Recent computational results in Tromsø and Toulouse

Radovan Bast

Laboratoire de Chimie et Physique Quantiques Université de Toulouse 3 (Paul Sabatier) 118 route de Narbonne 31062 Toulouse (France)

my PV background and commitment

- 2002 undergrad project in Peter's group calculations with the DIRAC code
- 2004–2008 Ph.D. in Trond's group DIRAC calculations and development (NMR parameters)
- 2008-2011 post-doc in the group of Kenneth Ruud
- since October 2011: CR2 in Toulouse

what theoretical chemistry can do for PV

- calculate effect (pre-screening)
- know the approximations and limits
- develop better methods

$$\beta' mc^{2} + VI_{4\times4} + c(\vec{\alpha} \cdot \vec{p})\psi = E\psi$$
$$\begin{bmatrix} VI_{2\times2} & c(\vec{\sigma} \cdot \vec{p}) \\ c(\vec{\sigma} \cdot \vec{p}) & (V - 2mc^{2})I_{2\times2} \end{bmatrix} \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix} = E \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix}$$
$$c(\vec{\sigma} \cdot \vec{p})\psi^{\mathsf{L}} + (V - 2mc^{2})I_{2\times2}\psi^{\mathsf{S}} = E\psi^{\mathsf{S}}$$

$$\lim_{c \to \infty} c \psi^{\mathsf{S}} = \frac{1}{2m} (\vec{\sigma} \cdot \vec{p}) \psi$$

$$H_{\mathsf{PV}} = \sum_{A} H_{\mathsf{PV}}^{A}$$

$$\begin{split} E_{\mathsf{PV}}^{A} &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \langle \psi_{i} | \gamma_{5} \rho^{A}(\mathbf{r}_{i}) | \psi_{i} \rangle \\ &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \left[\langle \psi_{i}^{\mathsf{L}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{S}} \rangle + \langle \psi_{i}^{\mathsf{S}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{L}} \rangle \right] \end{split}$$

$$\lim_{c \to \infty} cH_{\mathsf{PV}}^A = \frac{1}{2m} \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^A \sum_i [I_{2 \times 2} \rho^A(\mathbf{r}_i), (\vec{\sigma} \cdot \vec{p})]_+$$

NCPCHEM meeting Rennes 3/23

$$\beta' mc^{2} + VI_{4\times4} + c(\vec{\alpha} \cdot \vec{p})\psi = E\psi$$
$$\begin{bmatrix} VI_{2\times2} & c(\vec{\sigma} \cdot \vec{p}) \\ c(\vec{\sigma} \cdot \vec{p}) & (V - 2mc^{2})I_{2\times2} \end{bmatrix} \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix} = E \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix}$$
$$c(\vec{\sigma} \cdot \vec{p})\psi^{\mathsf{L}} + (V - 2mc^{2})I_{2\times2}\psi^{\mathsf{S}} = E\psi^{\mathsf{S}}$$

$$\lim_{c \to \infty} c\psi^{\mathsf{S}} = \frac{1}{2m} (\vec{\sigma} \cdot \vec{p}) \psi^{\mathsf{L}}$$
$$H_{\mathsf{PV}} = \sum H_{\mathsf{PV}}^{A}$$

$$\begin{split} E_{\mathsf{PV}}^{A} &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \langle \psi_{i} | \gamma_{5} \rho^{A}(\mathbf{r}_{i}) | \psi_{i} \rangle \\ &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \left[\langle \psi_{i}^{\mathsf{L}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{S}} \rangle + \langle \psi_{i}^{\mathsf{S}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{L}} \rangle \right] \end{split}$$

$$\lim_{c \to \infty} cH_{\mathsf{PV}}^A = \frac{1}{2m} \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^A \sum_i [I_{2 \times 2} \rho^A(\mathbf{r}_i), (\vec{\sigma} \cdot \vec{p})]_+$$

NCPCHEM meeting Rennes 4/23

$$\beta' mc^{2} + VI_{4\times4} + c(\vec{\alpha} \cdot \vec{p})\psi = E\psi$$

$$\begin{bmatrix} VI_{2\times2} & c(\vec{\sigma} \cdot \vec{p}) \\ c(\vec{\sigma} \cdot \vec{p}) & (V - 2mc^{2})I_{2\times2} \end{bmatrix} \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix} = E \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix}$$

$$c(\vec{\sigma} \cdot \vec{p})\psi^{\mathsf{L}} + (V - 2mc^{2})I_{2\times2}\psi^{\mathsf{S}} = E\psi^{\mathsf{S}}$$

$$\lim_{c \to \infty} c \psi^{\mathsf{S}} = \frac{1}{2m} (\vec{\sigma} \cdot \vec{p}) \psi^{\mathsf{L}}$$

$$H_{\mathsf{PV}} = \sum_{A} H_{\mathsf{PV}}^{A}$$

$$\begin{split} E_{\mathsf{PV}}^{A} &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \langle \psi_{i} | \gamma_{5} \rho^{A}(\mathbf{r}_{i}) | \psi_{i} \rangle \\ &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \left[\langle \psi_{i}^{\mathsf{L}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{S}} \rangle + \langle \psi_{i}^{\mathsf{S}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{L}} \rangle \right] \end{split}$$

$$\lim_{c \to \infty} cH_{\mathsf{PV}}^A = \frac{1}{2m} \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^A \sum_i [I_{2 \times 2} \rho^A(\mathbf{r}_i), (\vec{\sigma} \cdot \vec{p})]_+$$

NCPCHEM meeting Rennes 5/23

$$\beta' mc^{2} + VI_{4\times4} + c(\vec{\alpha} \cdot \vec{p})\psi = E\psi$$

$$\begin{bmatrix} VI_{2\times2} & c(\vec{\sigma} \cdot \vec{p}) \\ c(\vec{\sigma} \cdot \vec{p}) & (V - 2mc^{2})I_{2\times2} \end{bmatrix} \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix} = E \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix}$$

$$c(\vec{\sigma} \cdot \vec{p})\psi^{\mathsf{L}} + (V - 2mc^{2})I_{2\times2}\psi^{\mathsf{S}} = E\psi^{\mathsf{S}}$$

$$\lim_{c \to \infty} c \psi^{\mathsf{S}} = \frac{1}{2m} (\vec{\sigma} \cdot \vec{p}) \psi^{\mathsf{L}}$$

$$H_{\mathsf{PV}} = \sum_{A} H_{\mathsf{PV}}^{A}$$

$$\begin{split} E_{\mathsf{PV}}^{A} &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \langle \psi_{i} | \gamma_{5} \rho^{A}(\mathbf{r}_{i}) | \psi_{i} \rangle \\ &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \left[\langle \psi_{i}^{\mathsf{L}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{S}} \rangle + \langle \psi_{i}^{\mathsf{S}} | I_{2\times 2} \rho^{A}(\mathbf{r}_{i}) | \psi_{i}^{\mathsf{L}} \rangle \right] \end{split}$$

$$\lim_{c \to \infty} cH_{\mathsf{PV}}^A = \frac{1}{2m} \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^A \sum_i [I_{2 \times 2} \rho^A(\mathbf{r}_i), (\vec{\sigma} \cdot \vec{p})]_+$$

NCPCHEM meeting Rennes 6/23

computational protocol

- optimize structure
- obtain harmonic force field
- perturb molecule along a selected mode
- calculate energy at these displaced geometries
- calculate E_{PV} = P^[0] at these displaced geometries (slow)
- calculate $\Delta P_{0 \rightarrow n}$

7/23

approximations

- Born–Oppenheimer approximation
- electron correlation is approximated
- relativity is approximated (relativistic treatment crucial)
- assume that wavefunction is dominated by one electron occupation (self-consistent field)
- we follow normal modes: uncoupled picture
- no environment (molecule alone in the universe)

NCPCHEM meeting Rennes

computational protocol

- optimize structure
- obtain harmonic force field
- perturb molecule along a selected mode
- calculate energy at these displaced geometries
- calculate E_{PV} = P^[0] at these displaced geometries (slow)
- calculate $\Delta P_{0 \rightarrow n}$

approximations

- Born–Oppenheimer approximation
- electron correlation is approximated
- relativity is approximated (relativistic treatment crucial)
- assume that wavefunction is dominated by one electron occupation (self-consistent field)
- we follow normal modes: uncoupled picture
- no environment (molecule alone in the universe)

• fit polynomials to P(Q) and V(Q)

$$P(Q) = P^{[0]} + P^{[1]}Q + \frac{1}{2}P^{[2]}Q^2 + \cdots$$

Numerov–Cooley procedure

$$\Delta P_{0 \to n} = 2(P_n - P_0); \qquad P_n = \langle n | P(Q) | n \rangle$$

perturbational approach

$$\Delta P_{0\to n} \approx n \frac{\hbar}{\mu\omega_e} \left[P^{[2]} - \frac{1}{\mu\omega_e^2} P^{[1]} V^{[3]} \right]$$

- good for analysis
- can offer error estimates
- we do not probe $P^{[0]}$ in the vibrational experiment
- we have models for rationalizing $P^{[0]}$
- very little is known about $P^{[1]}$ and $P^{[2]}$
- there can be cancellation or enhancement
- perturbational approach works well

how do we calculate P and V?

- we calculate V using density functional theory (DFT) approximations
- we calculate *P* using DFT approximations or Hartree–Fock theory

how reliable are the DFT approximations (functionals)?

- using more and more sophisticated functionals does not guarantee to approach the experimental result
- wave-functional based methods can be systematically improved but they are currently not available for the property under study

 $\mathsf{C}_3\mathsf{H}_6\mathsf{SeO}$

$\mathsf{C}_3\mathsf{H}_6\mathsf{SeO}$

method	harmonic	anharmonic
LDA	+0.0025	+0.0024
BLYP	+0.0024	+0.0023
B3LYP	+0.0022	+0.0020
PBE	+0.0023	+0.0022
PBE0	+0.0020	+0.0018
HF	+0.0009	+0.0005

* All numbers in Hz (all DC Hamiltonian).

$\mathsf{C}_5\mathsf{H}_7\mathsf{NOS}\text{-}\mathsf{ReOMe}$

C₅H₇NOS-ReOMe

method	harmor	nic a	anharmonic
LDA	-0.6	72	-0.753
BLYP	-0.5	82	-0.656
B3LYP	-0.4	82	-0.554
HF	-0.2	79	-0.341
method	$P^{[1]}$	$P^{[2]}$	
LDA	-24.5	-8.5	5
BLYP	-22.7	-7.3	8
B3LYP	-21.8	-6.1	

* All numbers in Hz (all DC Hamiltonian).

-3.5

-18.6

HF

CHCIBrReO3

CHCIBrReO3

method	harmoni	c anh	armonic
LDA	+0.04	0	-0.088
BLYP	+0.04	4	-0.082
B3LYP	+0.11	2	+0.070
HF	+0.45	3	+0.708
method	$P^{[1]}$	$P^{[2]}$	
LDA	+19.8	+5.2	_
BLYP	+19.4	+5.7	
B3LYP	+6.1	+14.8	
HF	-42.5	+58.1	

* All numbers in Hz (all DC Hamiltonian).

 $C_3H_6OS-ReO_2Me$ (isomer 1)

$C_3H_6OS-ReO_2Me$ (isomer 1)

method	harmon	ic anh	narmonic
LDA	+0.7	78	+0.933
BLYP	+0.73	39	+0.865
B3LYP	+0.39	99	+0.479
HF	-0.74	49	-0.409
method	$P^{[1]}$	$P^{[2]}$	
LDA	-18.2	+52.1	_
BLYP	-14.9	+49.4	
B3LYP	-9.6	+26.9	
HF	-36.3	-48.2	

* All numbers in Hz (all DC Hamiltonian). $C_3H_6OS-ReO_2Me$ (isomer 2)

$C_3H_6OS-ReO_2Me$ (isomer 2)

method	harmon	ic anl	armonic
LDA	+0.92	23	+1.053
BLYP	+0.87	70	+0.969
B3LYP	+0.49	94	+0.528
HF	-0.95	57	-0.816
method	$P^{[1]}$	$P^{[2]}$	
LDA	-15.3	+49.0	-
BLYP	-11.9	+46.1	
B3LYP	-4.4	+26.4	

* All numbers in Hz (all DC Hamiltonian).

-49.1

-14.8

HF

 $C_3H_6OS-ReO_2Me$ (isomer 3)

$C_3H_6OS-ReO_2Me$ (isomer 3)

method	harmonic	anharmonic
BLYP	-0.056	-0.162
B3LYP	-0.047	-0.077
HF	+0.602	+0.828
	[-]	[0]
method	$P^{[1]}$	$P^{[2]}$
BLYP	-20.5	-7.6
B3LYP	-5.5	-6.4
HF	+43.4	+75.2

* All numbers in Hz (all DC Hamiltonian).

conclusions

- we obtain significant PV shifts for all studied Re complexes
- we see large sensitivity on molecular structure elements
- we see large sensitivity on choice of method (functional)
- lacking higher-level methods we cannot judge the quality of our results
- we need to develop higher-level methods and push the machinery to the limit