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Abstract. The summation formulae for spinor spherical waves (j=1+1/2), analogous to
the well known summation formulae for ordinary spherical harmonics, are derived. The
summation over magnetic quantum number gives a combination of unit and Pauli matrices
with coefficients depending on the Legendre polynomials and their derivatives. Application
to the full scattering solution of the Dirac equation is also described.

The purpose of this paper is to-derive the summation formulae for spherical spinors,
analogous to the well known summation formula for spherical harmonics (Edmonds
1959)
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where # and § are two unit vectors. The spherical wavefunctions of a particle with spin
5 and defined value of total angular momentum j (spherical spinors) can be written in
the standard notation as (Berestetskil et af 1972, Rose 1957)
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for j=1~3, i.e. k=I/=j+3. The quantum number x combines f and parity.
The full continuum solution of the Dirac equation (Darwin 1928) contains expres-
sions of the type

T Qs k(P ) (3)

0305-4470/93,21603% +04507.50 © 1993 IQP Publishing Ltd 6039



6040 A Bechler

where # is the unit radius vector and $ is the unit vector in the direction of the particle’s
asymptotic momentum. To our knowlege no explicit swnmation formula of type (3)
has been derived and if is the purpose of the present paper to fill this gap. A summation
formuia of this type proved to be very useful in the analysis of relativistic and retardation
effects in photo-ionization (for the non-relativistic analysis of retardation effects see
Bechler and Pratt 1989, 1990 and Cooper 1990, 1993).

Since expression (3) is a 2 X 2 matrix it can be written as

L Qe QL p) =l + b G

where / is the unit mairix and ¢ are the Pauli matrices. Since both spherical spinors in
(4) correspond to the same value of the orbital angular momentum and therefore have
the same parity, the coefficient a is a scalar function of p+# and & is a pseudo-vector
proportional to §xF Due to rotational invariance of (4) we can choose p as the
direction of quantization without any limitations to the generality of final formulae.
With this choice of guantizaiton axis only spherical harmonics ¥y, with M=0 in (2)
contribute to (4). Using

1,2 1/2

Yio(9)= (2174-_1_) Yio(F)= (2_(:5;1) Pi(p-F) (5)

T 4r
we obtain from (2) and (5) for k=—j—%
1/2
SAYNL (4;—((’2%) ¥
Y. Qe Qe ) = 12 (©
m (_fg{m) e SLpge
ari+ 1)) M 4r

Denoting by @ the angle between § and # and by ¢ the azimuthal angle of # in the plane
perpendicular to § we have
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where P; denotes the derivative of the Legendre polynomial with respect to its argument.
Using (7} and {6) we can easily find the coefficients @ and & in (4)
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where we have used 7= (sin @ cos ¢, sin 8 sin ¢, cos 8). For = —j—1 (j=1+1) we have
therefore
a~ + Py l+1 A A i P AN A A
2 Qem(FY e B) = e Pi(p-F) +E P p-F)(px¥)o. (9a)

Proceeding along similar lines we find for x =j+3 (j=I1-%)
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The other two summation formulae for spherical spinors read
o RO TN 1, s ma
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for x=j+1. Expressions (10) are pseudo-scalars since parities of Q- and Q,,, are
different.

To show a possible application we use (9) and (10) in the partial wave expansion
of the full scattering solution of the Dirac equation in the form used by Pratt et af
(1973} and Scofield (1989) to describe the photoeffect.
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wehre ¢ is a two component spinor describing the spin state of the continuum electron,
3, are the phase shifts and the R, S, are radial functions. Denoting by ¢,(r} and z,(¥)
the upper and lower component of ¥,(r). respectively, we obtain, by virtue of (9) and

(10)
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The summations in (12) and (13) are over the orbital angular momentum quantum
number / with the indices (—) and (+) corresponding respectively, to nepative
k(j=1+3) and positive k(j=1[—1). In the non-relativistic imit 8§/ =5§f"=§,, R{ 7=
R{*™=R, and for the upper component we obtain the usnal non-relativistic partial
wave series

V()= T i QI+ 1) exp(—i8)R (NP (5 F)o. (14)
=0

To find the non-relativistic limit of y,(r) we use the non-relativistic relations between
radial functions
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where fi=c=1 and also the electron mass has been put equal to unity. Using (15) and
the relations between Legendre polynomials and their derivatives we obtain, in the non-
relativistic limit

sy _isy 3R
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It can be easily checked that (14) and (16) fulfill the well known relation between upper
and lower components in the non-relativistic limit

1
X0 = % a- V,(r). (17
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