Recent computational results in Troms \varnothing and Toulouse

Radovan Bast
Laboratoire de Chimie et Physique Quantiques Université de Toulouse 3 (Paul Sabatier)
118 route de Narbonne
31062 Toulouse (France)

my PV background and commitment

- 2002 undergrad project in Peter's group calculations with the DIRAC code
- 2004-2008 Ph.D. in Trond's group DIRAC calculations and development (NMR parameters)
- 2008-2011 post-doc in the group of Kenneth Ruud
- since October 2011: CR2 in Toulouse
what theoretical chemistry can do for PV
- calculate effect (pre-screening)
- know the approximations and limits
- develop better methods

$$
\beta^{\prime} m c^{2}+V I_{4 \times 4}+c(\vec{\alpha} \cdot \vec{p}) \psi=E \psi
$$

$$
\left[\begin{array}{cc}
V I_{2 \times 2} & c(\vec{\sigma} \cdot \vec{p}) \\
c(\vec{\sigma} \cdot \vec{p}) & \left(V-2 m c^{2}\right) I_{2 \times 2}
\end{array}\right]\left[\begin{array}{c}
\psi^{\mathrm{L}} \\
\psi^{\mathbf{S}}
\end{array}\right]=E\left[\begin{array}{c}
\psi^{\mathrm{L}} \\
\psi^{\mathbf{S}}
\end{array}\right]
$$

$$
\lim _{c \rightarrow \infty} c \psi^{\mathbf{S}}=\frac{1}{2 m}(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}}
$$

$$
\beta^{\prime} m c^{2}+V I_{4 \times 4}+c(\vec{\alpha} \cdot \vec{p}) \psi=E \psi
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
V I_{2 \times 2} & c(\vec{\sigma} \cdot \vec{p}) \\
c(\vec{\sigma} \cdot \vec{p}) & \left(V-2 m c^{2}\right) I_{2 \times 2}
\end{array}\right]\left[\begin{array}{l}
\psi^{\mathrm{L}} \\
\psi^{\mathrm{S}}
\end{array}\right]=E\left[\begin{array}{l}
\psi^{\mathrm{L}} \\
\psi^{\mathrm{S}}
\end{array}\right]} \\
c(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}}+\left(V-2 m c^{2}\right) I_{2 \times 2} \psi^{\mathrm{S}}=E \psi^{\mathrm{S}}
\end{gathered}
$$

$$
\lim _{c \rightarrow \infty} c \psi^{\mathbf{S}}=\frac{1}{2 m}(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}}
$$

$$
\beta^{\prime} m c^{2}+V I_{4 \times 4}+c(\vec{\alpha} \cdot \vec{p}) \psi=E \psi
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
V I_{2 \times 2} & c(\vec{\sigma} \cdot \vec{p}) \\
c(\vec{\sigma} \cdot \vec{p}) & \left(V-2 m c^{2}\right) I_{2 \times 2}
\end{array}\right]\left[\begin{array}{l}
\psi^{\mathrm{L}} \\
\psi^{\mathrm{S}}
\end{array}\right]=E\left[\begin{array}{l}
\psi^{\mathrm{L}} \\
\psi^{\mathrm{S}}
\end{array}\right]} \\
c(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}}+\left(V-2 m c^{2}\right) I_{2 \times 2} \psi^{\mathrm{S}}=E \psi^{\mathrm{S}}
\end{gathered}
$$

$$
\begin{aligned}
\lim _{c \rightarrow \infty} c \psi^{\mathrm{S}} & =\frac{1}{2 m}(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}} \\
H_{\mathrm{PV}} & =\sum_{A} H_{\mathrm{PV}}^{A}
\end{aligned}
$$

$$
\begin{aligned}
E_{\mathrm{PV}}^{A} & =\frac{G_{\mathrm{F}}}{2 \sqrt{2}} Q_{\mathrm{w}}^{A} \sum_{i}\left\langle\psi_{i}\right| \gamma_{5} \rho^{A}\left(\mathbf{r}_{i}\right)\left|\psi_{i}\right\rangle \\
& =\frac{G_{\mathrm{F}}}{2 \sqrt{2}} Q_{\mathrm{w}}^{A} \sum_{i}\left[\left\langle\psi_{i}^{\mathrm{L}}\right| I_{2 \times 2} \rho^{A}\left(\mathbf{r}_{i}\right)\left|\psi_{i}^{\mathbf{S}}\right\rangle+\left\langle\psi_{i}^{\mathbf{S}}\right| I_{2 \times 2} \rho^{A}\left(\mathbf{r}_{i}\right)\left|\psi_{i}^{\mathrm{L}}\right\rangle\right]
\end{aligned}
$$

$$
\beta^{\prime} m c^{2}+V I_{4 \times 4}+c(\vec{\alpha} \cdot \vec{p}) \psi=E \psi
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
V I_{2 \times 2} & c(\vec{\sigma} \cdot \vec{p}) \\
c(\vec{\sigma} \cdot \vec{p}) & \left(V-2 m c^{2}\right) I_{2 \times 2}
\end{array}\right]\left[\begin{array}{l}
\psi^{\mathrm{L}} \\
\psi^{\mathrm{S}}
\end{array}\right]=E\left[\begin{array}{l}
\psi^{\mathrm{L}} \\
\psi^{\mathrm{S}}
\end{array}\right]} \\
c(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}}+\left(V-2 m c^{2}\right) I_{2 \times 2} \psi^{\mathrm{S}}=E \psi^{\mathrm{S}}
\end{gathered}
$$

$$
\begin{aligned}
\lim _{c \rightarrow \infty} c \psi^{\mathrm{S}} & =\frac{1}{2 m}(\vec{\sigma} \cdot \vec{p}) \psi^{\mathrm{L}} \\
H_{\mathrm{PV}} & =\sum_{A} H_{\mathrm{PV}}^{A}
\end{aligned}
$$

$$
\begin{aligned}
E_{\mathrm{PV}}^{A} & =\frac{G_{\mathrm{F}}}{2 \sqrt{2}} Q_{\mathrm{w}}^{A} \sum_{i}\left\langle\psi_{i}\right| \gamma_{5} \rho^{A}\left(\mathbf{r}_{i}\right)\left|\psi_{i}\right\rangle \\
& =\frac{G_{\mathrm{F}}}{2 \sqrt{2}} Q_{\mathrm{w}}^{A} \sum_{i}\left[\left\langle\psi_{i}^{\mathrm{L}}\right| I_{2 \times 2} \rho^{A}\left(\mathbf{r}_{i}\right)\left|\psi_{i}^{\mathbf{S}}\right\rangle+\left\langle\psi_{i}^{\mathbf{S}}\right| I_{2 \times 2} \rho^{A}\left(\mathbf{r}_{i}\right)\left|\psi_{i}^{\mathrm{L}}\right\rangle\right]
\end{aligned}
$$

$$
\lim _{c \rightarrow \infty} c H_{\mathrm{PV}}^{A}=\frac{1}{2 m} \frac{G_{\mathrm{F}}}{2 \sqrt{2}} Q_{\mathrm{w}}^{A} \sum_{i}\left[I_{2 \times 2} \rho^{A}\left(\mathbf{r}_{i}\right),(\vec{\sigma} \cdot \vec{p})\right]_{+}
$$

computational protocol

- optimize structure
- obtain harmonic force field
- perturb molecule along a selected mode
- calculate energy at these displaced geometries
- calculate $E_{\mathrm{PV}}=P^{[0]}$ at these displaced geometries (slow)
- calculate $\Delta P_{0 \rightarrow n}$

approximations

- Born-Oppenheimer approximation
- electron correlation is approximated
- relativity is approximated (relativistic treatment crucial)
- assume that wavefunction is dominated by one electron occupation (self-consistent field)
- we follow normal modes: uncoupled picture
- no environment (molecule alone in the universe)
computational protocol
- optimize structure
- obtain harmonic force field
- perturb molecule along a selected mode
- calculate energy at these displaced geometries
- calculate $E_{\mathrm{PV}}=P^{[0]}$ at these displaced geometries (slow)
- calculate $\Delta P_{0 \rightarrow n}$

approximations

- Born-Oppenheimer approximation
- electron correlation is approximated
- relativity is approximated (relativistic treatment crucial)
- assume that wavefunction is dominated by one electron occupation (self-consistent field)
- we follow normal modes: uncoupled picture
- no environment (molecule alone in the universe)
- fit polynomials to $P(Q)$ and $V(Q)$

$$
P(Q)=P^{[0]}+P^{[1]} Q+\frac{1}{2} P^{[2]} Q^{2}+\cdots
$$

- Numerov-Cooley procedure

$$
\Delta P_{0 \rightarrow n}=2\left(P_{n}-P_{0}\right) ; \quad P_{n}=\langle n| P(Q)|n\rangle
$$

- perturbational approach

$$
\Delta P_{0 \rightarrow n} \approx n \frac{\hbar}{\mu \omega_{e}}\left[P^{[2]}-\frac{1}{\mu \omega_{e}^{2}} P^{[1]} V^{[3]}\right]
$$

- good for analysis
- can offer error estimates
- we do not probe $P^{[0]}$ in the vibrational experiment
- we have models for rationalizing $P^{[0]}$
- very little is known about $P^{[1]}$ and $P^{[2]}$
- there can be cancellation or enhancement
- perturbational approach works well
how do we calculate P and V ?
- we calculate V using density functional theory (DFT) approximations
- we calculate P using DFT approximations or Hartree-Fock theory
how reliable are the DFT approximations (functionals)?
- using more and more sophisticated functionals does not guarantee to approach the experimental result
- wave-functional based methods can be systematically improved but they are currently not available for the property under study

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{SeO}$

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{SeO}$

method	harmonic	anharmonic
LDA	+0.0025	+0.0024
BLYP	+0.0024	+0.0023
B3LYP	+0.0022	+0.0020
PBE	+0.0023	+0.0022
PBE0	+0.0020	+0.0018
HF	+0.0009	+0.0005
* All numbers in Hz (all DC Hamiltonian).		

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}-\mathrm{ReOMe}$

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}-\mathrm{ReOMe}$

method	harmonic	anharmonic
LDA	-0.672	-0.753
BLYP	-0.582	-0.656
B3LYP	-0.482	-0.554
HF	-0.279	-0.341

method	$P^{[1]}$	$P^{[2]}$
LDA	-24.5	-8.5
BLYP	-22.7	-7.3
B3LYP	-21.8	-6.1
HF	-18.6	-3.5

* All numbers in Hz (all DC Hamiltonian).

CHClBrReO 3

CHClBrReO 3

method	harmonic	anharmonic
LDA	+0.040	-0.088
BLYP	+0.044	-0.082
B3LYP	+0.112	+0.070
HF	+0.453	+0.708

method	$P^{[1]}$	$P^{[2]}$
LDA	+19.8	+5.2
BLYP	+19.4	+5.7
B3LYP	+6.1	+14.8
HF	-42.5	+58.1

* All numbers in Hz (all DC Hamiltonian).

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}-\mathrm{ReO}_{2} \mathrm{Me}$ (isomer 1)

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}-\mathrm{ReO}_{2} \mathrm{Me}$ (isomer 1)

method	harmonic	anharmonic
LDA	+0.778	+0.933
BLYP	+0.739	+0.865
B3LYP	+0.399	+0.479
HF	-0.749	-0.409

method	$P^{[1]}$	$P^{[2]}$
LDA	-18.2	+52.1
BLYP	-14.9	+49.4
B3LYP	-9.6	+26.9
HF	-36.3	-48.2

* All numbers in Hz (all DC Hamiltonian).

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}-\mathrm{ReO}_{2} \mathrm{Me}$ (isomer 2)

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}-\mathrm{ReO}_{2} \mathrm{Me}$ (isomer 2)

method	harmonic	anharmonic
LDA	+0.923	+1.053
BLYP	+0.870	+0.969
B3LYP	+0.494	+0.528
HF	-0.957	-0.816

method	$P^{[1]}$	$P^{[2]}$
LDA	-15.3	+49.0
BLYP	-11.9	+46.1
B3LYP	-4.4	+26.4
HF	-14.8	-49.1

* All numbers in Hz (all DC Hamiltonian).

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}-\mathrm{ReO}_{2} \mathrm{Me}$ (isomer 3)

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OS}-\mathrm{ReO}_{2} \mathrm{Me}$ (isomer 3)

method	harmonic	anharmonic
BLYP	-0.056	-0.162
B3LYP	-0.047	-0.077
HF	+0.602	+0.828

method	$P^{[1]}$	$P^{[2]}$
BLYP	-20.5	-7.6
B3LYP	-5.5	-6.4
HF	+43.4	+75.2

* All numbers in Hz (all DC Hamiltonian).
- we obtain significant PV shifts for all studied Re complexes
- we see large sensitivity on molecular structure elements
- we see large sensitivity on choice of method (functional)
- lacking higher-level methods we cannot judge the quality of our results
- we need to develop higher-level methods and push the machinery to the limit

