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In order to guide the experimental search for parity violation in molecular systems, in part

motivated by the possible link to biomolecular homochirality, we present a detailed analysis in a

relativistic framework of the mechanism behind the tiny energy difference between enantiomers

induced by the weak force. A decomposition of the molecular expectation value into atomic

contributions reveals that the effect can be thought of as arising from a specific mixing of valence

s1/2 and p1/2 orbitals on a single center induced by a chiral molecular field. The intra-atomic

nature of the effect is further illustrated by visualization of the electron chirality density and

suggests that a simple model for parity violation in molecules may be constructed by combining

pre-calculated atomic quantities with simple bonding models. A 2-component relativistic

computational procedure is proposed which bridges the relativistic and non-relativistic approaches

to the calculation of parity violation in chiral molecules and allows us to explore the single-center

theorem in a variational setting.

1. Introduction

Emil Fischer’s pioneering studies of peptides and sugars in

1891 led to the classification of chiral molecules,1 (D)-sugars

and (L)-amino acids in particular, and to the confirmation of

Pasteur’s original conjecture that the universe is dissym-

metric.2 Note that chirality, or dissymmetry in the terminology

of Pasteur,3 implies absence of improper rotations, that is, an

achiral molecule is not necessarily devoid of any symmetry

elements. The discovery that the basic molecular building

blocks of living organisms have a distinct chirality, and that

only one enantiomeric form ((D)-sugars and (L)-amino acids) is

predominantly found in living systems, has puzzled

researchers for more than a century.4 In fact, the study of

proteinogenic amino acids from fossil bones shows that the

(L)-form has been the exclusive component in life forms for at

least 100 million years.5 It seems plausible that the onset of

biomolecular homochirality happened at an early stage in the

chemical/biological evolution process on earth, perhaps

around 4 billion years ago.

There are many hypotheses on the origin of biomolecular

homochirality (an excellent review on the various hypotheses

put forward over the last 60 years or so has been given

by Bonner6). The hypotheses can be classified broadly into

biotic and abiotic theories, with a further subdivision of

abiotic theories into deterministic and probabilistic, and

terrestrial and extra-terrestrial theories (panspermia theory

for the latter).7–11 The field is heavily debated and open

to much speculation, and it is fair to say that we do not

have a clear understanding of the pre-biotic chemistry

responsible for the emergence of single-handed molecules in

life.12 It is however clear that biomolecular homochirality

is one (of the many) necessary conditions for life, as it is

required to form the secondary, tertiary and quaternary

structures of the proteins to function correctly, as well

as the helical structure of the DNA and RNA. For example,

Urata et al. showed that the incorporation of an

(L)-ribonucleotide into the RNA or (L)-deoxyribonucleotide

into the DNA strand leads to significant destabilization of the

duplexes upsetting the Watson–Crick-pairing,13 and that

the chirality of homochiral nucleic acids is the primary

determinant for their helical sense.14,15 Moreover, this intrinsic

chirality at the microscopic level leads to handedness at the

macroscopic level.16,17
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A fundamental discovery in the middle of the last century is

that electroweak interactions give rise to primarily left-

spinning electrons during nuclear beta decay.18 This symmetry

breaking originates from parity violation (PV) at the quantum

level, correctly predicted in 1956 by Lee and Yang19 and put

into a firm quantum theory by Weinberg, Salam and

Glashow.20–23 Loosely speaking, our Universe is left-handed

and mirror-image symmetry is broken in quantum processes,

that is, the parity operator P does not commute any more with

the Hamiltonian of the system. This PV effect has been

measured and calculated very accurately from electroweak

theory for forbidden atomic transitions confirming the stan-

dard model in particle physics to high precision.24–27 From the

standard model it is also accepted that PV can lead to a small

energy difference between enantiomers of chiral molecules

(Vn–Ae coupling for the Z-boson exchange between electrons

and the nucleons),28,29 although there is no experimental

verification yet of this distinct symmetry breaking effect.30,31

For more recent reviews on PV effects in chiral molecules see

ref. 32–35.

Yamagata suggested in 1966 that ‘‘The asymmetric

appearance of biomolecules is most naturally explained by

supposing a slight breakdown of parity in electromagnetic

interaction and an accumulation of it in a series of chemical

reactions’’.36 While this (perhaps over-enthusiastic) statement

added a new hypothesis on the origin of biomolecular homo-

chirality, his next statement ‘‘Conversely, it seems that the

asymmetric existence of biomolecules verifies a parity

non-conservation in electromagnetic interaction. . . This

universality, if true, would promise similar results on other

planets than the Earth’’ is certainly incorrect. Note also that

Yamagata discusses the possibility of parity violation in

electromagnetic and not weak interactions. Nevertheless, the

possibility that PV effects lead to a clear deterministic selection

of one enantiomer over the other has led to an intense activity

in this field, most notably in early days of electroweak

quantum chemical investigations37 by Mason and

Tranter,38–43 and later by McDermott.44,45 However, the

energy PV energy difference between the enantiomers is

extremely small and on the order of 10�17 to 10�16 kJ mol�1.46,47

Moreover, the preference for one enantiomer over the other

critically depends on the conformation of the molecule and the

interaction with other molecules (such as water). For instance,

a slight rotation of the carboxyl group can easily change

the energetic preference from an (L)-amino acid to the

(D)-form.48–51 Moreover, as we learned in the last 10 years,

the computational results are also critically dependent on the

method applied.33,52–57 This led Bonner to the radical conclu-

sion that ‘‘there is no causal connection whatsoever between

parity violation in terrestrial biopolymers and that in nuclear

processes, and that parity violation inherent in biopolymers is

in no way the consequence of parity violation at the level of

fundamental particles’’.10 Nevertheless, PV as a cause of

biomolecular homochirality cannot be strictly ruled out and

requires more detailed investigations. What can perhaps be

ruled out, though, is the Salam hypothesis of a PV initiated

phase transition in (D)-amino acids, as large conversion

barriers for the racemization in the solid state would comple-

tely inhibit such a process.58

In the last twenty years a number of research groups began

to search for large PV effects in chiral molecules, both on the

experimental and the theoretical side (e.g. see review

articles33–35,47,59–61 on this subject). Yet, we are currently not

in the position to design new chiral molecules and estimate PV

effects by its order of magnitude without resorting to calcula-

tions. All we currently rely on is the high Z-scaling rule for the

nuclear spin-independent and the nuclear spin-dependent

components of the electroweak perturbation.28,29,37,62–64 A

deeper understanding of the mechanisms of PV in molecular

systems is very much needed in order to guide experiment

better. A significant contribution was provided by Hegstrom,

Rein and Sandars,37 pointing out the connection to optical

activity in molecules and introducing the single-center theo-

rem. A qualitative model of the PV in molecular systems was

proposed by Faglioni and Lazzeretti in a non-relativistic

framework.65 In the present work we present a detailed

analysis of PV in chiral molecules, but now in a 4-component

relativistic framework, which we believe will help to assist

further investigations in this new emerging field. In particular,

we perform a decomposition of the molecular expectation

value in intra- and inter-atomic contributions as well as a

visualization of the electron chirality density.66,67 We further-

more propose a bridge between the relativistic and

non-relativistic approaches to the calculation of the PV energy

in molecules by exploring the single-center theorem37 in a

variational setting.

2. Theory

2.1 Parity violation energy in molecular systems

The parity violating weak interaction in molecules is

dominated by the exchange of Z0 bosons between electrons

and nuclei (quarks). Detailed discussions of the interaction

Hamiltonian relevant for the study of PV in atoms and

molecules are found in ref. 32, 53 and 68–70. In the following

we shall simply sketch a derivation highlighting differences

between the weak and the electromagnetic interaction.

The Hamiltonian describing electromagnetic interactions

may be expressed as71

Hem
int = �

R
jmAmdt, (1)

where appears the 4-current jm = (j,icr) and 4-potential Am =

(A,if/c). In the following we employ implicit summation

and, following Sakurai,72 express 4-vectors using imaginary i

rather than resorting to a metric. The 4-potential is the

solution of Maxwell’s equation which in Lorentz gauge

reads

&2Am = �4p(jm/c2), (2)

where appears the d’Alembertian &2 ¼ r2 � 1
c2

@2

dt2
. Here and

in the following we employ SI-based atomic units. The

electromagnetic interaction is mediated by photons.

Anticipating massive vector bosons, we generalize the corres-

ponding equation for the Green’s function (propagator) as

(&2 � M2c2)G(r,t;r0,t0) = �4pd(r�r0) (3)
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which corresponds to the Klein–Gordon equation with a

source term. The 4D Fourier transformed Green’s function

is given by

Gðk;oÞ ¼ 4p
pmpm þM2c2

; pm ¼ ðk; io=cÞ: ð4Þ

Two limiting cases may now be distinguished: In the case of

electromagnetic interactions, the vector bosons (photons) do

not carry mass, and the (retarded) Green’s function

simplifies to

GðþÞðr; t; r0; t0Þ ¼ dðt0 � trÞ
jr� r0j ; tr ¼ t� jr� r0j

c
: ð5Þ

The electromagnetic interaction Hamiltonian eqn (1) can thus

be expressed as

Hem
int ¼ �

1

c2

Z
jmðr; tÞjmðr0; trÞ
jr� r0j dtdt0: ð6Þ

In the second limiting case the mass of the vector boson

overwhelms momentum exchange (pmpm) which leads to an

interaction Hamiltonian on the contact form given by Fermi in

his explanation of b-decay in 193473 (see ref. 74 for an English

translation). An effective Hamiltonian for the weak interaction

between electrons and nucleons, mediated by the neutral and

massive Z0 boson is accordingly given by

HFermi
int ¼ 4p

M2
Zc

4

Z
jemðr; tÞ

XZ
i

jpm;iðr; tÞ þ
XN
i

jnm;iðr; tÞ
 !

dt:

ð7Þ

The mass of the Z0 boson is 91.1876(21) GeV/c2,75 that is,

close to 98 Da.

Intriguingly, the weak force is the only interaction mediated

by massive vector bosons, leading to a contact-like interaction,

and also the only interaction allowing PV (the short range of

the nuclear force, despite the strong interaction being

mediated by massless gluons, is due to its van der Waals

like character69). The electromagnetic currents are vector

quantities

jm = �eccw(a,i)c, (8)

meaning that the spatial component changes sign under

inversion. They combine, however, to give a parity conserving

interaction. In contrast, the neutral currents of the weak

interaction are combinations of vector and axial-vector forms

jm ¼
ec

2 sinð2yWÞ
CV cyða; iÞc|fflfflfflfflffl{zfflfflfflfflffl}

ð�;þÞ

�CA cyðR; ig5Þc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðþ;�Þ

2
64

3
75; ð9Þ

where appears the g5 matrix

g5 ¼
02 12
12 02

� �
ð10Þ

and the Weinberg angle yW which describes the rotation of B0

and W0 bosons by spontaneous symmetry breaking to form

photons and Z0 bosons. The most recent value76 is sin2yW =

0.2397(13) (in the present work we have employed sin2yW =

0.2319). The axial-vector coupling coefficients for the neutron,

proton and electron are Cn
A = �Cp

A = Ce
A = �1 , respectively.

Likewise, the vector couping coefficients are Cn
V = �1 and

Cp
V = �Ce

V = 1�4sin2yW. For the nucleon currents, a non-

relativistic approximation is employed,70 setting the small

components to zero, such that only parity conserving parts

of the currents are retained.

The parentheses below the underbraces in eqn (9) indicate

the behaviour of the space and time components under

inversion. Combining the space components of the nucleon

axial-vector currents and the electron vector current and

(An�Ve coupling) leads to a nuclear spin-dependent inter-

action Hamiltonian which has been employed in theoretical

studies of PV in NMR spectra.64,77–87 In the present work,

however, we focus exclusively on the PV nuclear spin-

independent interaction Hamiltonian which is obtained by

combining the time components of the nucleon vector currents

and the electron axial-vector current (Vn–Ae coupling). At the

4-component relativistic level it is given by

HPV ¼
X
A

HA
PV; HA

PV ¼
GF

2
ffiffiffi
2
p QA

w

X
i

g5ðiÞrAðriÞ; ð11Þ

in which appears the weak nuclear charge

QA
W = ZACp

V + NACn
V = ZA(1�4sin2yW) � NA (12)

with ZA and NA representing the number of protons and

neutrons in nucleus A. The presence of normalized nuclear

charge densities rA restricts integration over electron

coordinates ri to nuclear regions and thereby provides a

natural partitioning of the operator in atomic contributions

ĤA
PV. The Fermi coupling constant

GF ¼ 2:22255� 10�14Eha
3
0

� 2
ffiffiffi
2
p 4p�h2

4pe0M2
Zc

4

� �
ec

2 sinð2yWÞ

� �2 ð13Þ

implies that the interaction is truly weak (the right-hand side

formula is only approximate in that the cited value also

contains radiative corrections). The parity violating energy

EPV can accordingly not be simply extracted from the total

electronic energy of a molecule in standard floating point

calculations and should rather be obtained in the framework

of perturbation theory. In a relativistic framework the parity

violating energy can be calculated as an expectation value

EPV ¼
X
A

hHA
PVi: ð14Þ

In a non-relativistic (NR) framework the PV Hamiltonian

reduces to

HPV;NR ¼
X
A

HA
PV;NR;

HA
PV;NR ¼

GF

4mc
ffiffiffi
2
p QA

w

X
i

fri � p; qAðriÞgþ:
ð15Þ

This purely imaginary operator gives zero expectation value

for NR (real) wave functions. In a NR framework the parity

violating energy is therefore calculated as a static linear

response function52,54

EPV;NR ¼
X
AB

hhHA
PV;NR;HB

SOii0 ð16Þ
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(or approximated by a sum-over-states expression) by

coupling the NR PV operator with an operator describing

spin–orbit (SO) coupling contributions from individual

centers. A Z5
A scaling law has been deduced for EA

PV in

molecular systems, based on both the relativistic,28 eqn (14),

and NR29,37,62 expressions, eqn (16), for the PV energy.

2.2 Projection analysis of expectation values

At the 4-component relativistic Hartree–Fock (HF) and

Kohn–Sham (KS) level of theory the PV energy EPV is

straightforwardly calculated as an expectation value. Further

insight can be obtained by subjecting the expectation value to

projection analysis. Consider the expectation value of some

operator Ô in the HF or KS approach

O ¼ hCjÔjCi ¼
XNocc

i

hcijÔjcii: ð17Þ

We proceed, in the spirit of for instance the Townes–Dailey

model for nuclear quadrupole coupling constants,88 by

expanding the molecular orbitals (MO)ci in the atomic

orbitals cA
j of the constituent atoms

jcii ¼
X
Aj

jcA
j icAji þ jc

pol
i i; ð18Þ

where the index A labels the individual atoms (or, more

generally, individual fragments). Typically only the occupied

fragment orbitals will be employed, so whatever part of the

molecular orbitals which is not spanned by the selected set of

fragment orbitals is denoted the polarization contribution

cpol
i , which by construction is orthogonal to the fragment

orbitals. Projecting eqn (18) from the left by any fragment

orbital cB
k gives a system of linear equationsX

Aj

hcB
k jcA

j icAji ¼ hcB
k jcii; ð19Þ

which determines the expansion coefficients cAji .

Inserting the MO expansion, eqn (18) into the expectation

value, eqn (17) we obtain several terms

hCjÔjCi ¼
X
A

X
ijk

hcA
j jÔjcA

k icA�ji cAki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intra-atomic

þ
X
AaB

X
ijk

hcA
j jÔjcB

k icA�ji cBki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inter-atomic

þ ðpolÞ;

ð20Þ

which are conveniently divided into three classes: (i) intra-

atomic contributions involve only atomic orbitals from the

same center, (ii) inter-atomic contributions involve atomic

orbitals from two centers and (iii) polarization contributions

involve cpol
i . The usefulness of the projection analysis deterio-

rates with increasing importance of the latter contributions,

since they blur the distinction between intra- and inter-atomic

contributions. Setting Ô to the identity operator gives the

starting point for a population analysis89 equivalent to that

of Mulliken, but cured of the strong basis-set dependence

which renders Mulliken population analysis at best ambiguous

in many cases.

3. Computational details

All calculations have been carried out with a development

version of the DIRAC program package.90 For the series

H2X2 (X=O, S, Se, Te, Po) we have carried out 4-component

relativistic HF and KS calculations based on the Dirac–

Coulomb (DC) Hamiltonian. We have employed the density

functionals LDA (SVWN5),91,92 BLYP,93–95 and B3LYP,96,97

representative of the three first rungs of the Jacob’s ladder of

density functional approximations.98 We have adopted the

even-tempered basis sets and geometric parameters of ref. 63

with the H–X–X–H dihedral angle defined to correspond to

the (P)-enantiomer. The small component basis sets were

generated by restricted kinetic balance imposed in the

canonical orthonormalization step.99 The two-electron

Coulomb integrals (SS|SS), involving only the small compo-

nents, were neglected in all calculations and the energy

corrected by a simple point-charge model.100 For the projec-

tion analysis atomic orbitals for the constituent atoms were

precalculated in their own atomic basis based on the ground

state electronic configurations. We employed average SCF in

the case of HF and fractional occupation in the case of KS.

For the CHBrClF molecule we carried out 4- and

2-component relativistic HF calculations, the latter based on

the one-step, exact two-component (X2C) relativistic

Hamiltonian101 in spin–orbit free form. We employed the

AMFI code102,103 to provide one- and two-electron spin–orbit

corrections, see ref. 104 for more details. For comparative

purposes with respect to the 4-component DC Hamiltonian,

the two-electron SO terms of the AMFI operator contain only

the spin-same-orbit part. A specificity of our interface to

AMFI is that it allows the selection of nuclei for which

spin–orbit corrections are supplied. Basis sets and geometric

parameters as well as the scalar relativistic CCSD(T) potential

curve along the C–F stretching mode were taken from ref. 105.

The PV shift was calculated by double perturbation theory56

DP0!1 ¼ 2ðP1 � P0Þ �
�h

moe
P½2� � 1

mo2
e

P½1�V ½3�
� �

ð21Þ

where V[n] and P[n] are the MacLaurin expansion coefficients of

the potential and property curves along the normal coordinate

q, respectively. Pn = hn|P(q)|ni is the value of the property, in
this case EPV, in vibrational state n of the selected normal

mode and m is the corresponding reduced mass.

Unless otherwise stated, a Gaussian charge distribution has

been chosen as the nuclear model using the recommended

values of ref. 106. All basis sets are used in the

uncontracted form.

4. Results and discussion

4.1 Projection analysis of the PV expectation value

The PV energy can be written as a sum of atomic contributions

EPV ¼
X
A

EA
PV ¼

GF

2
ffiffiffi
2
p
X
A

QA
wM

A
PV: ð22Þ
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In the following we will concentrate on the reduced contri-

butions MX
PV = hC|g5r

X|Ci. In Fig. 1 we show the reduced

contribution MTe
PV of a Te atom in H2 Te2 as a function of the

H–Te–Te–H dihedral angle j , calculated at the HF level as

well as with three different density functionals. We observe the

characteristic sigmoidal curve found for H2X2 systems by

previous authors40,52,53,55,63,64,83,107,108 and which is also found

when optical activity is plotted as a function of dihedral angle

for the same systems (see for instance ref. 109). The MX
PV is

zero by symmetry for dihedral angles 01 and 1801, whereas the

crossing of the abcissa in the vicinity of the dihedral angle 901

occurs for a chiral conformation and therefore bars the use of

the PV energy EPV as a chirality measure, as is the case for any

pseudoscalar function.110,111 We note that the four curves

traced in Fig. 1 are qualitatively the same, but the three

density functionals distinguish themselves from HF by giving

more pronounced maxima around 451 and minima

around 1351.

A compact representation of the sigmoidal curves is

provided by Fourier decomposition

MX
PVðjÞ ¼

X1
n¼1

FX
n sinðnjÞ: ð23Þ

In Fig. 2 we trace the Fourier components of the reduced

contribution MTe
PV of a Te atom in H2 Te2 as a function of

dihedral angle j, calculated at the HF level. The curve is

clearly dominated by the F2 component, whereas the F1 is the

prime responsible for shifting the crossing of the abscissa off

from dihedral angle 901. In Table 1 we give the F2 component

of MX
PV for the series H2X2 (X= O, S, Se, Te, Po). One clearly

sees how the values obtained with the three density functionals

LDA, BLYP and B3LYP tend to cluster away from the HF

value, although the distinction becomes less pronounced for

the heavier systems. One also observes that the PV energy

increases by orders of magnitude for the heavier systems. We

will explore the scaling of the PV energy in more detail later in

this section.

In order to obtain a deeper understanding of parity

violation in molecular systems, we will subject the reduced

contributions MX
PV to the projection analysis of expectation

values introduced in section 2.2. Our results are summarized in

Table 2 and illustrated for H2 Te2 in Fig. 3. All numbers refer

to HF calculations, but the conclusions are valid for the KS

level as well. The projection analysis clearly shows that the

reduced contribution MX
PV is completely dominated by

intra-atomic contributions from the same center (X), although

some uncertainty is introduced by the polarization contri-

bution, which rises rather steadily from 4.7% to 20.3%

through the series. All other intra-atomic contributions

as well as the inter-atomic contributions are completely

negligible. For H2Po2 we find that the inclusion of the virtual

7s1/2 orbital in the projection analysis reduces the polarization

contribution from 20.3% to below 6.0%. We believe that this

is due to the combined effect of the increasing polarisability of

atoms when descending a row in the periodic table and the

significant relativistic stabilization of the 7s1/2 orbital. We find,
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Fig. 1 Reduced contributionMTe
PV for H2Te2 as a function of dihedral

angle. All values are in atomic units.

Fig. 2 Fourier decomposition of the reduced contribution MTe
PV for

H2Te2 calculated at the HF level as a function of dihedral angle. All

values in atomic units.

Table 1 Fourier component F2 of the reduced contribution MX
PV to

the PV energy for the series H2X2 (X = O, S, Se, Te, Po). All values in
atomic units. The square brackets denote powers of 10

H2O2 H2S2 H2Se2 H2Te2 H2Po2

HF 6.729[�6] 7.435[�5] 3.163[�3] 2.787[�2] 7.955[�1]
LDA 7.441[�6] 9.522[�5] 4.335[�3] 3.697[�2] 7.444[�1]
BLYP 7.238[�6] 9.554[�5] 4.204[�3] 3.585[�2] 7.5044[�1]
B3LYP 7.163[�6] 9.162[�5] 4.055[�3] 3.488[�2] 7.730[�1]

Table 2 Summary of projection analysis of the reduced contribution MX
PV to the PV energy, calculated at the HF level, for the series H2X2

(X = O, S, Se, Te, Po). All values are in atomic units. The square brackets denote powers of 10

H2O2 H2S2 H2Se2 H2Te2 H2Po2

Full 6.492[�6] 7.435[�5] 3.163[�3] 2.787[�2] 7.955[�1]
Intra(X) 5.879[�6] 6.876[�5] 2.717[�3] 2.459[�2] 6.334[�1]
Inter 3.060[�7] �1.212[�6] 3.074[�5] �1.233[�4] 9.569[�4]
Polar 3.066[�7] 6.798[�6] 4.152[�4] 3.407[�3] 1.611[�1]
MX

PV(ns1/2;np1/2) 8.819[�6] 8.548[�5] 3.773[�3] 3.216[�2] 7.728[�1]
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though, that the contribution of the 7s1/2 orbital to the

electronic configuration of the polonium atom in the molecule

is negligible.

The atomic nature of the reduced contribution MX
PV allows

us to deepen the analysis by expressing it in terms of atomic

orbitals from the same center X. We write the 4-component

relativistic atomic orbitals as

c ¼
cLa

cLb

cSa

cSb

2
664

3
775 ¼ RLðrÞwk;mj

ðy;fÞ
iRSðrÞw�k;mj

ðy;fÞ

" #
; ð24Þ

where RL and RS are the large and small radial functions,

respectively and wk,mj
the 2-component angular functions. Our

analysis so far shows that MX
PV is very well approximated by

MX
PV �

X
ij

hcX
i jg5rX jcX

j i

¼ ifhRL;X
i jrX jR

S;X
j irhwXki ;mi

jwX�kj ;�mj
iy;f

� hRS;X
i jrX jR

L;X
j irhwX�ki ;mi

jwXkj ;�mj
iy;fg;

ð25Þ

where subscripts r and (y,f) refer to radial and angular

integration, respectively. From the angular integration we

obtain the restrictions ki = �kj and mi = mj. These already

imply that the expectation value is strictly zero for an

unpolarized atom. Further insight is obtained from the radial

integration. Due to the extremely local nature of the nuclear

charge distribution, it is sufficient to consider small r solutions

of the radial functions112,113

RL = rg�1(p0+p1r+p2r2+� � �) (26)

RS = rg�1(q0+q1r+q2r
2+� � �). (27)

For a point nucleus g ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � Z2=c2

p
o kj j such that there is

a weak singularity at the nucleus for |k| = 1. This implies that

the only contributions to MX
PV arises from the mixing of s1/2

and p1/2 orbitals on the same center X. However, further

contributions are allowed if we consider the more realistic

model of extended nuclei. We then have g = |k| and no

singularities. For k o 0 we have q0 = p1 = 0, whereas for

k > 0 the conditions p0 = q1 = 0 hold. Again only s1/2 and

p1/2 orbitals have non-zero contributions at the origin. In

particular, for s1/2 orbitals RL = p0 and RS = 0, where p0 is

determined from the normalization of the orbital. Likewise,

for p1/2 orbitals R
L = 0 and RS = q0 where q0 is determined

from normalization. However, the finite extent of the nuclear

charge distribution means that contributions from any pair of

atomic orbitals with same j, but opposite k is now allowed.

These findings are illustrated in Tables 3 and 4 where we give

selected matrix elementshcPo
i |g5r

Po|cPo
j i for the polonium

atom using a Gaussian and a point charge nuclear model. In

Table 3 such elements are given between s1/2 and p1/2 orbitals.

It can be seen that the difference between the values of the

matrix elements obtained with the two different models for the

nuclear charge distribution are rather small. One can also

observe a difference of orders of magnitude of such matrix

elements when going from core to valence orbitals. In Table 4

such elements are given between p3/2 and d3/2 orbitals.

With a point nucleus such matrix elements are indeed zero

(to machine precision), whereas non-zero values are found

with an extended (Gaussian) nucleus, albeit significantly

smaller than the matrix elements involving s1/2 and p1/2.

Although Kriplovich114 points out that a finite nucleus does

result in mixing of orbitals other than s1/2 and p1/2, we are not

aware of studies of atomic PV that explore the modification of

selection rules by the combination of PV and the finite size of

the nucleus demonstrated above.

The picture that emerges from our analysis so far is that the

PV energy arises from mixing of atomic orbitals, in particular

s1/2 and p1/2 in the presence of a chiral molecular field. This is

in line with previous theoretical considerations.37,40,68,114,115
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Table 3 Matrix elements hcPo
i |g5r

Po|cPo
j i between s1/2 and p1/2 orbitals, calculated at the HF level. Numbers are given for a Gaussian nuclear

model as well as a point nucleus model, the latter in parenthesis. All values are in atomic units. The Square brackets denote powers of 10

2p1/2 3p1/2 4p1/2 5p1/2 6p1/2

1s1/2 1.385[+5] �7.082[+4] 3.583[+4] 1.573[+4] �4.904[+3]
(1.551[+5]) (�7.942[+4]) (4.018[+4]) (1.764[+4]) (�5.499[+3]

2s1/2 5.486[+4] �2.806[+4] 1.419[+4] 6.233[+3] �1.943[+3]
(6.148[+4]) (�3.148[+4]) (1.593[+4]) (6.992[+3]) (�2.180[+3])

3s1/2 �2.646[+4] 1.354[+4] �6.847[+3] �3.007[+3] 9.372[+2]
(�2.966[+4]) (1.519[+4]) (�7.683[+3]) (�3.373[+3]) (1.051[+3])

4s1/2 1.345[+4] �6.881[+3] 3.481[+3] 1.529[+3] �4.765[+2]
(1.508[+4]) (�7.720[+3]) (3.906[+3]) (1.715[+3]) (�5.346[+2]

5s1/2 �6.182[+3] 3.162[+3] �1.600[+3] �7.024[+2] 2.190[+2]
(�6.929[+3]) (3.548[+3]) (�1.795[+3]) (�7.881[+2]) (2.457[+2])

6s1/2 2.260[+3] �1.156[+3] 5.489[+2] 2.568[+2] �8.006[+1]
(2.534[+3]) (�1.297[+3]) (6.562[+2]) (2.881[+2]) (�8.982[+1])

Fig. 3 Projection analysis of the reduced contributionMTe
PV for H2Te2

calculated at the HF level as a function of dihedral angle, see text for

more details. All values in atomic units.

6 | Phys. Chem. Chem. Phys., 2010, 12, 1–13 This journal is �c the Owner Societies 2010



The novelty of our approach is that we have developed an

analysis tool which allows us to study these effects in a detailed

and quantitative manner for any molecular system.

In atoms such mixing leads to non-zero transition

amplitudes for parity-forbidden electric dipole transitions such

as the 6S1/2 - 7S1/2 transition in caesium which has been

observed by experiment.116,117 Clearly s1/2 and p1/2 orbitals

already mix in the X2 moiety for which EPV is strictly zero, so

the nature of this mixing has to be considered in more detail.

We note that according to eqn (25) the inter-atomic matrix

elements hcX
i |g5r

X|cX
j i should be purely imaginary, whereas

the actual elements given in Tables 3 and 4 are real. This

follows from a specific choice of phase, which will be impor-

tant in the following. Relativistic atomic orbitals are usually

given as in eqn (24) with a purely imaginary phase on the small

component to assure real radial functions, but this is not the

only possibility. We will introduce a choice of phase that to

largest possible extent leads to real coefficients when mixing

atomic orbitals into molecular ones. 4-component relativistic

orbitals (4-spinors) span fermion irreps, that is, the extra irreps

of the double groups. However, as pointed out in ref. 118,

the real and imaginary parts of each component span

boson irreps, that is, the irreps of single point groups.

The phase of atomic orbitals is fixed to within a real phase

by insisting on a specific symmetry structure of gerade and

ungerade orbitals

cg ¼

ðG0;GRzÞ

ðGRy ;GRxÞ

ðGxyz;GzÞ

ðGy;GxÞ

2
6666664

3
7777775; cu ¼

ðGxyz;GzÞ

ðGy;GxÞ

ðG0;GRzÞ

ðGRy ;GRxÞ

2
6666664

3
7777775 ¼ Gxyz 	 cg:

ð28Þ

In the above expression G0 refers to the totally symmetric

irrep, Gq and GRq
(q = x,y,z) to the symmetry of the

coordinates and rotations, respectively, and finally Gxyz to

the symmetry of the function xyz, which is the symmetry of the

g5 matrix. In fact, the phases are fixed by selecting G0 and Gxyz

for gerade and ungerade orbitals, respectively, as the symmetry

of the real part of the La component. With this choice of

phase, s1/2 will have the structure as given in eqn (24), but for

p1/2 orbitals the imaginary phase is moved to the large

component. The matrix elements between s1/2 and p1/2 orbitals

now become purely real, that is,

hsX1/2|g5rX|pX1/2i = hRL;X
s |rX|RS;X

p ir + hRS;X
s |rX|RL;X

p ir. (29)

Consider now the mixing of s1/2 and p1/2 orbitals on the same

center X when atomic symmetry is broken in a molecule

cþ

c�

" #
¼

cos y eif sin y

�e�if sin y cos y

" # sX1=2

pX1=2

2
4

3
5; y 2 � p

2
;
p
2

h i
:

ð30Þ

The generally unitary transformation has been selected such

that the resulting function c+ has a real coefficient cosy for the
s1/2 orbital. We then find

hc+|g5r
X|c+i = 2 cosycosf sinyhsX1/2|g5rX|pX1/2i

= �hc�|g5rX|c�i. (31)

From the above result we can draw two conclusions: (i) The

presence of the factor cosf in the above expression shows that a

non-zero contribution is only obtained when the mixing coeffi-

cient of the p1/2 orbital has a real component. (ii) c+ and c�
must contribute with unequal weight in the molecular wave

function, otherwise they cancel each other. The latter conclusion

explains why core orbitals generally do not contribute to the PV

energy,63 although Tables 3 and 4 show that their matrix

elements are significantly larger than matrix elements over

valence orbitals. Indeed, Fig. 3 and Table 2 clearly show that

the reduced contribution MX
PV is completely dominated by the

mixing of valence s1/2 and p1/2 orbitals on the same center X.

The above analysis shows that for the series H2X2

(X = O, S, Se, Te, Po) the reduced contribution is very well

approximated by

MX
PV � hnsX1=2jg5rX jnpX1=2i 2Re

X
i

cðnsA1=2Þ
?
i cðnpA1=2Þi

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{mixing

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
total

;

ð32Þ

where the index i sums over molecular orbitals. In Fig. 4 we

give a log–log plot showing the scaling behaviour of the
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Fig. 4 Log–log plot showing the scaling of reduced contributionMX

PV

as a function of nuclear charge Z along the series H2X2 (X= O, S, Se,

Te, Po) (log(MX
PV) vs. log(Z)). The total contribution is split into an

atomic integral hnsX1/2|g5rX|npX1/2i weighted by the mixing coefficients of

the atomic orbitals in the molecule as in eqn (32).

Table 4 Matrix elements hcPo
i |g5r

Po|cPo
j i between p3/2 and d3/2

orbitals, calculated at the HF level. Numbers are given for a
Gaussian nuclear model as well as a point nucleus model, the latter
in parenthesis. All values are in atomic units. The square brackets
denote powers of 10

3d3/2 4d3/2 5d3/2

2p3/2 �1.185[�02] 6.311[�03] �2.348[�03]
(�4.598[�21]) (2.403[�22]) (4.869[�20])

3p3/2 6.277[�03] �3.343[�03] 1.244[�03]
(�2.365[�20]) (1.2361[�21]) (2.504[�19])

4p3/2 �3.193[�03] 1.701[�03] �6.330[�04]
(1.052[�20]) (�5.500[�22]) (�1.114[�19])

5p3/2 1.380[�03] �7.348[�04] 2.734[�04]
(�2.491[�19]) (1.302[�20]) (2.638[�18])

6p3/2 3.989[�04] �2.125[�04] 7.907[�05]
(3.287[�19]) (�1.718[�20]) (�3.480[�18])
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reduced contribution along the series. Although not strictly

linear, it can be seen that the atomic matrix element

hnsX1/2|g5rX|npX1/2i scales approximately as Z2.6, thus confirming

the Z3 scaling law proposed by Bouchiat and Bouchiat.68 The

mixing coefficient, which we from eqn (16) can associate with

spin–orbit coupling from the neighbouring centers, scales as

Z2.1, thus giving an overall scaling Z4.8, in agreement with

previous estimates.28,29,37,62

4.2 Visualization of the electron chirality density in the

4-component relativistic framework

In section 2.2 the reduced contributions

MX
PV ¼

XNocc

i

hcijg5rX jcii ð33Þ

have been studied by means of a projection analysis. The

integrals MX
PV have been shown to exhibit an intriguing

dependence on the H–X–X–H dihedral angle through the

changing chiral environment probed at the atomic centers X

and in their immediate vicinity by the normalized nuclear

charge distribution rX. In this section we wish to visualize

this dependence by defining a density g5(r), such that

Z
g5ðrÞrXðrÞdr 


XNocc

i

hcijg5rX jcii: ð34Þ

If we consider the atomic centers X fixed in space during the

variation of the H–X–X–H dihedral angle (Fig. 5) then the

geometry dependence of MX
PV is carried by the g5(r) density

alone, whereas the probing rX(r) is independent of the

positions of other atoms and therefore independent of the

chiral environment created by these centers.

The density g5(r) has been introduced in the NR framework

by Hegstrom66,67 under the name electron chirality density, a

name which we will adopt also in our work. In the

4-component relativistic theory the density g5(r) takes a

particularly simple form given the structure of the g5 Dirac

matrix, eqn (10) and can be evaluated in AO basis according to

g5ðrÞ ¼
X
kl

½wykðrÞwlðrÞDlk þ wylðrÞwkðrÞDkl�; ð35Þ

where the indices k and l map large and small component

basis functions w, respectively, and Dlk represents elements of

the AO density matrix. In contrast to the NR theory where SO

coupling needs to be introduced perturbationally to yield

nonzero g5(r), we can work with the unperturbed SCF density

matrix since SO coupling is introduced variationally from

the start.

The significance of the electron chirality density is the fact

that an understanding and modeling of the electron chirality

density depending on the molecular building blocks and their

relative geometry and orientation would allow the modeling of

the PV expectation value. The relationship between g5(r) and
the PV expectation value is particularly simple when using the

point charge (PC) nuclear model:

EPC
PV ¼

GF

2
ffiffiffi
2
p
X
A

QA
w

Z
g5ðrÞrAd3ðr� rAÞdr ¼

GF

2
ffiffiffi
2
p
X
A

QA
wg5ðrAÞ:

ð36Þ

Using this model, g5(rA) =MA
PV, and the PV expectation value

is a simple sum of the electron chirality densities evaluated at

the atomic centers A and scaled with the respective weak

charges QA
w and the prefactor GF=2

ffiffiffi
2
p

whereas the more

realistic Gaussian distribution model for the normalized

nuclear charge density rA would require the knowledge of

g5(r) also in the close vicinity of the nuclear center.

It is important to realize that the electron chirality density

g5(r) itself is very atomic in nature. This follows from the very

atomic nature of the small components and the fact that the g5
matrix, eqn (10), couples the large and the small components

of 4-spinors. This feature is illustrated in Fig. 6 where we

compare the reduced contribution MTe
PV and the integrated

electron chirality density for H2Te2, both calculated at the HF

level, as a function of dihedral angle. The two curves are

qualitatively very similar (Fig. 6), but only MTe
PV is integrated

including the nucleon density.

In Fig. 7 we have plotted the HF g5(r) around one Te atom

in H2Te2 for selected H–Te–Te–H dihedral angles using

the orientation sketched in Fig. 5. The dimensions of the plots
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Fig. 5 Orientation of the H2Te2 molecule employed in the

visualization of the electron chirality density (Fig. 7). The dihedral

angle H–Te–Te–H is twice the angle between the Te–Te–H plane and

the yz plane. The electron chirality density is plotted in the xz plane

around one Te atom (gray rectangle; size of this rectangle is not

proportional to the bond distances).

Fig. 6 Reduced HF contribution MTe
PV for H2Te2 (left axis) and the

integrated HF electron chirality density g5(r), eqn (35), (right axis) as a

function of dihedral angle (both in atomic units).
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(0.2 � 0.2 a0) are restricted to the close vicinity of the Te center

position since only the nuclear region is significant for the PV

expectation value. At all dihedral angles one can observe

regions of positive and negative g5(r) and several contour lines

representing isosurfaces where g5(r) = 0 relatively close to the

nucleus. At the dihedral angle 01 g5(r) has four lobes around
the nucleus which lies exactly in the g5(r) = 0 nodal

surface—this corresponds to a zero PV expectation value at

this molecular structure (all nuclei lie in the nodal surface and

the molecular expectation value is zero). Increasing the

dihedral angle from zero, the nodal surface shifts away from

the nucleus which enters a region of positive g5(r) with

increasing magnitude and this corresponds to the general

behavior of the curves in Fig. 1. Close to the 901 dihedral

angle the g5(r) = 0 nodal surface returns and passes through

the nucleus which can then be seen in a region of (relatively

small) negative g5(r) at 1051 dihedral angle. At 1801 dihedral

angle (not shown in Fig. 7 because plot would be zero

everywhere), all nuclei lie again in the g5(r) = 0 nodal surface

(mirror plane).

In all plots presented in Fig. 7 the g5(r) = 0 nodal surfaces

are relatively close to the nuclear center, which illustrates the

general difficulty for understanding and modeling the PV

expectation value: it is possible to obtain very different atomic

contributions, EX
PV, even of opposite sign by only a tiny

displacement of the nodal surface induced by a minute change

in the molecular structure.

4.3 A variational approach to the single-center theorem

In contrast to the hydrogen dichalcogenides, the CHBrClF

molecule has been subject to experimental studies of PV in

molecules, albeit so far with negative results. Following a

suggestion by Letokhov and co-workers,119,120 the group of

Chardonnet searched for the signature of parity violation in

the CHBrClF molecule in the form of a difference

DnPV = nR(�) � nS(+) between the two enantiomers in their

infrared spectral absorption line frequencies. More precisely a

hyperfine component of the C–F stretching fundamental was

probed by laser-saturated absorption spectroscopy.30,121 In

these experiments a sensitivity DnPV/n of 5 � 10�14 was

attained. However, theoretical calculations indicate that the

PV shift Dn0-1
PV for the fundamental 0 - 1 transition of the

C–F stretch of CHBrClF is on the order of –2.4 mHz,56,122–124

corresponding to DnPV/nE�8� 10�17, that is, three orders of

magnitude smaller. In view of these results, the group of

Chardonnet has oriented their research towards molecules

containing heavier atoms, such as oxorhenium compounds,

and are developing a new ultra-high resolution experiment

based on the sub-Doppler two-photon Ramsey fringes

technique which targets a sensitivity of 0.01 Hz (3 � 10�16)

or better.35,57,60

The PV shift of the fundamental C–F stretching mode of the

CHBrClF molecule has been calculated both as an expectation

value, eqn (14), in a 4-component relativistic frame-

work56,105,125 and as a linear response function, eqn (16), in

a NR framework.122,126,127 In the latter case the PV energy is

expressed as a double sum involving the NR PV Hamiltonian

and SO operators associated with the constituent atoms of the

molecule. Diagonal terms are zero according to the single-

center theorem of Hegstrom et al.37 In this section we

explore a hybrid approach which allows us to probe the

single-center theorem in a variational framework. We perform
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Fig. 7 HF electron chirality density g5(r) , eqn (35), around one Te atom in H2Te2 for several H–Te–Te–H dihedral angles (for the orientation of

the molecule, see Fig. 5). Solid (dotted) contour lines are plotted in the range from +0.0005 to +0.005 (�0.0005 to �0.005) atomic units in

intervals of 0.0005 atomic units. The dash-dotted contour line represents g5(r) = 0. The cross represents the position of the nucleus. The

dimensions of the plots are 0.2 � 0.2 a0.
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2-component relativistic calculations based on the X2C

Hamiltonian. In such calculations an exact block diagonaliza-

tion of the parent Dirac Hamiltonian to 2-component form is

carried out. The corresponding picture transformation of

the two-electron operator is not carried out, since the resulting

two-electron integrals are expressed in terms of the full

set of two-electron integrals of the 4-component calculation

and thus engenders a computational cost higher than the

parent calculation. Instead, two-electron SO contributions

are typically generated in an atomic mean-field fashion, in

our case by the AMFI code.102,103 We have carried out a series

of calculations in which the X2C Hamiltonian in the spinfree

form has been combined with both one- and two-electron SO

contributions generated by the AMFI code for a single atom

at a time. The PV energy is then calculated as an expectation

value, but with a wave function generated with SO contri-

butions from a single center. A similar approach has been

employed by vanWüllen in a computational study of magnetic

anisotropy.128 We also note in passing that a 2-component

Zeroth-Order Regular Approximation (ZORA) study of

molecular parity violation has been reported by Berger et al.129

The resulting PV energies EPV at the equilibrium geometry

of CHBrClF are given in Table 5. For comparison we also give

corresponding values obtained from conventional calculations

based on the 2-component X2C and the 4-component DC

Hamiltonian. In all calculations we employ a point charge

model for the nuclei, which, in view of the discussion in section

2.2, implies that contributions to EPV are exclusively obtained

from mixing of atomic s1/2 and p1/2 orbitals on the same center

and thus conforms to the restriction imposed on the single-

center theorem.37 The entries of the first five columns of

Table 5 are given in the form (APV,BSO) where the row refers

to the atomic contribution EA
PV to the total PV energy and the

column to the SO-active nucleus. The individual PV

contributions are summed up in column six and, comparing

to the results obtained by conventional X2C calculations in

column seven, one indeed observes a high degree of additivity

of the individual SO-contributions, as implied by the structure

of eqn (16). We also note a very good agreement of the

2-component X2C results with the full 4-component DC

results, with a maximum deviation of 4% for the bromine

PV contribution, in agreement with previous observations in

ref. 57 and 130. However, the diagonal elements of Table 5 are

generally not zero, and even quite significantly so for the

heavier elements. This is contrary to the single-center theorem

and may indicate significant higher-order SO contributions.

We also note that the individual PV contributions from the Br

and Cl atoms have opposite signs and so the presence of two

heavy atoms have a destructive, rather than constructive

effect.

In Table 6 we give the corresponding PV shifts associated

with the fundamental C–F stretch of the CHBrClF molecule.

Again we observe strong additivity of individual atomic

SO-contributions and good agreement with both conventional

2-component X2C results as well as 4-component DC results.

We note that both the PV- and SO-contributions from the Br

and Cl atoms come with opposite signs. In Table 6 we also give

the purely harmonic contributions to the PV shift, showing

that all atomic PV contributions change sign when anharmo-

nicity is taken into account, emphasizing the importance of

including this effect into simulations of the PV shift in

molecular vibrational spectra.125

5. Conclusion

In this contribution we have analyzed parity violation in

sample chiral molecules in a 2- and 4-component relativistic

framework. Spin–orbit interaction is accordingly included
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Table 5 Contributions to the parity violating energy EPV for the CHBrClF molecule. The first five columns give the EPV contributions with only
one spin–orbit active nucleus, summed up in column six, labelled ‘‘Sum’’. In these calculations both one- and two-electron SO-contributions were
provided by the amfi module. The final two columns refer to calculations based on the conventional X2C Hamiltonian and the 4-component
Dirac-Coulomb (DC) Hamiltonian, respectively. A point nucleus model was employed in these calculations. All values are in 10�18Eh

C H F Br Cl Sum X2C DC

C �0.0001 0.0000 �0.0028 0.0594 0.0010 0.0576 0.0574 0.0575
H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
F �0.0035 0.0000 0.0008 0.0719 �0.1868 0.8823 0.8735 0.8798
Br �0.6097 0.0007 1.9386 2.4255 4.7602 8.5153 7.8545 8.2086
Cl 0.0584 0.0007 �0.1048 �3.4845 �0.0590 �3.5893 �3.5330 �3.5986
Sum �0.5550 0.0015 1.8318 0.0724 4.5154 5.8660 5.2524 5.5473

Table 6 Contributions to the parity violating transition frequency difference Dn0-1
PV between the two enantiomers (R–S) for the fundamental

0- 1 transition of the C–F stretching mode of the CHBrClF molecule. The first five columns give the contributions with only one spin–orbit active
nucleus, summed up in column six, labelled ‘‘Sum’’. In these calculations both one- and two-electron SO-contributions were provided by the amfi
module. The next two columns refer to calculations based on the conventional X2C Hamiltonian and the 4-component Dirac–Coulomb (DC)
Hamiltonian, respectively, whereas the final column reports the harmonic contribution to the DC calculation. A point nucleus model was
employed in these calculations. All values are in mHz

C H F Br Cl Sum X2C DC DCham

C 0.000 0.000 0.001 0.172 �0.041 0.132 0.132 0.132 �0.027
H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
F 0.000 0.000 0.000 �0.043 �0.001 �0.044 �0.047 �0.046 0.100
Br 0.285 �0.003 0.066 �1.175 �2.518 �3.345 �3.355 �3.334 2.309
Cl �0.018 0.000 �0.013 1.424 0.013 1.406 1.408 1.412 �0.349
Sum 0.267 �0.003 0.054 0.378 �2.547 �1.851 �1.862 �1.836 2.060
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variationally, and the parity violation energy EPV may be

calculated as an expectation value, eqn (14). We have carried

out a decomposition of the molecular expectation value in

atomic contributions and demonstrate that EPV is completely

dominated by intra-atomic contributions. By integrating the

electron chirality density g5(r) we show that the atomic nature

of parity violation arises not only from the presence of nuclear

charge densities in the weak interaction Hamiltonian, but also

from the coupling of the large and small components of Dirac

4-spinors by the g5 matrix. The interaction Hamiltonian

samples the electron chirality density in the nuclear regions,

and we show that the nodal structure of g5(r), and thus its sign

in nuclear regions, is quite sensitive to molecular structure.

The picture which emerges from our analysis is that the

parity violating energy arises from the mixing of valence s1/2
and p1/2 atomic orbitals on the same center, induced by a

chiral molecular field. This picture contrasts with the

manifestly inter-atomic mechanism suggested by the non-

relativistic framework in which the parity violation energy is

calculated as a linear response function, eqn (16). We have

carried out 2-component relativistic calculations on the

CHBrClF molecule in which only one nucleus is spin–orbit

active at a time and demonstrate that the spin–orbit contri-

butions are indeed to a large extent additive, giving PV

energies and vibrational shifts in good agreement with both

conventional 2-component X2C results as well as 4-compo-

nent DC results. On the other hand, we show that for the

heaviest atom, bromine, the spin–orbit contribution gives a

significant contribution to the parity violation energy of the

same center contrary to the single-center theorem. We attri-

bute this result to higher-order spin–orbit effects not taken

into account by the single-center theorem.

The intra-atomic picture of parity violation that emerges

from our analysis in a relativistic framework, summarized by

eqn (32), suggests that it may be possible to construct a model

for parity violation in chiral molecules by combining

pre-calculated atomic quantities by simple bonding models,

the latter providing estimates for the mixing of s1/2 and p1/2
atomic orbitals in the molecular field. Such a model would not

only allow a rapid scan of candidate molecules for experi-

ment, but may ultimately allow the in silico design of such

molecules.
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