-ele
tronHamiltonian on �rm grounds.The separate basis set expansion of the large and small 
omponentsneeded to solve the se
ond problem above leads to in
reased 
omputa-tional 
ost. 4-
omponent 
al
ulations are therefore 
onsidered limitedto ben
hmark 
al
ulations, and more 
ost-e�
ient methods are soughtby redu
ing the 4-
omponent Hamiltonian to 1- or 2-
omponent approx-imate forms. There is, however, another approa
h whi
h 
onsists ofstaying within the 4-
omponent form and instead seek redu
tion of 
om-putational 
ost by redu
tion or elimination of intermediate quantities(e.g. two-ele
tron integrals) appearing in the a
tual 
al
ulations. The
urrent status and perspe
tives of this approa
h are dis
ussed in se
tion3. Notation and units: Unless otherwise stated, all formulas appearingin this 
hapter are in atomi
 units. In these units the ele
tron mass mand the elementary 
harge e are both unity. We have, however, 
hosento retain their symbols so that the reader 
an see how the fundamental
hara
teristi
s of the ele
trons enter the equations. This is parti
ularimportant for the ele
tron 
harge sin
e it provides the 
oupling to ex-ternal �elds as will be dis
ussed in se
tion 1.1.1. In this manner one
an distinguish equations des
ribing ele
trons from those des
ribing itsantiparti
le, the positron. Operators generally 
ome with operator hats,and ve
tors are written in bold 
hara
ters. We shall also make extensiveuse of the Einstein summation 
onvention or impli
it summation, whi
hmeans that a repeated index signals free summation over this index. Adot produ
t is a

ordingly written u � v = uivi. This 
onvention allowsformulas to be written in a more 
ompa
t manner, whi
h is parti
ularlyuseful in the se
tion on QED.1. The HamiltonianThe general form of the many-ele
tron Hamiltonian isĤ =Xi ĥ(i) + 12Xi 6=j ĝ(i; j) + V̂nn; V̂nn = 12 XA 6=B ZAZBe2jRA �RB j (1.1)where ĥ(i) are one-ele
tron operators, ĝ(i; j) represents the two-ele
tronintera
tion and V̂nn is the 
lassi
al repulsion of �xed nu
lei. This form isvalid in both the relativisti
 and the non-relativisti
 domain to the ex-tent that three-parti
le and higher intera
tions 
an be ignored. For thedevelopment of the various methods of quantum 
hemistry it is rarelyne
essary to be more spe
i�
 regarding the form of the many-ele
tronHamiltonian. This holds parti
ularly true if the operator is re
ast in se
-D R A F T 6th De
ember 2002, 5:04pm D R A F T



4ond quantized form, as will be dis
ussed in se
tion 1.3. This observationsignals that one should 
arefully distinguish Hamiltonians from meth-ods. At the 4-
omponent relativisti
 mole
ular level of theory one now�nds an almost 
omplete set of methods analogous to the arsenal devel-oped in the non-relativisti
 domain, su
h as Hartree-Fo
k (HF) (see e.g.[95, 61, 3, 64, 102, 23, 81, 73, 117℄ and referen
es therein), se
ond-orderMøller-Plesset perturbation theory (MP2) [25, 57℄, Multi-Con�gurationSelf Consistent Field (MCSCF) [47, 98℄, Restri
ted A
tive Spa
e Con-�guration Intera
tion (RASCI) [101℄, Coupled Cluster (CC) [106, 109℄and Density Fun
tional Theory (DFT) (see e.g. [99, 60, 118, 84℄). Wetherefore �nd it unne
essary to elaborate on the general prin
iples ofthese methods sin
e this information is available in a number of text-books [96, 66, 76, 43℄. We shall rather try to point out the spe
i�
adaptions and 
onsiderations needed to 
arry these methods over intothe 4-
omponent relativisti
 realm. We would also like to point out thatin view of the distin
tion between Hamiltonians and methods emphasizedabove, we advise against the use of method names su
h as Dira
-Hartree-Fo
k and the shorter version Dira
-Fo
k (whi
h is not very fair to DouglasHartree who �rst suggested to Bertha Swirles the extension of the SCFmethod to the Dira
 equation [33℄) and instead re
ommend �the Hartree-Fo
k method at the 4-
omponent relativisti
 level� or, more spe
i�
ally,DC-HF (the Hartree-Fo
k method based on the Dira
-Coulomb Hamil-tonian).1.1 The one-ele
tron part1.1.1 The Dira
 equation in an ele
tromagneti
 �eld.The starting point for 4-
omponent mole
ular 
al
ulations is Dira
's 
el-ebrated relativisti
 wave equation [18, 19℄. In 
ovariant form (that is theform in whi
h the equation �looks the same� in all Lorentz frames [77℄)it is given by(i
��� �m
) = 0; 8>><>>: �� = �r;� i
 ��t�
� = � (�; iI4) (1.2)in whi
h appears the 4-gradient ��. Note that we do not distinguishbetween 
ovariant and 
ontravariant 4-ve
tors, as this is not ne
essaryat the level of spe
ial relativity [77, p.6℄. The quantity 
� is given interms of the 4� 4 identity matrix I4 and the Dira
 matri
es� = � 02 �� 02 � and � = � I2 0202 �I2 � (1.3)D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 5and generates the C4 Cli�ord algebra [72℄, the algebra of gamma matri-
es. The Pauli spin matri
es�x = � 0 11 0 � ; �y = � 0 �ii 0 � ; �z = � 1 00 �1 � (1.4)are themselves generators of the C3 Cli�ord algebra, that is the algebraof 
omplex quaternions, a property that we shall make use of in se
tion1.1.2. Note also that the Dira
 � matri
es 
an be expressed in terms ofthe 4� 4 spin matri
es� = ��; � = � � 0202 � � ; � = � 02 I2I2 02 � (1.5)upon the introdu
tion of the auxiliary matrix �[68℄. In order to align therelativisti
 and non-relativisti
 energy s
ales one usually performs thesubstitution � ! �0 = � � I4 (1.6)but we will for the moment retain the original form of the Dira
 equation.The free-parti
le Dira
 equation in its more familiar form is obtainedby multipli
ation by �
 from the left�ĥD;0 � i ��t� = 0; ĥD;0 = �m
2 + 
 (� � p) (1.7)External �elds are introdu
ed through the prin
iple of minimal ele
-tromagneti
 intera
tion [37℄p� ! �� = p� � qA� (1.8)in whi
h appears 4-momentum p� = �i�� and the 4-potential A� =(A; i
�). We are interested in ele
trons and therefore 
hoose the 
hargeq = �e. The Dira
 equation then attains the formD̂ = �ĥD;A� � i ��t� = 0; ĥD;A� = �m
2 + 
 (� � �)� e� (1.9)It is important to note that the minimal substitution (1.8) follows fromthe term Lint = j�A� (1.10)in the Lagrangian des
ribing the intera
tion between the parti
le and theele
tromagneti
 �eld as the produ
t of the 4-
urrent j� = (j; i
�) and the4-potential. This term was �rst proposed by S
hwarzs
hild [90℄ to satisfyLorentz 
ovarian
e. It is employed in ad ho
 basis in the non-relativisti
D R A F T 6th De
ember 2002, 5:04pm D R A F T



6domain, even though it does not represent the proper non-relativisti
limit, whi
h is ele
trostati
s (see [78℄ and referen
es therein). Comparing(1.9) and (1.10) we 
an identify the 4-
urrent asj� = �e
 y�
� ; � = �e yI4 ; j = �e
 y� (1.11)Classi
ally the 
urrent density is given as 
harge multiplied by velo
ityand indeed one �nds from Heisenbergs equation of motion that the velo
-ity operator in the relativisti
 domain is 
�. This may appear somewhatsurprising, but may be interpreted as the ele
tron os
illating at the speedof light 
 about its mean position (�Zitterbewegung� [86, 68℄). Note thatjust as we may identify �e
� as the operator of 
urrent density, we mayidentify �eI4 as the operator of 
harge density. This identi�
ation willprove useful in se
tion 1.2.External ele
tri
 E and magneti
 B �elds appear in the Hamiltonianonly indire
tly through the s
alar � and ve
tor A potentialsE = �r�� �A�t ; B =r�A (1.12)This 
an be 
onsidered an advantage as the freedom of gauge [46℄ leavesroom to 
hoose the most 
onvenient form of the potentials. For instan
e,a uniform ele
tri
 �eld may be represented by A� = �0;� i
E � r� as wellas A� = (�Et; 0), but the former 
hoi
e is usually preferred sin
e it 
anbe handled by time-independent theory [7℄. Quantum 
hemistry, be itrelativisti
 or not, is usually expressed in Coulomb gauge, that is throughthe transversality 
ondition r �A = 0. From Maxwell's equations andthe de�nitions (1.12) the �eld equations in the presen
e of a density �and a 
urrent j 
an then be expressed as [41℄r2� = �4�� (1.13) r2A� �2 �2A�t2 !�r�2 ���t = �4��2j (1.14)where � is the �ne-stru
ture 
onstant. The equation for the s
alar po-tential is simply the Poisson equation with solution�(r; t) = Z �(r0; t)jr� r0jd� 0 (1.15)At �rst sight, this result appears to be in 
ontradi
tion with the theory ofspe
ial relativity sin
e the s
alar potential is given by the instantaneous
harge density. However, one must bear in mind that the s
alar potentialitself is not an observable. The e�e
ts of retardation, as well as magneti
D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 7intera
tions, enter through the ve
tor potential. The Coulomb gaugebears its name be
ause it singles out the instantaneous Coulomb intera
-tion whi
h is the proper non-relativisti
 limit of 
lassi
al ele
trodynami
sand whi
h is the dominant intera
tion of 
hemistry. All retardation andmagneti
 intera
tions enter as higher-order terms in a perturbation ex-pansion of the total intera
tion in terms of the �ne-stru
ture 
onstant� [14℄. For instan
e, to �rst order the intera
tion between two point
harges q1 and q2 is in Coulomb gauge given by [42, 15, 46℄Lint = q1q2r12 ��1 + 12
2 �(v1 � v2) + 1r212 (r12 � v1) (r12 � v2)�� (1.16)where v1 and v2 are their velo
ities. The �rst term 
an be identi�ed as a
harge-
harge intera
tion, whereas the se
ond term is a 
urrent-
urrentintera
tion.In mole
ular theory we shall employ ĥD;V , the Dira
 operator in themole
ular �eld. It 
orresponds to the introdu
tion of the 4-potential�(ri) =XA ZAejri �RAj ; A(ri) = 0: (1.17)where ZAe and RA is 
harge and position, respe
tively, of nu
leus A.The nu
lei are a

ordingly treated as sour
es of external s
alar potentialsand nu
lear spins are ignored. This "
lamped nu
leus" approximation isessentially the same as the one introdu
ed by Born and Oppenheimer [8℄in non-relativisti
 theory in whi
h the main assumption is that ele
tronsfollow the slower movements of nu
lei adiabati
ally. However, in therelativisti
 domain two 
onsequen
es of this approximation should bekept in mind. The �rst is that the restri
tion to a parti
ular frame inwhi
h the nu
lei are at rest invalidates Lorentz 
ovarian
e. In reality,though, nu
lei will always move relative to ea
h other so that no frame
an be found in whi
h all nu
lei are stationary. Se
ond, from (1.16) it is
lear that all 
harge-
harge intera
tions involving nu
lei will be negle
tedin the "
lamped nu
leus" approximation.The operators appearing in the Dira
 equation (1.9) are 4 � 4 ma-trix operators and the 
orresponding wave fun
tion is therefore a 4-
omponent ve
tor fun
tion = "  L S # ;  X = "  X� X� # ; X = L; S: (1.18)The four degrees of freedom 
ome from the fa
t that the Dira
 equationdes
ribes both ele
trons and positrons and expli
itly in
ludes spin. Fora given potential the positive-energy solutions 
orrespond to ele
troni
D R A F T 6th De
ember 2002, 5:04pm D R A F T



8solutions, and in the non-relativisti
 limit (to be dis
ussed in se
tion1.1.4) the lower two 
omponents of these solutions go to zero, whereasthe upper two 
omponents redu
e to a spin orbital in whi
h the spatialpart be
omes a solution of the 
orresponding non-relativisti
 S
hrödingerequation. The upper and lower two 
omponents are therefore generallyreferred to as the large and small 
omponents, respe
tively. For the samepotential the negative-energy bran
h of the spe
trum gives the positroni
solutions indire
tly, that is by 
harge 
onjugation (see se
tion 1.1.3) andin the non-relativisti
 limit it is now the large 
omponents that go to zero.For this reason it has been suggested [56℄ that one should rather speak ofupper and lower 
omponents than large and small ones. However, sin
efo
us in 
hemistry is on ele
troni
 solutions we will retain the 
ommonterminology. On the other hand one should not forget that the large
omponents of positive-energy solutions of the Dira
 equation are largeby a fa
tor 
�1 only in an averaged sense; there may be regions in spa
ewhere the small 
omponents dominate.It is important to realize that the four degrees of freedom in the Dira
spinor (1.18), as 
ompared to the s
alar eigenfun
tions of the S
hrödingerequation, are not to be asso
iated with spe
i�
 
omponents. It is a
ommon mistake to asso
iate the small 
omponents with the positroni
degrees of freedom. For instan
e, one 
annot simply delete the small
omponents of a given ele
troni
 solution. One 
an also see from (1.18)that spin (� or �) is asso
iated with two 
omponents and not one.1.1.2 Time reversal symmetry. In this and the followingse
tion we shall analyze two features of the Dira
 equation (1.9) that arerelated to the four degrees of freedom in the relativisti
 wave equation.The �rst feature is 
harge 
onjugation symmetry, whi
h re�e
ts thatthe Dira
 equation des
ribes both ele
trons and positrons, but generally,as we shall see, not of the same system. The se
ond feature is timereversal symmetry whi
h to some extent 
an re
over the la
k of spinsymmetry in the relativisti
 domain. It is interesting to note that bothfeatures involve a pairing of eigenfun
tions of the Dira
 equation. As weshall see, in the 
ase of time reversal symmetry this pairing is broken bythe introdu
tion of an external ve
tor potential. In the 
ase of 
harge
onjugation symmetry the pairing is broken by the introdu
tion of any4-potential.Both features are represented by antiunitary operators bK de�ned bybK h 1 j  2i = D bK 1 j bK 2E = h 2 j  1i = h 1 j  2i� (1.19)An example of an antiunitary operator is provided by the 
omplex 
on-jugation operator bK0. In the non-relativisti
 domain this operator 
om-D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 9mutes with the Hamiltonian in the absen
e of external magneti
 �elds.It's e�e
t on the non-relativisti
 S
hrödinger equation in the mole
ular�eld (1.17)is therebybK0 �ĥNR � i ��t� bK�10 bK0 NR (r; t) = �ĥNR + i ��t� NR (r; t) (1.20)= �ĥNR � i ��t� NR (r;�t) = 0where  NR = bK0 NR. Through the substitution t ! �t one re
oversthe form of the original equation. The 
omplex 
onjugation operatoris therefore identi�ed as the time-reversal operator in non-relativisti
systems [115℄. Consider now the e�e
t of bK0 on the Dira
 equation (1.9).Pro
eeding as in (1.20) we obtain��m
2 + 
��� � (�p+ eA)� e�+ i ��t� bK0 (r; t) = 0 (1.21)In this 
ase the substitution t! �t is not enough to re
over the originalequation and so the 
omplex 
onjugation operator 
an not be identi-�ed as the time-reversal operator in the relativisti
 domain. To �nd theproper form we may note that the produ
t of a unitary and an antiuni-tary operator is an antiunitary operator. We may therefore take as ourstarting point the generi
 form bK = U bK0 (1.22)where U is a 4 � 4 unitary matrix. Next, we note that the problemwith (1.21) is that �y 
hanges sign under 
omplex 
onjugation, whereasthe other 4 � 4 spin matri
es (1.5) do not. If one wants an antiunitarytransformation under whi
h the individual terms of the Dira
 equationare either symmetri
 or antisymmetri
 the unitary operator U (1.22)must therefore 
ontain �y. We then �nally arrive at the 
hoi
e UT =�i�y whi
h gives the time reversal operator bK for relativisti
 systems.Its appli
ation gives266664n�m
2 + 
 (� � p)� e�o| {z }(+) ��e
 (� �A)� i ��t�| {z }(�) 377775 (r; t) = 0 (1.23)where  = bK and one 
an see that in the absen
e of external ve
torpotentials, one re
overs the 
orre
t form of the Dira
 equation throughthe substitution t! �t.D R A F T 6th De
ember 2002, 5:04pm D R A F T



10Equation (1.23) shows that under time reversal the Dira
 equationsplits into a symmetri
 (+) and an antisymmetri
 (�) part. Furtherinsight is obtained by reordering the Dira
 equation"  L S # = 26664  L� L� S� S� 37775 ! 26664  L� S� L� S� 37775 = �  � � � (1.24)The time-symmetri
 part of the Dira
 equation 
an then be written asD+ = 2664 m
2 � e� �i
dz 0 �i
d��i
dz �m
2 � e� �i
d� 00 �i
d+ m
2 � e� i
dz�i
d+ 0 �i
dz �m
2 � e� 3775 (1.25)where we have introdu
ed the notationdz = ��z ; d� = ��x � i ��y : (1.26)In the same manner we �nd that the time-antisymmetri
 part 
an bewritten as D� = 26664 �i ��t e
Az 0 e
A�e
Az �i ��t e
A� 00 e
A+ �i ��t �e
Aze
A+ 0 �e
Az �i ��t 37775 (1.27)where A� = Ax � iAy. The above two forms 
an be summarized by thematrix stru
ture Dt = � A B�tB� tA� � ; t = �1: (1.28)It is then a simple exer
ise to show that if� A B�tB� tA� � �  � � � = � �  � � � = � (1.29)then � A B�tB� tA� � � � �� �� � = t� � � �� �� � = t� : (1.30)This shows that the time symmetri
 part of the Dira
 equation has dou-bly degenerate eigensolutions. In the reordered equation (1.24) the timereversal operator has the formK = � 02 �I2I2 02 �K0 (1.31)D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 11and one therefore easily sees that the eigenve
tors  and  are related bytime reversal symmetry. They will therefore be referred to as Kramerspartners. A orthonormal Kramers paired basis 
an be 
onstru
ted froma spinor set f ig and the 
orresponding Kramers partners n io. Withthe introdu
tion of an external ve
tor potential the double degenera
yis lifted. One may use degenerate perturbation theory to obtain thesplitting. To zeroth order one obtains the eigenvalues via diagonalizationof the 2�2 Hamiltonian matrix in the spa
e of the two Kramers partnersas E� = �� e
 ���D j(� �A)j E��� :The double degenera
y of the time symmetri
 Dira
 equation suggeststhat a blo
k diagonalization of the matrix operator is possible. This isindeed true, but at the expense of going from 
omplex to quaternionalgebra. First, let us re
all the de�nition of a (real) quaternion numberq = 3X�=0 v�e� = v0 +�iv1 +�jv2 + �kv3; v� 2 R (1.32)The quaternion units �i, �j and �k are equivalent in the sense that they maybe inter
hanged by 
y
li
 permutation �i ! �j ! �k !�i. It was observedalready by Jordan [69℄ that the algebra of imaginary i times the Paulispin matri
es is that of the quaternion units, that is�i$ i�z; �j$ i�y; �k$ i�x (1.33)The link between time reversal symmetry 
an then be established bynoting that the time-symmetri
 form of (1.28) 
an be written in termsof Pauli spin matri
esD+ = [I2 
AR℄ + [(i�z)
AI ℄ + [(i�y)
BR℄ + [(i�x)
BI ℄ (1.34)
learly showing the quaternion stru
ture of the matrix operator. Theblo
k diagonalization is a
hieved through the unitary quaternion trans-formationU yD+U = " A+B�j 00 ��k�A+B�j��k # : U = 1p2 " I2 �jI2�jI2 I2 # (1.35)For the upper blo
k of the quaternion Dira
 operator we �nd the stru
-tureQD+ = � m
2 � e� 00 �m
2 � e� ���i
 � 0 dzdz 0 ���j
 � 0 dydy 0 ���k
 � 0 dxdx 0 � :D R A F T 6th De
ember 2002, 5:04pm D R A F T



12One observes that the rest mass term and the s
alar potential enter thereal part of the operator whereas the kineti
 energy is represented bythe quaternion imaginary part. The quaternion Dira
 operator has nopreferential axis, in 
ontrast to the 
onventional form (1.25) where thePauli spin matri
es in their standard form 
orrespond to spin quantiza-tion along the z-axis.Time reversal symmetry provides only a partial 
ompensation for theloss of spin symmetry in the relativisti
 domain. The 
oupling of thespin and spatial degrees of freedom by the spin-orbit intera
tion 
hangesthe stru
ture of the equations relative to those of non-relativisti
 theory.The extra pri
e to be paid due to this 
oupling 
an be dire
tly relatedto the algebra needed to solve the Dira
 equation by matrix diagonaliza-tion using a �nite real basis expansion. In the general 
ase the matrixrepresentation of the symmetri
 Dira
 operator 
an be blo
k diagonal-ized through the quaternion unitary transformation (1.35) and one thenneeds to diagonalize the quaternion subblo
k A+B�j. In the absen
e ofspin-orbit 
oupling, as in the non-relativisti
 limit, this subblo
k be
omesreal. However, in the relativisti
 domain symmetry redu
tion in termsof going from quaternion to 
omplex or real algebra 
an be a
hieved by
ombining time reversal and spatial symmetry [82, 83℄. One further thingto note is that Kramers partners do not map dire
tly on to spin � and �orbitals. For instan
e the Kramers partner of a p1� orbital is p�1� andnot p1�.1.1.3 Charge 
onjugation symmetry. The 
hoi
e UC =i��y in (1.22) gives the 
harge 
onjugation operator bC (usually this termis reserved for the unitary part UC only). Its appli
ation gives266664���m
2 + 
 (� � p)� i ��t�| {z }(�) + e f
 (� �A)� �g| {z }(+) 377775 bC (r; t) = 0 (1.36)It 
an be seen that the term 
ontaining the 4-potential is symmetri
(+) under 
harge 
onjugation, whereas the free-parti
le Dira
 equation(1.7) is antisymmetri
 (�). It follows that if  is a solution of the Dira
equation for an ele
tron (thus with 
harge �e) in the 4-potential A�,then bC is a solution of the Dira
 equation for a parti
le with 
harge +ein the same potential. In the stationary 
ase the eigenvalues of  andbC have the same magnitude, but opposite sign. After an initial falseidenti�
ation with the proton [20℄, Dira
 boldly predi
ted the existen
eof the positron [17℄, 
on�rmed experimentally by Anderson in 1932 [2℄.D R A F T 6th De
ember 2002, 5:04pm D R A F T
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troni
 stru
ture methods for mole
ules 13Note, however, that for a given 4-potential the Dira
 operator des
ribingan ele
tron is not identi
al to the one des
ribing a positron sin
e theparti
les 
ouple to the 4-potential through their 
harge (1.8). Only inthe absen
e of external �elds do the two equations be
ome identi
al.To see 
harge 
onjugation �at work� let us 
onsider a stationary ele
-troni
 solution  of the free-parti
le Dira
 equation (1.7) with eigen-value � (positive 
ontinuum) and it's 
harge 
onjugated partner bC witheigenvalue �� (negative 
ontinuum). We now introdu
e an external 4-potential through minimal 
oupling (1.8) with the ele
tron 
harge �e ,thus adding the term V̂ = �e
�
�A� to the free-parti
le HamiltonianĥD;0. The eigenvalues of the 2 � 2 Hamiltonian matrix in the spa
e ofthe two 
harge 
onjugated partners is thenE� = ��p�2 +
2; 8>><>>: � = D ���V̂ ��� E
 = ���D ���V̂ ��� bC E��� : (1.37)The positive sign gives the ele
troni
 solution whi
h 
an be expanded asEe = E+ = �+�+ 12�1 +O(�2) > �+�; � = �
� �2 : (1.38)The 
orresponding positroni
 solution 
an be obtained by introdu
ingthe 4-potential through minimal 
oupling with the positroni
 
harge +e.Alternatively, it 
an be obtained through 
harge 
onjugation of the so-lution 
orresponding to E� of (1.37). The 
orresponding energy isEp = �E� = ���+ 12� +O(�2) (1.39)One 
an easily see that if the ele
tron is attra
ted by the 4-potential, thatis � is negative, then the positron is repulsed, due to it's opposite 
harge.Unless the 
oupling term 
 dominates � the ele
troni
 solution des
endsbelow +m
2 and the negative energy solution des
ends further down thenegative 
ontinuum. However, this does not imply, as is often stated,that for systems with bound ele
trons all negative energy orbitals 
anbe identi�ed as having energies below �m
2. Potentials are not alwayspurely attra
tive or repulsive, e.g. in an anion one may observe negative-energy orbitals entering the gap as su
h solutions far from the nu
leussee a negative and thus attra
tive potential.1.1.4 Towards the non-relativisti
 limit. 4-
omponent op-erators and wave fun
tions are usually taken to imply relativisti
 theory.D R A F T 6th De
ember 2002, 5:04pm D R A F T



14In this se
tion we shall, however, show that also non-relativisti
 
al
u-lations may be 
arried out at the 4-
omponent level. In fa
t, as hasbeen dis
ussed extensively by Viss
her and Saue [104℄, a multitude ofHamiltonians, with and without spin-orbit intera
tion in
luded, may beformulated at the 4-
omponent level of theory. These Hamiltonians areobtained from non-unitary transformations W of the Dira
 equation [31℄ =W 0 ) W y �ĥD;A� � i ��t�W 0 = 0; (1.40)possibly followed by the deletion of 
ertain parts of the transformedoperators. As starting point for these Hamiltonians we 
hoose the time-independent Dira
 equation in the mole
ular �eld (1.17)" V̂ 
 (� � p)
 (� � p) V̂ � 2m
2 # "  L S # = � I2 0202 I2 � "  L S #E; V̂ = �e�(1.41)where the metri
 is expli
itly in
luded sin
e non-unitary transformationswill be performed. We have also performed the substitution (1.6) to alignrelativisti
 and non-relativisti
 energy s
ales.Consider �rst the non-relativisti
 limit, generally obtained as 
!1.The Dira
 operator ĥD;V has terms linear and even quadrati
 in the speedof light and one 
an therefore not apply this limit dire
tly. Instead, one�rst performs the non-unitary transformation"  L S # = � I2 0202 
�1I2 � "  Le S # (1.42)whi
h gives the transformed equation264 V̂ (� � p)(� � p) �2m 1� V̂2m
2! 375 "  Le S # = � I2 0202 
�2I2 � "  Le S #E(1.43)The speed of light now appears only in inverse powers and the propernon-relativisti
 limit may be obtained, but with the following restri
tions[55℄:1 jEj � 
2, that is we restri
t attention to the positive-energy solu-tions. This also means that a separate non-relativisti
 limit existsfor the negative-energy solutions.2 The potential � in V̂ must be non-singular. This does not holdfor the potential of point 
harges, but does hold for the extendednu
lei 
ommonly used in 4-
omponent relativisti
 
al
ulations.D R A F T 6th De
ember 2002, 5:04pm D R A F T
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ture methods for mole
ules 15With the above restri
tions we arrive in the non-relativisti
 limit at theLevy-Leblond equation [58℄" V̂ (� � p)(� � p) �2m # "  Le S # = � I2 0202 02 � "  Le S #E (1.44)whi
h forms the starting point of the dire
t perturbation theory of Kutzel-nigg [55℄. By elimination of the modi�ed small 
omponent e Swe obtainthe more familiar non-relativisti
 S
hrödinger equation in the mole
ular�eld using the identity (� � p) (� � p) = p2. However, in some 
ases the 4-
omponent non-relativisti
 form (1.44) may be more advantageous thanthe 
onventional 1-
omponent form, in parti
ular upon the introdu
tionof external magneti
 �elds [44℄.Another route to the non-relativisti
 limit, with an interesting stop onthe way, is provided by the non-unitary transformation"  L S # = 24 I2 0202 12m
 (� � p) 35"  Le S # (1.45)whi
h leads to what has been 
alled the modi�ed Dira
 equation [24℄24 V̂ bTbT 14m2
2 (� � p) V̂ (� � p)� bT 35"  Le S # = 24 I2 0202 12m
2 bT 35"  Le S #E(1.46)where T̂ is the kineti
 energy operator. The speed of light again appearsonly in inverse powers whi
h fa
ilitates taking the non-relativisti
 limit.Another possibility is to use the identity(� � p) V̂ (� � p) = p bV � p+ i� � �p bV � p� (1.47)By dropping the spin-dependent term on the right hand side one ob-tains the spin-free form of the modi�ed Dira
 equation. It allows s
alarrelativisti
 
al
ulations within a 4-
omponent framework, although theuniqueness of the distin
tion between s
alar and spin-orbit relativisti
e�e
ts has been questioned [103℄.1.2 The two-ele
tron partThe extension from one-ele
tron systems to fully intera
ting many-ele
tron systems is more 
ompli
ated in the relativisti
 domain than inthe non-relativisti
 one. From our dis
ussion of Coulomb gauge in se
tion1.1.1 this 
an be understood sin
e in the relativisti
 framework we haveD R A F T 6th De
ember 2002, 5:04pm D R A F T



16to add the e�e
ts of retardation and magneti
 intera
tion to the non-relativisti
 limit represented by the instantaneous Coulomb intera
tion.The ne
essary 
orre
tion terms 
an be obtained rigorously by invokingthe full ma
hinery of QED where the intera
tion is des
ribed in termsof the ex
hange of virtual photons. We shall however restri
t ourselvesto the semi
lassi
al limit, that is 
ontinuous ele
tromagneti
 �elds. To�rst order the ele
tron-ele
tron intera
tion is then given by the Coulomb-Breit intera
tion ĝ(1; 2) = ĝCoulomb + ĝBreit (1.48)The zeroth order term is the Coulomb termĝCoulomb = e2 I4 � I4r12 : (1.49)We have inserted 4 � 4 times identity matri
es I4 to remind the readerthat, although at �rst sight the Coulomb term appears to be identi
alto the non-relativisti
 ele
tron-ele
tron intera
tion, it's physi
al 
ontentis di�erent. Upon redu
tion to non-relativisti
 form [13, 4, 68, 45, 91℄through a Foldy-Wouthuysen transformation one �nds that the relativis-ti
 operator 
ontains for instan
e spin-own orbit intera
tion in additionto the instantaneous Coulomb intera
tion.The �rst order term is the Breit intera
tion [9℄ĝBreit = � e22
2r12 �(
�1 � 
�2) + 1r212 (
�1 � r12) (
�2 � r12)� : (1.50)We have written the Breit term in a slightly unusual form using ex-pli
itly the relativisti
 velo
ity operator 
�. In this manner one easilyre
ognizes (1.48) as the quantum me
hani
al analogue of the 
lassi
al ex-pression (1.16). It is important to note that although the Breit term 
anbe derived as the low-frequen
y limit of the full ele
tron-ele
tron inter-a
tion as des
ribed by QED, it 
an equally well [68℄ be derived from thequantization of (1.16), whi
h is essentially how it was derived by Breit.In this 
hapter we will not go beyond the semi
lassi
al limit of QED, thatis we will not 
onsider quantization of the ele
tromagneti
 �eld sin
e thiswould open up a whole new level of 
omplexity. The Breit term 
an berewritten in the form ĝBreit = ĝGaunt + ĝgauge (1.51)The �rst term is the Gaunt termĝGaunt = �e2 
�1 � 
�2
2r12 (1.52)D R A F T 6th De
ember 2002, 5:04pm D R A F T
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troni
 stru
ture methods for mole
ules 17whereas the se
ond termĝgauge = �e2 (
�1 �r1) (
�2 �r2) r122
2 ; (1.53)where r1and r2 a
t only on r12 and not on the wave fun
tion, dis-appears in Lorentz (Feynman) gauge. By 
omparison with (1.11) onesees that the Coulomb and Gaunt terms represent 
harge-
harge and
urrent-
urrent intera
tions, respe
tively. One 
an furthermore show byredu
tion to the non-relativisti
 form that the Gaunt term 
arries allspin-other orbit intera
tion [79℄.The experien
e a

umulated so far indi
ates that the Breit term hasrather minor e�e
ts on the spe
tros
opi
 
onstants of mole
ular systems[112, 101, 74℄ so that the Coulomb term is usually su�
ient. However,it is needed to get spin-orbit splittings 
orre
tly, in parti
ular for lightsystems. From a pra
ti
al point of view the Gaunt term is then preferredsin
e it involves the same two-ele
tron integrals as the Coulomb term (atleast in a s
alar basis) and provides the full spin-other orbit intera
tion.1.3 Se
ond quantizationCreation and annihilation operators were �rst introdu
ed by Dira
 todes
ribe absorption and emission of photons [16℄, and the formalism waslater extended to fermions by Jordan and Wigner [49, 51℄. Althoughoriginally 
on
eived to des
ribe pro
esses in whi
h the parti
le numberis not 
onserved, the se
ond quantization formalism [34, 50℄ is widelyused in mole
ular ele
troni
-stru
ture theory [43℄ that 
onsiders systemswith a �xed parti
le number. This is so be
ause it allows the derivationand expression of the methodology in an elegant manner, in parti
ularwhen 
ombined with exponential parametrization. In this se
tion we will
onsider the se
ond quantized form of the many-ele
tron Hamiltonian atthe 4-
omponent relativisti
 level.The se
ond-quantized Hamiltonian is obtained from the �rst-quantizedform (1.1) upon the introdu
tion of �eld operators	(1) = 'p (r1) ap = e'p (r1) eap: (1.54)In the above expression the �eld operator has been expanded in twodi�erent orbital sets f'pg and f e'pg related by a unitary transforma-tion whi
h then de�nes two di�erent sets of annihilation operators, fapgand feapg, related by the inverse transformation. In QED parlan
e theorbital set obtained as the solution of the free-parti
le Dira
 equation
orresponds to the �free� pi
ture, whereas the one obtained with themole
ular �eld (1.17) leads to the Furry [36℄ or bound-state intera
tionD R A F T 6th De
ember 2002, 5:04pm D R A F T



18pi
ture [93, 94℄. The general form of the se
ond-quantized HamiltonianisĤ = Z 	y(1)ĥ(1)	(1)d�1 + 12 Z Z 	y(1)	y(2)ĝ(1; 2)	(2)	(1)d�1d�2(1.55)where ĝ(1; 2) is the 
hosen form of the ele
tron-ele
tron intera
tion. Wewill for the moment limit attention to the Coulomb (1.49) and Gauntterm (1.52). At the 4-
omponent level the dire
t produ
t 	(2)	(1)leads to an expansion in terms of ve
tor fun
tions with sixteen 
ompo-nents. From this one sees that the two-ele
tron operator ĝ(1; 2) shouldbe 
onsidered a 16 � 16 matrix operator [68℄, so that the dot produ
tsappearing in the Coulomb and Gaunt terms should be repla
ed by dire
tprodu
ts. Expanding the �eld operators in a spe
i�
 orbital basis these
ond-quantized Dira
-Coulomb-(Gaunt) Hamiltonian is written asĤ = hpqaypaq + 14Lpq;rsaypayrasaq (1.56)in whi
h appear one-ele
tron integrals over the Dira
 operator in themole
ular �eld hpq = Z 'y(r1)ĥD;V (1)'(r1)d�1 (1.57)and where we have introdu
ed antisymmetrized two-ele
tron integralsLpq;rs = (pq j rs)� (ps j rq) = Lrs;pq = �Lps;rq: (1.58)We write the two-ele
tron integrals as(pq j rs) = Z Z 
pq(r1)
rs(r2)r12 d�1d�2 (1.59)where we introdu
e generalized overlap distributions (in
luding 
harge)
pq(r) = 'yp(r)S�'q(r); S� = ie�
� = �e (�i�; I4) : (1.60)The time-like part 
orresponds to standard overlap distributions and
ontributes to the Coulomb term, whereas the spa
e part 
orresponds to
urrent distributions and 
ontributes to the Gaunt term.2. Variational pro
eduresThere has been 
onsiderable dis
ussion as to the variational stabilityof the Dira
-Coulomb-(Gaunt) Hamiltonian. The dis
ussion originatedfrom an argument put forward by Brown and Ravenhall [10℄. TheyD R A F T 6th De
ember 2002, 5:04pm D R A F T
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onsidered the intera
tion of two ele
trons des
ribed by this Hamilto-nian. Consider for instan
e the helium atom. In a perturbational ap-proa
h one 
an start with the non-intera
ting system and thus a Slater-determinant 
onsisting of the 1s orbitals obtained as solutions of thehydrogeni
 atom with Z = 2. This Slater determinant is, however,degenerate with an in prin
iple in�nite number of Slater determinants
ontaining one orbital from the positive 
ontinuum and one from thenegative 
ontinuum. When the ele
tron-ele
tron intera
tion is turnedon, these determinants will mix in and lead to what has been 
alled a
ontinuum dissolution, meaning that no bound state is obtained. Brownand Ravenhall suggested the use of proje
tion operators to avoid themixing in of these 
ontinuum determinants, a proposal that has beenfurther explored by Su
her and others (see [54℄ for a review). In thisse
tion we will 
arefully 
onsider variational approa
hes based on theDira
-Coulomb-(Gaunt) Hamiltonian using the se
ond quantization for-malism introdu
ed in the previous se
tion. This will allow us to employan exponential parametrization of the wave fun
tion in terms of orbitalrotations and furthermore make the 
onne
tion to QED where a trueminimization prin
iple is assumed to exist.2.1 The standard approa
hIn the se
ond quantization formalism [43℄ Slater determinants are re-pla
ed by o

upation-number ve
tors in Fo
k spa
e as the fundamentalentity. The antisymmetry of the wave fun
tion under parti
le ex
hangefollows from the anti
ommutation properties of the 
reation- and anni-hilation operators[ap; aq℄+ = hayp; ayqi+ = 0; hayp; aqi+ = Æpq (1.61)Starting with a given set of orthonormal orbitals f'pg the Fo
k spa
eequivalent of a Slater determinant is generated by a
ting with the 
orre-sponding 
reation operators on the va
uum state j0ij�i = ay1ay2 : : : ayN j0i (1.62)where the va
uum state itself is de�ned by the relationai j0i = 0; 8ai: (1.63)The o

upation-number ve
tor j�i is an eigenfun
tion of the numberoperator N̂ = aypap (1.64)D R A F T 6th De
ember 2002, 5:04pm D R A F T



20with eigenvalue N 
orresponding to the number of o

upied orbitals. TheFo
k spa
e formalism goes beyond expansions in Slater determinants byallowing the 
oupling of ve
tors with di�erent o

upation numbers.The variational ansatz at the Hartree-Fo
k level of theory is���e�E = exp [�b�℄ j�i (1.65)where exp [�b�℄ is an orbital rotation operator whi
h is the negative ex-ponential of the single repla
ement operatorb� = �pqaypaq; �pq = ���qp: (1.66)It is readily shown that b� 
ommutes with the number operator (1.64)whi
h implies that the orbital rotation operator 
onserves parti
le num-ber. The antihermiti
ity of the matrix 
ontaining the single repla
ementamplitudes f�pqg guarantees the unitarity of the orbital rotation opera-tor. Using (1.62) we 
an therefore rewrite the HF wavefun
tion as���e�E = eay1eay2 : : : eayN j0i (1.67)in whi
h appear transformed 
reation operatorseayp = exp [�b�℄ ayp exp [b�℄ = ayqUqp; U = exp [��℄ : (1.68)To derive (1.67) we have used the resultexp [�b�℄ j0i = j0i (1.69)whi
h follows from the fa
t that annihilation operators appear on theright in the �rst and higher order terms of the exponential expansion ofthe orbital rotation operator.The orbital set 
orresponding to the transformed 
reation operators(1.68) is given by e'p = 'qU�qp (1.70)and demonstrates that the orbital rotation operator provides a means ofparameterizing the wave fun
tion in su
h a manner that orthonormalityof the orbitals is assured without the need to introdu
e Lagrange mul-tipliers. The orbital rotation operator furthermore allows the use of un-
onstrained optimization te
hniques by 
hoosing a linearly independentset of elements of the � matrix as variational parameters. Due to theantihermiti
ity of the � matrix this is straightforwardly a

omplished by
hoosing e.g. the upper triangle and the (imaginary) diagonal elements.The b� operator 
an then be written asb� =Xp<q h�pqaypaq � ��pqayqapi : (1.71)D R A F T 6th De
ember 2002, 5:04pm D R A F T
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ules 21Table 1.1. Classes of variational parameters in the standard 4-
omponent approa
h
ompared to QED.Generi
 Standard QEDA �ia �++ia ; �+�ia �++ia ; ��+iaB �ij �++ij �++ij ; �+�ij ; ���ijC �ab �++ab ; �+�ab ; ���ab �++abWe have dis
arded the diagonal elements sin
e they only introdu
e a 
om-plex phase in the wave fun
tion and do not 
hange the energy. Otherredundant parameters should also be eliminated from the set of varia-tional parameters. Within the 
hosen parametrization this is an easytask, as will be seen shortly. For this purpose it is 
onvenient to intro-du
e 
lasses of orbitals and thereby the elements of the � matrix. Weshall use indi
es i, j, k and l to identify o

upied orbitals. We further-more employ indi
es a, b, 
 and d for virtual orbitals and p, q, r and s asgeneral indi
es. When needed we shall use supers
ripts + and � to dis-tinguish positive- and negative-energy orbitals. This of 
ourse assumesthat the a
tual potential allows this distin
tion. We 
an then identifythree 
lasses of variational parameters as given in table 1.1 (the 
olumnmarked QED should be ignored for the moment). It should be notedthat the dire
t use of the elements of the U matrix (1.68) as variationalparameters is less advantageous sin
e they are related in a non-linearmanner by the unitary 
ondition U yU = I. It is furthermore di�
ult toidentify redundant parameters in this alternative parametrization.We now gather the 
hosen, generally 
omplex variational parametersin the ve
tor K = � ��� � (1.72)and 
onsider a Taylor expansion of the energy in terms of these. LetK = 0 
orrespond to the 
urrent expansion point, that is the referen
edeterminant (1.62) and the 
orresponding orbital set. We then haveE (K) = E[0℄ +KyE[1℄ + 12KyE[2℄K+O(�3): (1.73)The various terms of the Taylor expansion 
an be easily found by 
om-paring with a Baker-Campbell-Hausdor� (BCH) expansion of the energyexpe
tation valueE = De� ���Ĥ��� e�E = D� ���exp [b�℄ Ĥ exp [�b�℄����E (1.74)= D� ���Ĥ����E+ D� ���hb�; Ĥi����E+ 12 D� ���hb�; hb�; Ĥii����E+O(�3)D R A F T 6th De
ember 2002, 5:04pm D R A F T



22The zeroth order term is the expe
tation value of the energy withrespe
t to the 
urrent Slater determinantE[0℄ = hii + 12�ii ['j ℄ ; �pq ['i℄ = Lpqii (1.75)where we have introdu
ed the mean-�eld potential � ['i℄ involving sum-mation over the orbital set f'ig. It will turn out to be useful to also
onsider the expli
it form of the energy expression in the algebrai
 ap-proximation. Consider the expansion of the 
urrent orbital set in someset of suitable basis fun
tions (to be dis
ussed in se
tion 3.1) 'p = ��
�pwhere Greek indi
es are used for the AO-basis. The energy (1.75) 
anthen be re-expressed asE = D��h�� + 12D��L����D��; D�� = 
�i
��i (1.76)in whi
h appears the AO-density matrix D.The �rst-order term 
an be expressed asKyE[1℄ = Xp<qn���pq D� ���hayqap; Ĥi����E+ �pq D� ���haypaq; Ĥi����Eo= �Fip��pi � ��ipFpi�+ 
:
: (1.77)in whi
h appears the Fo
k matrixFpq = hpq +�pq ['i℄ = hpq + Lpq��D��: (1.78)From (1.77) one 
an easily see that derivatives of the energy at the 
ur-rent expansion point (K = 0) with respe
t to parameter 
lasses B and C(see table 1.1) are identi
ally zero. Sin
e this will hold for any expansionpoint the two parameter 
lasses 
an be eliminated as redundant. Theonly non-redundant parameters are rotations between o

upied (+) andvirtual (�) orbitals, that is parameter 
lass A, and the b� 
an a

ordinglybe written in terms of non-redundant parameters asb� = �iaayaai � ��aiayiaa (1.79)Note that in order to ensure unitarity of the orbital rotation operatorthe b� operator 
ontains de-ex
itation operators nayiaao in addition toex
itation operators nayaaio. This 
an be 
ontrasted with the exponen-tial operator in a 
oupled-
luster expansion whi
h is entirely based onD R A F T 6th De
ember 2002, 5:04pm D R A F T
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itation operators. In terms of non-redundant parameters the gradientve
tor 
an be written asE[1℄ = � gg� � ; gai = �E���ai �����K=0 = D� ���h�ayiaa; Ĥi����E = �Fai (1.80)The 
urrent expansion point 
orresponds to a stationary value of theenergy when all the elements of the gradient ve
tor are zero. From theabove expression we 
an see that this 
orresponds to the o

upied-virtualblo
ks of the Fo
k matrix being zero. This 
an be a

omplished by diag-onalization of the Fo
k matrix (until 
onvergen
e of the SCF pro
edure)and then leads to the 
anoni
al Hartree-Fo
k orbitals with asso
iated or-bital energies f�pg. Alternatively one 
an pro
eed by se
ond-order meth-ods su
h as Newton-Raphson. These are generally more expensive sin
ethey involve 
al
ulation of the Hessian matrix E[2℄; but are also morerobust. The se
ond-order methods lead to a set of orthonormal orbitalsnot ne
essarily equal to, but related through a unitary transformation,to the 
anoni
al HF orbitals.To 
hara
terize the stationary points we must 
onsider the eigenvaluesof the Hessian matrix. It has been de�ned in su
h a manner that it isHermitian and diagonal dominant. It has the stru
tureE[2℄ = � A BB� A� � ; Aai;bj = ÆijFab � ÆabF �ij �LabijBai;bj = �Laj;bi (1.81)Consider �rst a non-intera
ting system, i.e. ĝ(i; j) = 0. Then all two-ele
tron terms disappear. In 
anoni
al orbitals the Hessian furthermorebe
omes diagonal with diagonal elementsAai;ai = �a � �i8>><>>: > 0 for n�++ia o< 0 for n�+�ia o (no summation !) (1.82)One sees that the stationary point is a minimum with respe
t to rota-tions n�++ia o between o

upied (+) and positive-energy virtual orbitals,but a maximum with respe
t to rotations n�+�ia o between o

upied and(virtual) negative-energy orbitals.For an intera
ting system the diagonal elements of the Hessian 
or-respond to energy di�eren
es between singly ex
ited determinants �i!aand the referen
e determinantAai;ai = E (�i!a)�E (�) = �a � �i �Laa;ii (no summation !) (1.83)D R A F T 6th De
ember 2002, 5:04pm D R A F T



24Sin
e the ex
ited determinant is 
al
ulated in the orbitals optimized forthe referen
e determinant the diagonal elements of the Hessian 
onstitutea rather poor approximation to ex
itation energies that goes under thename of the single-transition approximation [21℄. A better approxima-tion of the energies needed to rea
h the manifold of singly ex
ited stateswith respe
t to the ground state is obtained at the RPA (random-phaseapproximation) level (
oupled Hartree-Fo
k) where the single ex
itationenergies from a 
losed-shell ground state are the eigenvalues of the Hes-sian matrix. In view of this, it is 
learly reasonable to 
laim that theminimax prin
iple (1.82) applies to intera
ting systems as well.The minimax prin
iple for non-intera
ting systems is not identi
alto the minimax prin
iple for the Dira
 equation proposed by Talman[97℄ whi
h states that the expe
tation value of the Dira
 operator isa minimum with respe
t to variations in the large 
omponents and amaximum with respe
t to variations in the small 
omponentsE = min L 24max S D ���ĥD��� Eh j i 35 (1.84)This minimax prin
iple has been justly 
riti
ized by Kutzelnigg [56℄. Theproblem is that the 
oupling between the large and the small 
omponentsof the Dira
 spinor means that some variations of the large 
omponentmay lead to energies below the exa
t energy. We shall dis
uss this furtherin se
tion 3.1, but one should note that the minimax prin
iple (1.82) issus
eptible to the same problem unless the 
hosen basis set expansionallows the proper 
oupling of large and small 
omponents. There is a sig-ni�
ant di�eren
e, though. The Talman minimax prin
iple operationallyimplies the separate variation of the large and small 
omponents. How-ever, due to their 
oupling variations must be done in a 
on
erted mannerand this is a
hieved by the minimax de�ned in (1.82).2.2 Towards QEDThe standard approa
h to 4-
omponent relativisti
 mole
ular 
al
ula-tions is not quantum ele
trodynami
s and does not even 
onstitute itssemi
lassi
al limit, that is the level of theory in whi
h the ele
tromag-neti
 �eld is not quantized. In this se
tion we shall explore a variationaldes
ription of the proper semi
lassi
al limit of QED. This se
tion is verymu
h inspired by two rarely 
ited papers by Chaix and Ira
ane [12℄ onthe transition from quantum ele
trodynami
s to mean-�eld theory, butwhereas these authors employ the elements of the U matrix (1.68) asvariational parameters, leading to what they 
all the Bogoliubov-Dira
-D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 25Fo
k formalism, we shall employ the more advantageous parametrizationin terms of elements of the � matrix.In the previous se
tion we have seen that the standard approa
h to4-
omponent relativisti
 mole
ular 
al
ulations leads to a minimax prin-
iple at the Hartree-Fo
k level. This means that the bound ele
troni
states at this level of theory are ex
ited states and may therefore de-
ay through an in�nite su

ession of transition through various states ofthe negative-energy 
ontinuum, thereby 
ausing a radiative 
atastrophe[40℄. To avoid this di�
ulty Dira
 postulated that the negative-energyorbitals are all o

upied so that transitions into the negative-energy 
on-tinuum, �the Dira
 sea�, is forbidden by the Pauli ex
lusion prin
iple.On the other hand, the ex
itation of an ele
tron from the Dira
 sea to apositive-energy orbital, requiring an energy on the order of 2m
2, leavesa hole with opposite 
harge that in time was identi�ed as the positron.The �rst step towards proper QED is to introdu
e a parti
le-hole for-malism. The �eld operators (1.54) are rewritten as	 = '+p bp + '�p dyp (1.85)in whi
h appears ele
tron annihilation operators bp asso
iated with thepositive-energy orbitals '+p and positron 
reation operators dyp des
ribingthe 
reation of positrons whose orbitals are obtained by 
harge 
onjugat-ing the asso
iated negative-energy orbitals '�p . This distin
tion leads toa more involved expression for the se
ond quantized form of the Hamil-tonian Ĥ = h++pq bypbq + h+�pq bypdyq + h�+pq dpbq + h��pq dpdyq (1.86)+ 14L++++pqrs bypbyrbsbq + 14L+�++pqrs bypbyrbsdyq+ 14L+++�pqrs bypbyrdysbq + 14L+�+�pqrs bypbyrdysdyq+ 14L++�+pqrs bypdrbsbq + 14L+��+pqrs bypdrbsdyq+ 14L++��pqrs bypdrdysbq + 14L+���pqrs bypdrdysdyq+ 14L�+++pqrs dpbyrbsbq + 14L��++pqrs dpbyrbsdyq+ 14L�++�pqrs dpbyrdysbq + 14L��+�pqrs dpbyrdysdyq+ 14L�+�+pqrs dpdrbsbq + 14L���+pqrs dpdrbsdyq+ 14L�+��pqrs dpdrdysbq + 14L����pqrs dpdrdysdyqD R A F T 6th De
ember 2002, 5:04pm D R A F T



26By inspe
tion one immediately sees that the QED Hamiltonian 
oupleso

upation-number ve
tors with di�erent parti
le number. However, wewill demonstrate later that 
harge is 
onserved.As in the previous se
tion we 
onsider the des
ription of bound ele
-troni
 states in terms of a single Slater determinant or, equivalently, interms of a single o

upation-number ve
tor in Fo
k spa
ej�i = by1by2 : : : byn j0i : (1.87)The va
uum state j0i is in this formalism de�ned by(bp j0i = 0; 8bp) and (dp j0i = 0; 8dp) : (1.88)In analogy with (1.65) we now 
onsider the following variational ansatz���e�E = exp [�b�℄ j�i (1.89)The b� operator appearing in the orbital rotation operator now has theform b� = �++pq bypbq| {z }b�++ +�+�pq bypdyq| {z }b�+� +��+pq dpbq| {z }b��+ +���pq dpdq| {z }b��� (1.90)We may next introdu
e number operators N̂ e and N̂p for ele
trons andpositrons, respe
tively N̂ e = bypbp; N̂p = dypdp: (1.91)One �nds that the �̂ operator 
ommutes with neither number operatorh�̂; N̂ ei = h�̂; N̂pi = �̂�+ � �̂+�; (1.92)but with the linear 
ombinationQ̂ = e �N̂p � N̂ e� (1.93)whi
h 
an be identi�ed as the 
harge operator. From this we 
an 
on
ludethat the orbital rotation operator of QED 
onserves 
harge but not theparti
le number. The 
harge operator furthermore 
ommutes with theQED Hamiltonian (1.86), thus demonstrating that the latter 
onserves
harge as well.Using the unitarity of the orbital rotation operator we may now rewritethe HF ansatz as ���e�E = eby1eby2 : : :ebyn ���e0E (1.94)where appear the transformed 
reation operatorsebyp = exp [�b�℄ byp exp [b�℄ = byqUqp; U = exp [��℄ : (1.95)D R A F T 6th De
ember 2002, 5:04pm D R A F T
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troni
 stru
ture methods for mole
ules 27Note that due to 
harge 
onservation we 
an identify the transformed
reation operators with dressed ele
trons. Equation (1.94) 
ontains notonly dressed ele
trons, but also a dressed va
uum���e0E = exp [�b�℄ j0i = n1� ���pq dpdq � ���pp +O(�2)o j0i 6= j0i : (1.96)This relation may be 
ompared with (1.69) and shows the e�e
t of va
-uum polarization whi
h is not present in the standard approa
h des
ribedin the previous se
tion.If we evaluate the expe
tation value of the Hamiltonian (1.86) with re-spe
t to the referen
e determinant (1.87) we obtain the expression (1.75),but with all the negative-energy orbitals in
luded amongst the o

upiedorbitals, thus leading to an in�nite negative energy. In order to avoidworking with in�nite energies renormalization pro
edures are introdu
edin QED. In the present 
ase the in�nite negative energy is avoided bywriting the Hamiltonian on reordered form, that is all 
reation operatorsare shifted to the left and all annihilation operators are shifted to theright as if they anti
ommuted. Using the notation of Chaix and Ira
ane[12℄ we write the reordered QED Hamiltonian asĤ = Z N h	y(1)ĥ(1)	(1)d�1i (1.97)+ 12 Z Z N h	y(1)	y(2)ĝ(1; 2)	(2)	(1)i d�1d�2In the orbital set whi
h diagonalizes ĥ, the one-ele
tron part, 
an bewritten as ĥ = h++pq bypbq + h+�pq bypdyq + h�+pq dpbq � h��pq dyqdp= �+p bypbp + ����p � dypdp (1.98)One may observe that on this reordered form ele
trons and positronsboth appear with positive energies, but with opposite 
harges.To relate the original Hamiltonian (1.86) to the reordered form (1.97)one may employ Wi
k's theorem [114, 35℄. For the one-ele
tron part thisgivesN h	y(1)	(2)i = 	y(1)	(2) � D0(ref) ���	y(1)	(2)��� 0(ref )E (1.99)whi
h shows that normal ordering of a one-ele
tron operator 
orrespondsto the subtra
tion of its va
uum expe
tation value. We have inserted asupers
ript (ref) on the va
uum to remind the reader that the de�nitionof the va
uum and thus the reordering depends on the 
hoi
e of orbital setD R A F T 6th De
ember 2002, 5:04pm D R A F T



28in whi
h the �eld operators are expanded. As referen
e va
uum the bareva
uum is employed, 
orresponding to the orbital sets generated fromthe solution of the free-parti
le Dira
 equation (1.7). Normal ordering ofthe two-ele
tron part givesN h	y(1)	y(2)	(3)	(4)i = 	y(1)	y(2)	(3)	(4) (1.100)� N h	y(1)	(4)i	y(2)	(3)� N h	y(2)	(3)i	y(1)	(4)+ N h	y(1)	(3)i	y(2)	(4)+ N h	y(2)	(4)i	y(1)	(3)� D0(ref) ���	y(1)	y(2)	(3)	(4)��� 0(ref )Ewhi
h does not 
orrespond to simple subtra
tion of the va
uum expe
ta-tion value, even though one readily sees that the bare va
uum expe
tationvalue of the reordered Hamiltonian (1.97) is zero.We have already seen that the parti
le-hole formalism leads to a rather
ompli
ated expression for the Hamiltonian (1.86). With the introdu
-tion of reordering more 
omplexity is added and manipulations involvingthe reordered Hamiltonian be
ome extremely tedious. In order to sim-plify the ensuing manipulations it is therefore advantageous to go ba
kto the form of the �eld operators (1.54) introdu
ed in the previous se
-tion and instead expli
itly de�ne the bare va
uum as �lled with all thenegative-energy solutions of the free-parti
le Dira
 equation���0(ref )E = ay[�1℄ay[�2℄ : : : ay[�1℄ jemptyi : (1.101)The empty state jemptyi 
orresponds to the va
uum (1.63) of the stan-dard approa
h to 4-
omponent relativisti
 mole
ular theory. In the aboveexpression as in the following we use square bra
kets (e.g. h��[pq℄) aroundindi
es referring to the negative-energy solutions of the free-parti
le Dira
equation. We 
an now write the reordered QED Hamiltonian asĤ = nhpq � �pq h'�[i℄io aypaq+14Lpqrsaypayrasaq�h��[ii℄ +12L����[iijj℄ (1.102)What we loose by this approa
h is the physi
al pi
ture of ele
tron-positron pair 
reation that was provided by the parti
le-hole formalism.Using this reordered Hamiltonian we 
an now easily �nd the termsappearing in the Taylor expansion (1.73). The energy at the 
urrentexpansion point is given byE[0℄QED = h++ii + h��ii � h��[ii℄ + 12���[ii℄ h'�[j℄i (1.103)D R A F T 6th De
ember 2002, 5:04pm D R A F T
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ules 29+ 12�++ii h'+j i+ 12�++ii h'�j i+ 12���ii h'+j i+ 12���ii h'�j i� 12�++ii h'�[j℄i� 12���ii h'�[j℄i� 12���[ii℄ h'+j i� 12���[ii℄ h'�j iThis rather formidable expression be
omes quite a lot more intelligiblewhen expressed in AO-basisE[0℄QED = DQED�� h�� + 12DQED�� L����DQED�� (1.104)in whi
h appears the AO-density matrix of QEDDQED�� = D�� +Dpol�� ; Dpol�� = (�)Xi �
�i
��i � 
�[i℄
��[i℄� : (1.105)Comparing with (1.76) one sees that the standard AO-density matrixD has been repla
ed by the QED 
ounterpart DQED obtained by theaddition of the va
uum polarization density Dpol whi
h re�e
ts how theva
uum density is modi�ed with respe
t to the referen
e va
uum uponthe introdu
tion of the a
tual potential.The gradient ve
tor in semi
lassi
al QED is given by a formula iden-ti
al to (1.80), ex
ept that the Fo
k matrix of the standard approa
his to be repla
ed by its QED 
ounterpart FQED whi
h is obtained bythe substitution D ! DQED in (1.78). On
e again we �nd that thenon-redundant orbital rotations are given by the parameter 
lass A oftable 1.1. However, the reader should 
arefully note that the distri-bution of the elements of the �-matrix on the three parameter 
lasses
hanges when going from the standard approa
h to QED, re�e
ting thatthe negative-energy orbitals are now �lled and not empty.The Hessian in semi
lassi
al QED has the same form as in (1.81), butwith the substitution F ! FQED. For a non-intera
ting system theHessian be
omes diagonal like in the standard approa
h (1.82)Aai;ai = �a � �i > 0; 8�ia (1.106)Following the same line of argument as in se
tion 2.1 we may 
on
ludethat the Hessian of the intera
ting systems has all eigenvalues positiveas well. We have thereby shown that the ele
troni
 ground state ofsemi
lassi
al QED is 
hara
terized by a minimization prin
iple at theHartree-Fo
k level of theory.2.3 Dis
ussionIn the previous two subse
tions we have developed variational the-ory at the 
losed-shell Hartree-Fo
k level a

ording to the standard 4-
omponent approa
h and QED in the semi
lassi
al limit. In this se
tionD R A F T 6th De
ember 2002, 5:04pm D R A F T



30we will summarize and dis
uss our �ndings. This will allow us to returnto and study in more detail the argument of Brown and Ravenhall. Itfurthermore allows us to 
onsider the extension to the 
orrelated level oftheory in the next subse
tion.In QED the negative-energy orbitals are �lled, in a

ordan
e withDira
's proposal. This allows, at su�
iently large energies, to 
reateele
tron-positron pairs out of the va
uum. Su
h pro
esses do not 
on-serve parti
le number, but do 
onserve 
harge. The energies of intera
-tion in 
hemistry are generally too low for real pair 
reation pro
esses, butthe Dira
 sea manifests itself through the phenomenon of va
uum polar-ization. As we have seen, at the 
losed-shell Hartree-Fo
k level the QEDele
troni
 ground state 
orresponds to a true minimum of the energy andthis allows for instan
e the relativisti
 extension of the Hohenberg-Kohntheorem of DFT [75℄. In 
ontrast, the ele
troni
 ground state in thestandard approa
h is 
hara
terized by a minimax prin
iple. The va
uumis then empty, and the negative-energy orbitals are a

ordingly treatedas an orthogonal 
omplement to the ele
troni
 orbitals. However, andthis is a 
ru
ial point, retaining the additional degrees of freedom pro-vided by this orthogonal 
omplement (the positroni
 degrees of freedom)allows the 
omplete relaxation of the ele
troni
 ground state.With the notation and ma
hinery introdu
ed in the two previous sub-se
tions we may now revisit the argument of Brown and Ravenhall. We
onsider a system of two non-intera
ting ele
trons and in the standardapproa
h (std) write the ground state asj�0i = ayiayi j0istd (1.107)
orresponding to the Slater determinant of the degenerate Kramers part-ners 'i and 'i. The ground state energy is E(0)0 = �i+ �i = 2�i. We thenturn on the two-ele
tron intera
tion. By standard Rayleigh-S
hrödingerperturbation theory the �rst order amplitudes of the perturbed wavefun
tion are an = h�n jĝ(1; 2)j�0iE(0)0 �E(0)n : (1.108)One 
an now straightforwardly 
onstru
t doubly-ex
ited determinantsj�ni = ����i!b�i!a+E = ayaayb j0istd (1.109)with one orbital '+a from the positive 
ontinuum and one orbital '�b fromthe negative 
ontinuum su
h that the energy E(0)n = �+a + ��b be
omesidenti
al with E(0)0 and perturbation theory breaks down. The solutionD R A F T 6th De
ember 2002, 5:04pm D R A F T
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troni
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ture methods for mole
ules 31proposed by Brown and Ravenhall was to embed the Hamiltonian inproje
tion operators �+ onto positive energy orbitalsĤ ! �+Ĥ�+: (1.110)This 
orresponds to retaining only the purely ele
troni
 terms of theQED Hamiltonian (1.86)Ĥno�pair = h++pq bypbq + 14L++++pqrs bypbyrbsbq: (1.111)Pair 
reation and annihilation is thereby ex
luded and this approxima-tion has therefore been referred to as the no-pair approximation. How-ever, the no-pair Hamiltonian is not unique sin
e the distin
tion betweenele
troni
 and positroni
 
reation and annihilation operators depends onthe orbital set in whi
h the �eld operators are expanded. One possible
hoi
e is the solutions of the free-parti
le Dira
 equation (1.7), giving the�free� pi
ture. Another 
hoi
e is the solutions of the Dira
 equation in themole
ular �eld (1.17) leading to the Furry pi
ture. A third possibility isto 
ontinuously update the proje
tion operators through SCF iterationsso that they at 
onvergen
e 
orrespond to the solutions of the 
ombinedmole
ular and mean-�eld potentials of the Hartree-Fo
k equations. Weshall see that this 
hoi
e, the �fuzzy� pi
ture, as proposed by Mittleman[67℄, 
orresponds to the standard 4-
omponent approa
h.Let us, however, �rst 
onsider the two-ele
tron system dis
ussed byBrown and Ravenhall as des
ribed by QED. We write the referen
e de-terminant as j�0iQED = byibyi j0iQED (1.112)where the va
uum is de�ned by (1.88) and thereby the 
omplete orbitalset of the non-intera
ting system. Using (1.102) we �nd the QED groundstate energy to be E(0)QED;0 = 2�+i + (�)Xj ���j � h��[jj℄� : (1.113)Let us next 
onsider the QED analogues of the troublesome doubly ex-
ited determinants (1.109). From the reinterpretation of the �eld op-erators (1.85) and the de�nition of the va
uum (1.88) we immediatelyobtain j�niQED = byadb j0iQED = 0 (!); (1.114)showing that these determinants simply do not o

ur sin
e all the negative-energy orbitals are already o

upied. One may attempt the alternativeform j�ni0QED = byadyb j0iQED (1.115)D R A F T 6th De
ember 2002, 5:04pm D R A F T



32
orresponding to the 
reation of a true ele
tron-positron pair out of theva
uum. However, this determinant 
orresponds to a di�erent 
harge(zero and not �2) and does therefore not intera
t with the two-ele
tronreferen
e determinant sin
e the QED Hamiltonian 
onserves 
harge. Su
hdeterminants are thus ex
luded on physi
al grounds. We 
an therefore
on
lude that at the QED level the Brown-Ravenhall disease is easily
ured; the referen
e determinant (1.112) mixes only with purely ele
-troni
 determinants for �xed parti
le number N . The two-ele
tron part ofthe QED Hamiltonian (1.86) allows 
oupling of the referen
e o

upation-number ve
tor to ve
tors to whi
h are added one or two ele
tron-positronpairs. These 
an again 
ouple to ve
tors with more pairs at higher orderin perturbation theory. It is perhaps easier to analyze these intera
tingo

upation-number ve
tors by going from the parti
le-hole formalismto the original form of the �eld operators (1.54) and instead �ll up allthe negative-energy orbitals of the intera
ting system. The o

upation-number ve
tor of the parti
le-hole formalism 
ontaining one and twoele
tron-positron pair(s) then 
orrespond to determinantsj�k�!a+i and ����l�!b+k�!a+E ; (1.116)respe
tively. The �rst 
lass of determinants 
ontain the ex
itation of anele
tron from the negative-energy orbital k to the virtual positive-energyorbital a. Using the form (1.102) of the reordered QED Hamiltonianwith all two-ele
tron terms deleted we �nd that the unperturbed energyof the determinant j�ni = j�k�!a+i isE(0)QED;n = 2�+i + �+a � ��k + (�)Xj ���j � h��[jj℄� (1.117)Using the full Hamiltonian we 
an determine the transition moment, thatis the numerator of (1.108), and thus obtain the following expression forthe �rst-order amplitude of the perturbed wave fun
tionan = �L�+��ka[ii℄��k � �+a (no summation !) (1.118)The denominator is 
learly of order O(
2). The numerator L�+��ka[ii℄ =(kajii) � (kijia) 
ontains two-ele
tron integrals in whi
h the integrationover one ele
tron 
ontains the overlap of one positive-energy and onenegative-energy orbital. To determine the order of this 
ontribution letus re
all from the dis
ussion in se
tion 1.1.1 that for positive-energysolutions the large 
omponent is in an averaged sense a fa
tor 
 largerD R A F T 6th De
ember 2002, 5:04pm D R A F T
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ules 33than the small 
omponent, and that for negative-energy solution this roleis reversed. We 
an then 
on
lude that the numerator is on the order ofO(
�1) and thus the amplitude (1.118) is of order O(
�3). By similararguments we �nd that the amplitude of doubly-ex
ited determinantsj�ni = ����l�!b+k�!a+E is an = L�+�+kalb��k + ��l � �+a � �+b (1.119)and is of order O(
�4). It is important to note that the determinants of(1.116) 
ontain ex
itations from o

upied negative-energy orbitals to vir-tual positive-energy orbitals. They are therefore absent in the standardapproa
h sin
e in this approa
h the va
uum is empty and the negative-energy orbitals only serve as an orthogonal 
omplement. The presen
eof the determinants (1.116) 
onstitute a pure QED e�e
t and our orderanalysis shows the minuteness of their 
ontribution.We have seen that the standard approa
h di�ers from QED in thesemi
lassi
al limit only by the absen
e of va
uum polarization. This is arather minute e�e
t, giving rise to the Uehling e�e
t, whi
h is a minor
ontribution to the Lamb shift [77℄, and it would therefore be surprising ifthe elimination of va
uum polarization should lead to a 
omplete break-down of the theory. In subse
tion 2.1 we have seen that the ele
troni
ground state in the standard approa
h 
an be found by the minimaxprin
iple (1.83). However, in pra
ti
e the solutions are found by ve
torsele
tion, that is in ea
h iteration of the SCF 
y
le ve
tors for the nextiteration are not sele
ted a

ording to an aufbau prin
iple, rather onesele
ts the lower ele
troni
 orbitals that are generally easily identi�edthrough the energy gap down to the negative-energy orbitals. This pro-
edure 
orresponds pre
isely to the use of a no-pair Hamiltonian (1.111)with 
ontinuously updated proje
tion operators as proposed by Mittle-man. Another way of seeing this pro
edure is to note that the formulasof the standard approa
h 
an be re
overed from QED by 
hoosing thereferen
e va
uum as the va
uum de�ned by the self-
onsistent mean-�eld potential. The va
uum polarization density Dpol (1.105) then goesto zero. Having identi�ed the ele
troni
 Hamiltonian of the standard4-
omponent approa
h with the no-pair Hamiltonian in the �fuzzy� pi
-ture, we 
an see that the Brown-Ravenhall disease is 
ured, sin
e thedoubly ex
ited determinants (1.109) leading to 
ontinuum dissolutionare proje
ted out.The no-pair Hamiltonian (1.111) depends on the orbital set in whi
hthe �eld operators (1.85) are expanded and thus on the potential gen-erating this orbital. This non-uniqueness of the no-pair HamiltonianD R A F T 6th De
ember 2002, 5:04pm D R A F T



34is an important point that seems to es
ape a number of authors. Inparti
ular when deriving various approximate 1- or 2-
omponent rela-tivisti
 Hamiltonians a number of authors embed the Dira
-Coulomb-(Gaunt/Breit) Hamiltonian in proje
tion operators (1.110) without spe
i-fying the referen
e orbitals. In an otherwise ex
ellent paper by M. Baryszand A.J.Sadlej [5℄ one reads: �[: : :℄ one should mention that the methodsof relativisti
 quantum 
hemistry, whi
h are based dire
tly on 4-spinors[: : :℄, also negle
t the positroni
 (negative energy) solutions. This isgenerally known as the no-pair approximation [: : :℄ and makes the exa
tele
troni
 2-spinor solutions fully equivalent to four-
omponent ele
troni
solutions. Hen
e, as long as our knowledge of the pure ele
troni
 spe
-trum of the Dira
 equation is su�
ient, the 4-spinor formalism be
omesobsolete.� What the authors miss is the fa
t that the 4-
omponent meth-ods update the proje
tion operators of the no-pair Hamiltonian until self-
onsisten
y and therefore a
hieve a 
omplete relaxation of orbitals to thea
tual potential. The approximate 1- and 2- 
omponent methods freezethe proje
tion operators before performing an approximate de
ouplingof the ele
troni
 and positroni
 degrees of freedom. This may lead toex
ellent approximations that allow relativisti
 
al
ulations at redu
ed
omputational 
ost, but it is in
orre
t to state they provide 
ompleteequivalen
e with the 4-
omponent methods.Just how good these approximations with �xed proje
tion operatorsare 
an be easily investigated at the 4-
omponent level in the algebrai
approximation. It su�
es to generate the orbital set 
orresponding to thereferen
e potential de�ning the proje
tion operator and then delete thenegative energy ve
tors from the ensuing 
al
ulation in the a
tual poten-tial. In table 1.2 this pro
edure is illustrated by 4-
omponent relativisti
Hartree-Fo
k 
al
ulations on the radon atom. It 
an be seen that theuse of proje
tion operators de�ned by the free-parti
le Dira
 equation,the �free� pi
ture, gives rather large deviations, in parti
ular in the 
oreregion, 
ompared to the standard approa
h, the �fuzzy� pi
ture, basedon fully relaxed proje
tion operators. On the other hand, the use of pro-je
tion operators de�ned by the mole
ular �eld (1.17), the Furry pi
ture,
ompare fairly well with the standard approa
h. For referen
e we havealso in
luded the results of a 1-
omponent (s
alar) se
ond-order Douglas-Kroll 
al
ulation in the same basis. Apart from the la
k of spin-orbitintera
tion one 
an see that the result is rather 
lose to the Furry pi
-ture, whi
h 
an be 
onsidered as in�nite-order Douglas-Kroll. An at �rstsight surprising result is obtained by proje
ting the standard or �fuzzy�o

upied orbitals onto the negative-energy free parti
le solutions in thesame basis. On then �nds that the negative-energy free parti
le solutions
ontribute only 0.0053 to the total density of 86 ele
trons! However, al-D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 35Table 1.2. The e�e
t of embedding the Dira
-Coulomb Hamiltonian by proje
tionoperators onto positive energy orbitals as illustrated by a Hartree-Fo
k 
al
ulationon the radon atom. The 
al
ulations were 
arried out using a point nu
leus andan un
ontra
ted 32s32p17d11f family Gaussian large 
omponent basis. The small
omponent basis was generated by restri
ted kineti
 balan
e. For 
omparison wehave in
luded the results of a s
alar se
ond-order Douglas-Kroll 
al
ulation (DK2) inthe same basis. Fuzzy Furry Free DK2E(total) -23610.98632 -23611.01630 -24153.25409 -23533.645691s1=2 -3644.74282 -3644.75635 -3859.56081 -3626.815942s1=2 -669.37883 -669.38209 -694.44791 -667.279972p1=2 -642.35771 -642.36308 -650.93434 -570.132122p3=2 -541.08440 -541.08776 -540.98657 idem3s1=2 -166.96715 -166.96783 -172.50957 -166.544453p1=2 -154.90291 -154.90395 -156.89683 -138.485863p3=2 -131.72668 -131.72734 -131.61723 idem3d3=2 -112.56321 -112.56374 -112.25150 -109.694423d5=2 -107.75599 -107.75642 -107.45065 idem4s1=2 -41.34840 -41.34854 -42.76820 -41.252514p1=2 -36.02132 -36.02153 -36.50780 -31.854844p3=2 -30.11915 -30.11927 -30.06259 idem4d3=2 -21.54718 -21.54726 -21.44792 -20.894994d5=2 -20.43800 -20.43805 -20.34020 idem4f5=2 -9.19411 -9.19409 -9.11432 -9.064964f7=2 -8.92842 -8.92840 -8.85031 idem5s1=2 -8.41670 -8.41671 -8.72474 -8.398945p1=2 -6.40907 -6.40910 -6.49582 -5.540505p3=2 -5.17528 -5.17529 -5.14742 idem5d3=2 -2.18932 -2.18932 -2.15957 -2.090815d5=2 -2.01625 -2.01625 -1.98766 idem6s1=2 -1.07263 -1.07263 -1.12104 -1.067876p1=2 -0.54033 -0.54033 -0.54932 -0.427776p3=2 -0.38390 -0.38390 -0.37708 idembeit minute, one should keep in mind that the negative-energy orbitals
ontribute very large energies and this explains the large deviations ofthe �free� pi
ture result from the standard approa
h.2.4 The 
orrelated levelLet us now 
onsider the extension to the 
orrelated level. The mostgeneral variational parametrization is provided by the MCSCF ansatz���	MCSCFE = exp [�b�℄Xi 
i j�ii (1.120)D R A F T 6th De
ember 2002, 5:04pm D R A F T



36in whi
h the orbital rotation parameters f�pqg are supplemented by the
oe�
ients f
ig of the CI expansion in Slater-determinants fj�iig. Atthe Hartree-Fo
k level the orbital rotation parameters provide relaxationof orbitals. At the 
orrelated level orbital relaxation, in addition to 
or-relation, is also provided by the CI expansion 
oe�
ients. In fa
t, inthe non-relativisti
 domain the orbital rotation parameters be
ome re-dundant in the limit of a 
omplete CI-expansion within the given orbitalbasis, showing that in this domain the exa
t solution within a given1-parti
le basis is provided by full CI.At the 4-
omponent relativisti
 level the 
hoi
e of CI-expansion be-
omes more di�
ult sin
e one employs a no-pair Hamiltonian with pro-je
tion operators that in prin
iple should be allowed to relax 
ompletelyto the a
tual potential of the system. At the MCSCF level the relaxationis provided by the orbital rotation parameters that 
an be employed in
onjun
tion with an expansion in purely ele
troni
 determinants, thatis 
ontaining only positive-energy orbitals. In CI and CC methods theorbital basis is frozen, and the 
onventional approa
h is to employ the no-pair Hamiltonian (1.111) de�ned by Hartree-Fo
k orbitals. This meansthat determinantal expansions are restri
ted to purely ele
troni
 determi-nants generated from this orbital set. Complete relaxation of the proje
-tion operators is therefore not possible, although the proje
tion operatorsde�ned by the Hartree-Fo
k orbitals 
an be expe
ted to 
onstitute a verygood approximation. In the limit of full CI the orbital parameters �++iades
ribing rotations between o

upied and virtual positive energy or-bitals be
ome redundant, but the parameters �+�ia , des
ribing rotationsbetween o

upied positive energy orbitals and virtual negative energyorbitals are not a

ounted for by the CI-expansion. This tells us that atthe 4-
omponent relativisti
 level the exa
t solution in a given 1-parti
lebasis is not provided by full CI, but by MCSCF.Bunge et al. [11℄ has advo
ated 4-
omponent relativisti
 CI using inaddition to purely ele
troni
 determinants also mixed determinants, thatis Slater determinants 
ontaining both positive- and negative-energy or-bitals. A sub
lass of these determinants are pre
isely the doubly ex
iteddeterminants that appear in the argument of Brown and Ravenhall ana-lyzed in the previous se
tion. It is our �rm 
onvi
tion that the methodsadvo
ated by Bunge et al. are plain wrong and our argument against theuse of these methods runs as follows: Consider CI at the QED level oftheory, or rather in the semi
lassi
al limit that was analyzed in se
tion2.2. The CI ansatz is ���	CIE =Xi 
i j�ii (1.121)D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 37whi
h is simply the MCSCF ansatz (1.120) with the orbital rotation oper-ator deleted. We may assume that we start with the orbital set generatedat the Hartree-Fo
k level. We want to des
ribe a system of N ele
tronsand so our Hartree-Fo
k referen
e is simply an o

upation-number ve
-tor of N ele
trons as in (1.87). The QED Hamiltonian (1.97) does not
onserve parti
le number and so the CI-expansion (1.121) will 
ontaino

upation-number ve
tors with parti
le number N +2n, where n is thenumber of ele
tron-positron pairs generated from the referen
e determi-nant. On the other hand, the QED Hamiltonian does 
onserve 
hargeand so the o

upation-number ve
tors with N parti
les must all be purelyele
troni
 sin
e they are the only ones that 
ouple to the referen
e deter-minant through the QED Hamiltonian. The o

upation-number ve
torswith more than N parti
les 
orrespond to determinants (1.116) involv-ing one or more ex
itations of ele
trons from o

upied negative-energyorbitals to virtual positive-energy orbitals. The in
lusion of these de-terminants will provide 
omplete relaxation of the orbital set. However,as emphasized already in the previous se
tion, these determinants areabsent in the standard approa
h sin
e all the negative-energy states areempty. The mixed determinants in
luded by Bunge et al. in the CI-expansion simply do not exist at the QED level. They are forbiddenby the Pauli ex
lusion prin
iple sin
e they involve the double o

upa-tion of negative-energy orbitals. Their in
lusion 
an pre
isely lead to the
ontinuum dissolution predi
ted by Brown and Ravenhall. Bunge et al.
laims variational 
ontrol using the Hylleraas-Undheim theorem whi
himplies that the ordered sequen
e of eigenvalues of a CI-matrix with onedeterminant added to the expansion are interla
ed with those of the orig-inal CI-matrix. However, the Hylleraas-Undheim theorem only 
onne
tssequen
es of eigenvalues and not eigenstates. It is well known in dire
t-CI methods that upon enlarging the trial ve
tor spa
e root �ipping 
ano

ur, that is two states may 
hange order, and this is pre
isely the pos-sibility that pre
ludes variational 
ontrol in the approa
h advo
ated byBunge et al. [11℄.3. Implementation and Computational S
alingNow that the ne
essary general theory has been introdu
ed in thepre
eding se
tions we 
an dire
t our attention to the appli
ation tomole
ules. This 
on
erns both the implementation of algorithms andtheir 
omputational s
aling in 
omparison to the "spinfree" algorithmsthat are used in non-relativisti
 quantum 
hemistry. We start by 
onsid-ering basis set expansion te
hniques.
D R A F T 6th De
ember 2002, 5:04pm D R A F T



383.1 The algebrai
 approximationWhile Hartree-Fo
k equations for atoms 
an be solved via numeri
alintegration one needs a basis set expansion to apply the method to gen-eral mole
ular systems. In order to obtain a viable s
heme one would liketo 
hoose fun
tions that are readily integrated, preferably using the samete
hniques as employed in non-relativisti
 quantum 
hemistry, so thatone 
an bene�t from the large body of experien
e and implementationsthat are available in this �eld. Non-relativisti
 orbitals are, however, usu-ally 
hosen as real fun
tions of the spa
e 
oordinates only, whereas theDira
 spinors are 
omplex fun
tions of spa
e and spin 
oordinates. How
an one best exploit the available basis set te
hnology in this domain ?Basis set expansion is usually done in the LCAO approximation wherethe mole
ular orbitals are expressed as linear 
ombinations of atomi
 or-bitals. These atomi
 orbitals are in turn expressed as �xed linear 
om-binations of simpler fun
tions 
alled primitives. Consider the solution ofthe time-independent Dira
 equation for a mole
ular �eld (1.41) in thealgebrai
 approximation. We expand the large and small 
omponent intwo di�erent sets of primitives Xp = �X� 
X�p; X = L; S: (1.122)We then obtain the eigenvalue equation" V LL 
�LS
�SL V SS � 2m
2SSS # " 
Lp
Sp # = " SLL 00 SSS # " 
Lp
Sp # �p(1.123)in whi
h appear the matrix elementsSXY�� = D�X� j �Y� E ; V XY�� = D�X� ���V̂ ����Y� E ; �XY�� = D�X� j(� � p)j�Y� E(1.124)The �rst attempts along these lines failed rather miserably, even forone-ele
tron systems. The origin of the problem was the negle
t of the
oupling of the large and small 
omponents in the Dira
 equation2m
 Sp (r) = bRp (� � p) Lp (r) ; bRp = "1 + �p � V̂2m
2 #�1 (1.125)We obtain the �nite basis equivalent of this relation by �rst writing out(1.123) in terms of two matrix equationsV LL
Lp + 
�LS
Sp = SLL
Lp �p (1.126)
�SL + �V SS � 2m
2SSS� 
Sp = SSS
Sp �p (1.127)D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 39and solve for the ve
tor 
Sp of small 
omponent expansion 
oe�
ients.This gives the relation
Sp = 12m
 "SSS + �pSSS � V SS2m
2 #�1�SL
Lp : (1.128)From (1.125) or, alternatively, (1.128) we see that the small 
omponentwave fun
tion 
an be regarded as the result of the 
onse
utive a
tionof the operators (� � p) and bRp on the large 
omponent wave fun
tion.The energy-dependent operator bRp is totally symmetri
, but the operator(� � p) 
ouples fun
tions of opposite parity whi
h indi
ates that separatebasis set expansions are needed for the large and small 
omponents,as was anti
ipated by (1.122). We thus see that the 
oupling of thelarge and small 
omponents generally leads to the use of larger basis setsand thereby in
reased 
omputational 
ost at the 4-
omponent relativisti
level 
ompared to non-relativisti
 methods. For instan
e, at the Hartree-Fo
k level three 
lasses of integrals over the Coulomb operator (1.49)appear � (LL jLL), (SS jLL) and (SS jSS) � where the �rst andsmaller 
lass (all indi
es 
orrespond to large 
omponent basis fun
tions)
onstitute the two-ele
tron integrals of a non-relativisti
 
al
ulation. Onthe other hand, we shall see that a 
loser study of the 
oupling relationprovides suggestions as how to redu
e 
omputational 
ost.Before entering a detailed dis
ussion of the 
oupling (1.125), let us �rst
onsider the 
hoi
e of primitives in the basis set expansions in relativisti

al
ulations. We know that the exa
t solutions of the relativisti
 hydro-geni
 atom [6℄ di�er from the non-relativisti
 ones in having a singularityat the nu
leus and having a 
oupling between the spatial and spin 
o-ordinates. The singularity is somewhat arti�
ial be
ause it appears inthe exa
t solution for a model in whi
h the nu
leus is represented by apoint 
harge. A more realisti
 �nite nu
leus model [108℄ gives the wavefun
tions an approximately Gaussian shape in this region. The se
onddi�eren
e, 
oupling of the spatial and spin degrees of freedom, leads tomore 
ompli
ations. An expansion in 2-spinor fun
tions was suggestedby the Oxford group[73℄ who de�ned basis fun
tions as�L� (rA) = NL� fL� (rA) ���;m� (�A; 'A)�S� (rA) = NS� fS� (rA) ����;m� (�A; 'A) (1.129)The radial fun
tions fL� (rA) and fS� (rA) depend only on the distan
eto expansion 
enter A, all the angular and spin dependen
e is 
arriedby the 2-spinor fun
tions ���;m� (�A; 'A) for whi
h the analyti
 form isknown [39℄. The problem with this approa
h is that, due to the 
hangedD R A F T 6th De
ember 2002, 5:04pm D R A F T



40angular dependen
e relative to non-relativisti
 theory, 
ompletely newintegral evaluation routines need to be developed. This made the a
tualimplementation for mole
ular systems appear relatively late[73, 117℄. Im-plementations of a more pragmati
 approa
h with s
alar expansion fun
-tions were available about a de
ade earlier[1, 23, 62, 24, 81℄ be
ausethey employed non-relativisti
 integral evaluation pa
kages [65℄. In su
hs
hemes one 
hooses expansion fun
tions in whi
h only one 
omponentof the 4-spinor is non-zero : Xp = " �X 00 �X # " 
X�p
X�p # ; X = L; S (1.130)Here �X is a row ve
tor of primitives and 
X�p and 
X�p are 
olumnve
tors of the 
orresponding expansion 
oe�
ients. Note that the sameset of primitives is used for the � and � 
omponents. The s
alar fun
tions�� (rA) are again 
hosen as fun
tions of the position of the ele
tronrelative to expansion 
enters A. One may still separate the radial andangular parts by 
hoosing the spheri
al form�� (rA) = N 0�r`�A f� (rA)Y`�;m� (�A; 'A) (1.131)but this gives now only a marginal advantage over the Cartesian form�� (rA) = N 00�xnx�A yny�A znz�A f� (rA) (1.132)sin
e neither has the 
orre
t angular dependen
e. The 
orre
t angulardependen
e is in this approa
h of 
ourse still a
hieved at the Hartree-Fo
k stage on
e the a
tual spinors are found.In all three models � 2-spinor, spheri
al or Cartesian � one still needsto 
hoose the spe
i�
 form of the radial expansion fun
tions f� (rA).Again one 
an take the exa
t solutions for the hydrogeni
 atom as aguideline. Slater fun
tions f� (rA) = e���rA have the 
orre
t long rangebehavior, but do not have the 
orre
t shape 
lose to the nu
lei. Theyneither represent the singularity found in the point nu
leus model northe approximate Gaussian shape appropriate for �nite nu
lear models.There may thus be an advantage for expansion in Gaussian type fun
-tions f� (rA) = e���r2A for properties that depend on the pre
ise shapenear extended nu
lei, while properties that depend on the ele
tron den-sity in the outer regions of the mole
ule are better des
ribed using Slatertype fun
tions. In pra
ti
e, however, de
isive is the more e�
ient evalu-ation of multi-
enter integrals that makes Gaussian based expansions themethod of 
hoi
e for both kind of properties. In both the s
alar and thetwo-spinor expansion s
hemes one 
an then employ integration s
hemesdeveloped for Gaussian type fun
tions [43℄.D R A F T 6th De
ember 2002, 5:04pm D R A F T



Four-
omponent ele
troni
 stru
ture methods for mole
ules 41As said before, the advantage of the s
alar fun
tion approa
h is thatthey require very little adaptation of existing non-relativisti
 integralevaluation routines. A disadvantage is, however, that the expansion inNL large and NS small 
omponent primitives is unne
essarily long. Tosee why this is so we need to 
onsider the relation (1.125) between thelarge and the small 
omponent part of the wavefun
tion in more detail.For ele
troni
 orbitals and non-singular potentials �, e.g. �nite nu
lei,the 
oupling redu
es in the non-relativisti
 limit tolim
!12m
  Sp (r) = (� � p) Lp (r) (1.133)and equivalently, in the algebrai
 approximation, tolim
!1 2m
 
Sp = hSSSi�1�SL
Lp (1.134)sin
e the operator R̂p then goes to unity. In pra
ti
e one obtains thisresult for point nu
lei as well in the algebrai
 approximation be
auseGaussian basis fun
tions are not able to des
ribe the singularities atnu
lei. When using basis set expansions, one usually ignores the e�e
t ofR̂p sin
e this operator, even in the relativisti
 regime, is 
lose to unity dueto the large value of 2m
2. This is 
alled the kineti
 balan
e pro
edure[88, 92℄ sin
e it guarantees proper representation of the operator identity(� � p) (� � p) = p2 in matrix form. We 
an see this better by insertingthe non-relativisti
 
oupling (1.134) into the matrix equation (1.126).We then obtainV LL
Lp + 12m�LS hSSSi�1�SL
Lp = SLL
Lp �p (1.135)whi
h gives the matrix representation of the non-relativisti
 S
hrödingerequation provided that the relationD�L� ���p2����L� E = D�L� j(� � p)
 (� � p)j�L� E (1.136)holds. The term 
 =X�� ����SE� ��SSS��1��� D�S� ��� (1.137)has the form of the resolution of identity in a non-orthogonal basis. As
arefully analyzed by Dyall et al. [22℄ it is not ne
essary to have a
omplete small 
omponent basis in order for relation (1.136) to hold;it su�
es that the small 
omponent basis spans the result of the op-erator (� � p) a
ting on the large 
omponent basis. This observationD R A F T 6th De
ember 2002, 5:04pm D R A F T



42explains the weakness of the Talman minimax prin
iple (1.84) alludedto in se
tion 2.1. Assume that we have the exa
t solution. If the large
omponent fun
tion is now varied by adding new primitives without 
on-jointly adding small 
omponent primitives that span the e�e
t of (� � p)on these new fun
tions, then relation (1.136) will not hold. The kineti
energy will be underestimated, and one may observe that the energyfalls below the exa
t energy, 
ontrary to the Talman minimax prin
iple.The kineti
 balan
e re
ipe in pra
ti
e prevents this so-
alled variational
ollapse. It does not mean that kineti
ally balan
ed basis sets alwaysprovide an upper limit of the true energy sin
e the relation (1.134) doesnot represent the exa
t 
oupling (1.128). The e�e
t of the operator R̂p
an be seen in �gure 1.1 where we 
ompare the small 
omponent ra-dial fun
tion of the 1s1=2 orbital of the radon atom from a Hartree-Fo
k
al
ulation using a �nite nu
leus with the fun
tion generated by kineti
balan
e from the 
orresponding large 
omponent radial fun
tion. It 
anbe seen that 
lose to the nu
leus there is a marked dis
repan
y betweenthe two fun
tions, illustrating that the kineti
 balan
e pres
ription givesa rather poor des
ription of the 
oupling of the large and small 
ompo-nents in this region. However, sin
e this breakdown o

urs in the 
losevi
inity of nu
lei, well within the radial expe
tation value of the 1s1=2 or-bital, it is reasonable to assume that it o

urs in a region of lo
al atomi
symmetry, even for mole
ular systems. This implies that large 
ompo-nent s fun
tions then only 
ouple to small 
omponent p fun
tions andnot to other angular momentum types. With a su�
iently �exible basisthe kineti
 balan
e pres
ription will therefore allow the establishmentof the 
orre
t 
oupling. In most 
ases energy optimizing a sequen
e ofun
ontra
ted kineti
ally balan
ed basis sets shows monotonous 
onver-gen
e from above upon extending the basis. For very large basis sets onesometimes sees that the energy in a kineti
 balan
e basis set expansionis slightly lower than the referen
e value that is obtained via numeri
integration [32℄. There is, however, ample numeri
al eviden
e that su
hsmall deviations do not present a real problem, and the kineti
 balan
epro
edure has therefore be
ome the standard approa
h in developingbasis sets for 4-
omponent relativisti
 
al
ulations.Sin
e it su�
es to span the range of fun
tions �SA� (r) = (� � p)�LA� (r)in the small 
omponent basis, kineti
 balan
e 
an be realized in di�er-ent ways. In 2-
omponent basis sets one 
an dire
tly in
lude one small
omponent expansion fun
tion for ea
h large 
omponent fun
tion . This1:1 relation between the large and small 
omponent basis fun
tions hasbeen denoted restri
ted kineti
 balan
e. In s
alar basis sets one usually
onsiders all three 
omponents of the p separately, whi
h is then denotedunrestri
ted kineti
 balan
e. Still, the separate one-
omponent fun
tionsD R A F T 6th De
ember 2002, 5:04pm D R A F T
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ture methods for mole
ules 43
an be re
ombined in the transformation to the orthogonal basis whenthe Hartree-Fo
k matrix equation is solved. If this is done, the �nalresult be
omes identi
al to that of the 2-
omponent pro
edure, with asonly di�eren
e the 
al
ulation of primitive integrals and the 
onstru
tionof the Fo
k matrix. In these steps the s
alar expansion method needssigni�
antly more primitive fun
tions than needed in the 
omparabletwo-spinor expansion. As example we take the representation of the 2pspinors. The large 
omponent is expressed as a linear 
ombination of 2px,2py, and 2pz Cartesian Gaussian fun
tions using the same exponents forthe whole set of p-fun
tions. The small 
omponent is then expanded inthe set of fun
tions that are generated by operation with the three 
om-ponents of the gradient operator on the three s
alar 2p fun
tions. Thisgives seven unique fun
tions (1s, 3s and 3d) to balan
e three large 
om-ponent fun
tions. This overrepresentation 
an be redu
ed using so-
alleddual family basis sets [32℄ in whi
h the exponents of the d-fun
tions area subset of those of s-fun
tions, and the exponents of f-fun
tions a subsetof those of p-fun
tions, et
. This is e�
ient be
ause small 
omponents
alar fun
tions are then used to balan
e two large 
omponent fun
tionsat the same time. Still, one always ends up with a longer expansion thanused in an qualitatively equivalent two-spinor expansion. The super�u-ous linear 
ombinations are usually proje
ted away be
ause they maygive problems with linear dependen
ies. The problem is enhan
ed inheavier elements be
ause the p1=2 and p3=2 orbitals then have markedlydi�erent radial extent [80℄. A s
alar expansion s
heme does not permitdistin
tion between these subshells whi
h means that the tight fun
tionsneeded in the expansion set for the p1=2 will also be in
luded in theset used for the p3=2. This illustrates that a two-spinor expansion is tobe preferred on theoreti
al grounds . It is, however, also a matter ofstrategy whether this redu
tion in appli
ation time really warrants theadditional e�ort in 
onstru
ting and maintaining a dedi
ated integralevaluation implementation for relativisti
 
al
ulations. An implementa-tion of the s
alar expansion s
heme that shares most of its inner kernelswith a non-relativisti
 implementation will bene�t easily from new ad-van
es in non-relativisti
 integral evaluation te
hniques, while these needto be rederived and separately implemented in a two-spinor s
heme. An-other issue is the interfa
e of non-relativisti
 and relativisti
 s
hemes, anapproa
h advo
ated by Dyall [26, 27, 28, 29℄, where it also may be easierto work with primitive s
alar expansion fun
tions throughout.Let us now dire
t attention to the R̂ operator (1.125) that modi�es thefun
tion (� � p) L (r) in regions where the potential � (r) is large. Thisis the 
ase in the vi
inity of nu
lei and has important impli
ations for thekineti
 balan
e pro
edure for 
ontra
ted basis sets. The kineti
 balan
eD R A F T 6th De
ember 2002, 5:04pm D R A F T



44pres
ription has proven to be a valid method to generate primitive small
omponent basis sets. However, it is 
lear from �gure 1.1 that it failswhen applied to the large 
omponent part of an eigenspinor. The dra-mati
 
onsequen
es 
an easily be veri�ed for hydrogeni
 systems [100℄.It means that the simple kineti
 balan
e pro
edure 
an not be applied toheavily 
ontra
ted basis fun
tions (that approa
h the exa
t large 
ompo-nent solution) be
ause the generated small 
omponent fun
tions do notprovide su�
ient �exibility to establish the 
orre
t 
oupling. The properpro
edure is to take both the large and the small 
omponent 
oe�
ientsdire
tly from un
ontra
ted atomi
 referen
e 
al
ulations. This has beenreferred to as atomi
 balan
e [100℄. As a side remark we note that thesometimes advo
ated [63℄ use of non-relativisti
 fun
tions to expand thelarge 
omponent, 
ombined with appli
ation of the kineti
 balan
e pre-s
ription for the small 
omponent, also prevents the divergen
es but atthe expense of having wrong expansion fun
tions for both the large andthe small 
omponent. Again, 
ontra
tion with the atomi
 spinor 
oe�-
ients is easier in two-spinor expansion s
hemes than in s
alar expansions
hemes be
ause the former makes it possible to de�ne spe
i�
 
ontra
-tions for the spin-orbit split subshells (j = l � 1=2 and j = l + 1=2). Inthe latter s
heme one needs to give one set of 
ontra
tion 
oe�
ients fora given nl shell whi
h makes it ne
essary to 
ompromise.The R̂-operator is also of interest when studying the long-range be-havior of the small 
omponent wave fun
tion. In regions of negligiblepotential it redu
es to a 
onstant fa
tor ofR̂p = �1 + �p2m
2 ��1 (1.138)Sin
e the amplitude of the large 
omponent wave fun
tion in this regionis dominated by that from the HOMO with a small value of "p and onlya small gradient, the small 
omponent wave fun
tion will have nearlyzero amplitude in this region. The small 
omponent density is thereforerather lo
alized and atomi
 in nature. This observation has made it pos-sible to 
al
ulate spe
tros
opi
 
onstants of mole
ular systems where the
omplete set of (SS jSS) integrals is eliminated and the potential 
urveis 
orre
ted by a simple Coulombi
 
orre
tion [107℄. This 
onstitute aperturbational 
orre
tion, but more elaborate s
hemes of integral model-ing have been developed in order to redu
e 
omputational 
ost. Re
entlya s
heme was presented in whi
h all overlap between small 
omponentbasis fun
tions lo
ated on di�erent expansion 
enters was negle
ted inthe evaluation of potential energy matrix elements [48℄. The promisingresults obtained in these pilot 
al
ulations indi
ate that in the long runit will probably su�
e to restri
t evaluation of potential energy inte-D R A F T 6th De
ember 2002, 5:04pm D R A F T
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Figure 1.1. The a
tual small 
omponent radial fun
tion [r�1Q(r) ℄ of the 1s1=2 or-bital of radon obtained from a numeri
al GRASP 
al
ulation with Gaussian nu
leus,as 
ompared with the radial small 
omponent fun
tion [r�1P (r) ℄ generated fromrestri
ted kineti
 balan
e (RKB). For 
omparison the radial expe
tation value of the1s1=2 orbital is 0.0015 a.u.
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46grals in the small 
omponent basis to those that share a 
ommon 
enter.In this approximation the s
aling of integral evaluation then be
omesaN4L + bNSN2L + 
NS where the �rst term is 
omparable to that of anon-relativisti
 all-ele
tron 
al
ulation. This means that the pre
edingdis
ussion on the e�
ien
y of integral evaluation in two-spinor versuss
alar expansion s
hemes looses some of its signi�
an
e be
ause it willapply mainly to small systems. For larger systems the integral evalu-ation 
ost will be dominated by the "non-relativisti
" �rst term and itbe
omes more important to employ e�
ient integral-dire
t or multipoleexpansion te
hniques to improve the 
omputational e�
ien
y than tooptimize the 
al
ulation of integrals over the small 
omponent basis.For small mole
ules, mole
ular symmetry may of 
ourse also help toin
rease 
omputational e�
ien
y. In the two-spinors expansion one 
anresort dire
tly to double group symmetry and apply proje
tion opera-tors or other te
hniques to 
reate the appropriate symmetri
 linear 
om-binations of atomi
 two-spinors. When s
alar fun
tions are 
hosen asexpansion basis it is natural to �rst adapt these using non-relativisti
point group symmetry and then 
ombine the resulting fun
tions to ob-tain double group symmetry adapted fun
tions. In that 
ase one may
ombine the symmetry adaption of s
alar basis fun
tions to single pointgroups with time reversal symmetry in a quaternion symmetry s
heme[82, 83℄. The sidestep via non-relativisti
 symmetry adapted fun
tionsalso has advantages when approximate, in parti
ular so-
alled spinfree,algorithms are 
onsidered. If one has de�ned a basis in whi
h the large
omponent s
alar fun
tions transform a

ording to the irreps of the ap-propriate single point group and the small 
omponent fun
tions are re-lated by the kineti
 balan
e relation, it be
omes possible to identify spin-orbit 
ouplings as arising due to the o�-diagonal matrix elements of theFo
k operator. Negle
ting these 
ontributions be
omes then identi
al tosolving the spinfree modi�ed Dira
 equation of se
tion 1.1.4 [24, 104℄. While this is not very important in the Hartree-Fo
k stage it o�ersmajor saving in the ele
tron 
orrelation pro
edure. It means that 
or-relation 
al
ulations 
an be 
arried out using non-relativisti
 algorithmsand implementations. This will be dis
ussed in more detail in the nextse
tion.3.2 Ele
tron 
orrelation methodsThe ele
tron 
orrelation methods available for 4-
omponent methodsare derived from non-relativisti
 
ounterparts. As dis
ussed in se
tion 2.4a no-pair Hamiltonian (1.110) with fully relaxed proje
tion operators isa

essible only at the MCSCF level, where orbital rotations are in
luded.D R A F T 6th De
ember 2002, 5:04pm D R A F T
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ture methods for mole
ules 47At the CI or CC level the �best� 
hoi
e of no-pair Hamiltonian is the onede�ned by the Hartree-Fo
k (or MCSCF) orbitals. The generation of thematrix elements appearing in the no-pair Hamiltonian (1.111) is rather
ostly sin
e it involves summation of integrals over both the large andsmall 
omponent type basis sets. In the s
alar expansion s
heme this is
onveniently expressed in quaternion algebra [110℄ and gives the followingexpression in terms of ele
tron repulsion integrals over s
alar fun
tionsg�12�34pqrs = L;SXX L;SXY NXX�;� NYX�;� BXX;�12��;pq gXXY Y���� BY Y;�34��;rs (�12;�34 = 0; 1; 2; 3)(1.139)where the B-matri
es are quaternion density matri
esBXX;�12��;pq e�12 = 3X�1=0 3X�1=0 
X;�1�p 
X;�2�q e��1e�2 : (1.140)Ea
h quaternion integral g�12�34pqrs 
an be expressed as a sum of 16 indi-vidual real numbers multiplied by a quaternion phase e�12 for ele
tron 1and a quaternion phase e�34 for ele
tron 2. This is fully equivalent to themore 
onventional notation in terms of barred and unbarred partners ofKramers pairs. One 
an see that the e�e
t of spin-orbit 
oupling trans-lates into making the density matri
es 
omplex instead of real, while theuse of a 4-
omponent instead of a 2-
omponent formalism leads to the ad-ditional summation over the small 
omponent basis fun
tions. Togetherthis makes the 4-index formation step, though still s
aling as a �fth powerwith the number of basis fun
tions, mu
h more 
ostly than the same stepin non-relativisti
 
al
ulations. Let M be the number of a
tive Kramerspairs (or spatial orbitals in the non-relativisti
 
ase) in a 
orrelated 
al-
ulation. Pernpointner et al. [70℄ take the realisti
 assumption that theprimitive small 
omponent basis is about twi
e the size of the primitivelarge 
omponent basis, that is NS � 2NL and arrive using M = NL ata non-relativisti
/relativisti
 operation 
ount ratio of 1:130 for the �rsthalftransformation and a ratio of 1:88 for the se
ond halftransformation.The in
rease in the �rst steps is largely due to the presen
e of the small
omponent basis set, while that in the last steps is 
aused by the 
ou-pling of the spin and spatial degrees of freedom. The 
omputationals
aling in the �rst steps 
an be redu
ed by using two-spinor expansionfun
tions (so that NS = NL) and/or by using one-
enter approximationsand it is probable that this will not present a major problem in the nearfuture. The limiting ratio will then be that of a two-spinor algorithmthat gives a s
aling of 1:10 in the �rst halftransformation and 1:24 inthe se
ond. The later steps remain more demanding due to the fa
t thatD R A F T 6th De
ember 2002, 5:04pm D R A F T



48spin-orbit 
ouplings, that are negle
ted in a purely non-relativisti
 the-ory, are taken into a

ount. This gives a shift from real to 
omplex orquaternion algebra and a loss of permutational symmetry. Here one mayonly improve the s
aling in 
ases that these 
ouplings are so small thatapproximate algorithms 
an be used. This is similar to the situation with2-
omponent methods where spin-orbit 
oupling are often negle
ted inthe Hartree-Fo
k pro
edure and introdu
ed in a CI step. Pre
isely thesame treatment with similar 
omputational gains (and loss of a

ura
yin some 
ases) is possible for the 4-
omponent s
heme. After the indextransformation we end up with a se
ond quantized Hamiltonian that 
anbe used in various 
orrelation treatments. The 
omputations are thenidenti
al to those ne
essary in 2-
omponent 
al
ulations.A number of algorithms and implementations have been developedthat ta
kle the ele
tron 
orrelation problem in the 2- or 4-
omponentno-pair approximation. We will here only 
onsider the algorithms thatassume true 4- or 2-spinors and not the methods that negle
t the e�e
ton spin-orbit 
ouplings in the Hartree-Fo
k stage. For more 
ompletedes
riptions of the algorithms we refer to a re
ent overview by one of us[111℄. In this review we will fo
us on the 
omputational s
aling of thesemethods.The 
omputationally most e�
ient treatment is given by many-bodyperturbation theory, in parti
ular MP2. Sin
e one only needs to sumtransformed integrals divided by the orbital energy di�eren
es, this methodallows for integral-dire
t implementations, thus opening up for appli
a-tion to larger systems. The method has as drawba
k that it is onlyappli
able in 
ases were a single determinant referen
e already gives areasonable des
ription of the system. The 
omputational s
aling is iden-ti
al to that of the index transformation step be
ause the summation ofthe transformed integrals themselves takes a negligible amount of time.The CI-type methods are more �exible but 
omputationally less ef-�
ient and, more importantly, la
k the 
orre
t s
aling of energy withsystem size. This restri
ts their appli
ation to relatively small modelsystems in whi
h they 
an give results 
lose enough to the full CI limit.As orbital generator usually an average-of-
on�guration Hartree-Fo
kpro
edure is used, but work MCSCF algorithms is underway [98℄. The
omputational s
aling depends mu
h on the a
tual implementation andon the type of CI that is used.The last 
lass of ab initio 
orrelated method are the 
oupled 
lustertype approa
hes. They share with the perturbation theory type methodsthe features of size-extensivity and reasonable 
omputational e�
ien
y,but also the requirement that the referen
e wave fun
tion should be sim-ple. Appli
ation of these type of relativisti
 methods to atoms has beenD R A F T 6th De
ember 2002, 5:04pm D R A F T
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troni
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ture methods for mole
ules 49pioneered by the groups of Lindgren [59℄ and Kaldor [52, 53℄ who haveshown that almost arbitrary a

ura
y 
an be rea
hed on
e a su�
ientnumber of one-parti
le fun
tions (up to i-type fun
tions) and ex
itationlevel is used. While su
h a

urate treatments are feasible due to thehigh symmetry and relatively few ele
trons to be 
orrelated in atomi
systems, this is still out of rea
h for mole
ular appli
ations. It is possibleto formulate the theory entirely in terms of Kramers' pairs instead ofindividual spinors but the 
orresponding algorithms have not yet beenfully developed for the general 
ase. The unrestri
ted CCSD(T) algo-rithm that has been implemented 
an be routinely applied to diatomi
sbut larger systems and basis sets beyond triple or quadruple zeta levelare usually still too demanding. These systems are smaller than feasiblewith e�
ient non-relativisti
 implementations of CC methods, whi
h ismainly due to the limiting steps in the ne
essary index transformationthat make this step often more expensive or 
umbersome (due to thene
essary diskspa
e and I/O) than the 
oupled 
luster step itself. Thissituation will improve due to the in
reasing performan
e of 
omputerhardware and the development of more e�
ient (parallel) algorithms,but unless approximations are made that break the notorious seventhpower s
aling with system size the 
oupled 
luster algorithms will re-main only appli
able to relatively small systems.The latter problem is in fa
t shared among all the 
orrelation methodsand is no di�erent from the situation in non-relativisti
 quantum 
hem-istry. However, while in non-relativisti
 quantum 
hemistry rewriting ofthe algorithms in the atomi
 orbital basis 
ombined with approximationof long-range intera
tions via multipole expansions [113, 85℄ permits thedevelopment of algorithms that s
ale mu
h better with system size [87℄,this is 
umbersome in the relativisti
 
ase. In order to make AO-dire
talgorithms feasible one also needs to take into a

ount the large di�er-en
e in size between the a
tive spinor set and the 
omplete basis set.It is quite 
ommon to 
orrelate only 10 % of the ele
trons in a system,using only the lowest lying virtual spinors. This makes the AO list offun
tions mu
h longer than MO-list and it takes larger systems beforethe gain due to approximate treatment of long-range e�e
ts starts to payo�. This leaves the implementers of methods with a di�
ult 
hoi
e : Inthe long run one will see that 
omputations for system sizes for whi
h thee�ort of using AO-based algorithms pays o� are easily feasible and thatthis then enables mu
h larger 
omputations. In the 
urrent situation itis, however, still more e�
ient to use MO-based algorithms.The observations regarding the 
omputational s
aling of the varioussteps in a 
onventional ab initio 
al
ulation (using s
alar basis fun
tions)are summarized in table 1.3. The �rst steps show a linear dependen
eD R A F T 6th De
ember 2002, 5:04pm D R A F T



50on the number of primitive integrals that need to be 
al
ulated and 
on-tra
ted with the density matrix. The fa
tors a, b and 
 depend on thetype of basis fun
tions 
ontained in the integrals. Fa
tor 
 will in gen-eral be larger then a be
ause the small 
omponent basis 
ontains higherangular momentum type fun
tions than the large 
omponent basis. Thisis the main reason that relativisti
 Hartree-Fo
k 
al
ulations for smallmole
ules are so mu
h more expensive than 
omparable non-relativisti

al
ulations. The di�eren
e in algebra (quaternion instead of real) fur-thermore redu
es the permutational symmetry of the density matrixmaking the Fo
k matrix building and diagonalization pro
edure moreexpensive. This algebra di�eren
e also shows up in two-spinor meth-ods where the presen
e of two-ele
tron spin-orbit integrals in
reases the
omputation time by a 
onstant fa
tor relative to non-relativisti
 
al-
ulations. Index transformation of two-ele
tron integrals exhibits thewell-known �fth order s
aling with the number of basis fun
tions. Inthe transformation of the �rst two indi
es one sees mainly the e�e
tsof the small 
omponent basis set. In the se
ond halftransformation thee�e
t of spin-orbit 
ouplings start to dominate making the s
aling of fullDira
-Coulomb and two-spinor approa
hes 
omparable. They be
omefully equivalent in the last step (taken here as a CCSD 
al
ulation sin
ethis algorithm has been analyzed in detail previously [105℄) where thevariational in
lusion of spin-orbit 
oupling leads to a 32-fold in
rease inoperation 
ount. The numbers presented here are theoreti
al estimatesand a
tual measurements may give a somewhat di�erent pi
ture depend-ing on e�
ien
y of implementation and 
onvergen
e of iterative pro
e-dures. Still, we think that it is useful to have su
h estimates, � bothas a guideline for the e�
ien
y of implementation and for the develop-ment of a long term strategy. We 
an for instan
e dedu
e that mole
ulesmay as well be treated with relativisti
 
oupled 
luster methods based onthe spinfree Dira
-Coulomb equation than by other s
alar relativisti
 ornon-relativisti
 
ounterparts sin
e the rate-determining step is the CCSDstep whi
h outs
ales the preliminary Hartree-Fo
k or index transforma-tion steps. In
luding spin-orbit 
oupling in
reases the 
omputationaltime, regardless of whether this is done in a 2- or a 4-spinor algorithm.This trend that is already visible in large basis set 
al
ulation on di-atomi
s will be
ome even stronger on
e more powerful 
omputers thatallow larger mole
ules to be treated be
ome available. On the otherhand, if we move to the large systems still ina

essible by 
urrent 
ou-pled 
luster algorithms and use only Hartree-Fo
k or DFT methods wesee that the in
lusion of spin-orbit 
ouplings is less 
ru
ial. The e�ortshould go into the e�
ient evaluation or approximation of integrals overthe small 
omponent basis set. For su
h larger systems one 
an then useD R A F T 6th De
ember 2002, 5:04pm D R A F T
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ules 51Table 1.3. Theoreti
al operation 
ounts of steps in a 
orrelated 
al
ulation for dif-ferent approximation of the Dira
 Coulomb no-pair Hamiltonian. 2-Spinor is anymethod that works with frozen no-pair proje
tion operators but keeps the spin-orbit
ouplings, Spinfree is any method that varies the proje
tion operators but negle
tsspin-orbit 
ouplings. N is the number of basis fun
tions (with subs
ripts referringto Large or Small 
omponent where appropriate). M is the number of a
tive or-bitals or Kramers' pairs (with the subs
ripts for the CCSD algorithm referring tothe subsets of O

upied or Virtual orbitals). The steps 
onsidered are: A)Integralevaluation/Hartree-Fo
k/DFT, B)Index transformation, step 1, C)Index transforma-tion, step 2, D) CCSDNon-Relativisti
 SpinfreeA 18aN4 18 �aN4L + 4bN2SN2L + 4
N4S�B 12MN4 + 12M2N3 12M �N4L + 4N2SN2L + 4N4S�+ 12M2 �N3L + 4NSN2L + 4N3S�C 12M3N2 + 12M4N 12M3 �N2L + 4N2S�+ 12M3 (NL + 4NS)D 14M4oM2v + 4M4oM2v + 12M2oM4v 14M4oM2v + 4M4oM2v + 12M2oM4v2-spinor Dira
-CoulombA 12aN4 12 �aN4L + bN2SN2L + 
N4S�B 2MN4 + 8M2N3 2M �N4L +N2SN2L +N4S�+ 8M2 �N3L +NSN2L +N3S�C 4M3N2 + 16M4N 4M3 �N2L +N2S�+ 16M4 (NL +NS)D 8M4oM2v + 128M4oM2v + 16M2oM4v 8M4oM2v + 128M4oM2v + 16M2oM4vthe e�e
t of the lo
ality of the small 
omponent wave fun
tion makingintegrals pres
reening and/or one-
enter expansion methods take e�e
t.4. Con
lusionIn this 
hapter we have dis
ussed 4-
omponent relativisti
 methodsand in parti
ular the 
hallenges that arise when extending the appli
a-tion of these methods from atomi
 to mole
ular systems, notably arisingfrom the introdu
tion of the algebrai
 approximation. We have analyzedin detail the variational stability of the Dira
-Coulomb-(Gaunt/Breit)Hamiltonian by 
omparing the standard approa
h to 4-
omponent rela-tivisti
 mole
ular 
al
ulations with QED in the semi
lassi
al limit. We�nd that we re
over the formulas of the standard approa
h by deletingva
uum polarization from semi
lassi
al QED. The e�e
t is, however, thatthe minimization prin
iple of QED is repla
ed by a minimax prin
iplein the standard approa
h, due to the fa
t that in QED all negative-energy orbitals are �lled whereas they are empty and treated as an or-thogonal 
omplement in the standard approa
h. The standard approa
hemploys a (and not �the� !) no-pair Hamiltonian whi
h 
orresponds tosurrounding the relativisti
 many-ele
tron Hamiltonian by proje
tion op-erators. Contrary to approximate 1-or 2-
omponent approximations the4-
omponent methods allows a 
ontinuous update of the proje
tion oper-D R A F T 6th De
ember 2002, 5:04pm D R A F T



52ators and thereby of the no-pair Hamiltonian and thus allows a 
ompleterelaxation of the ele
troni
 wave fun
tion to the a
tual potential of thesystem.We insist on the distin
tion between Hamiltonians and methods. It isthen easier to see that the di�eren
e in 
omputational 
ost of relativisti
and non-relativisti
 
al
ulations is a di�eren
e in prefa
tor rather thanorder, and so it is not like 
omparing DFT with CCSD. Through a 
arefulanalysis of 
omputational 
ost we furthermore show that one must distin-guish the extra 
omputational 
ost arising from the introdu
tion of largerbasis sets, notably the separate expansion of the large and small 
om-ponents, from the 
ost arising from the transition from non-relativisti
to relativisti
 symmetry, that is the introdu
tion of spin-orbit 
oupling.This latter 
ontribution is identi
al at the 2- and 4-
omponent level oftheory. We 
onsider how the 
omputational 
ost 
an be redu
ed by ex-ploiting symmetry, in parti
ular time reversal symmetry, and the atomi
nature of the small 
omponent density. We also outline the dilemmafa
ing the programmer on whether he should 
hoose a s
alar basis ex-pansion whi
h allows him to bene�t from the 
ontinuous developmentof (integral) 
odes in the non-relativisti
 domain or whether he should
hoose the more natural expansion in terms of 2-spinors whi
h requires amore dedi
ated programming e�ort. The area of 4-
omponent relativisti
mole
ular methods 
ontinues to be an area of 
hallenge and promise.Referen
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