New perspectives on the search for a parity non-conservation effect in chiral molecules

Benoît Darquié

Laboratoire de Physique des lasers, CNRS, Université Paris 13, Institut Galilée, Villetaneuse

October, 4th 2011

Introduction: parity, a broken symmetry Parity operation: $(x, y, z) \xrightarrow{P} (-x, -y, -z)$

- 1956 : Lee and Yang Prediction of parity non-conservation by weak interaction in the K meson decay
- 1957 : Wu et al. 1st experimental observation in β decay of the cobalt nucleus ${}^{60}Co \longrightarrow {}^{60}Ni + \bar{\nu} + e^{-}$
- **1967 : Weinberg, Glashow and Salam** electro-weak theory
- 1973 : **CERN** observation of neutral currents

- ✓ major ingredient of the standard model of particle physics
- ✓ belongs to the high energy physics world?

 $\frac{Z^0 \text{ boson mass:}}{91 \text{ GeV or } 10^{16} \text{ J mol}^{-1} \text{ or } 10^{25} \text{ Hz or } 10^{15} \text{ cm}^{-1}}$

Introduction: parity violation in chiral molecules

when parity is conserved

 $R \leftrightarrow S: \Delta_r H_0 = 0$

Introduction: parity violation in chiral molecules

Rein, J. Mol. Evol. (1974); Letokhov, Phys. Lett. (1975)

A first attempt on CHFCIBr

Daussy et al, Phys. Rev. Lett. (1999); Ziskind et al, Euro. Phys. J. D (2002)

A first attempt on CHFCIBr

Daussy et al, Phys. Rev. Lett. (1999); Ziskind et al, Euro. Phys. J. D (2002)

A first attempt on CHFCIBr

Daussy et al, Phys. Rev. Lett. (1999); Ziskind et al, Euro. Phys. J. D (2002)

✓ saturated absorption spectra – line width ~ 60 kHz

- ✓ measure the frequency difference between the 2 line centers
- ✓ sensitivity: ~8 Hz or 2,5×10⁻¹³ in fractional value

$$\begin{array}{|c|c|c|c|c|} \hline & \Delta v_{\mathsf{PNC}} \leq 8 \ \mathsf{Hz} \\ & \Delta v_{\mathsf{PNC}} \\ & \Delta v_{\mathsf{PNC}} \\ & & \swarrow \\ & & \checkmark \\ \end{array} \leq 2,5 \times 10^{-13} \end{array}$$

What to do next?

Limits of the previous test

- sensitivity limited by collisions
- ✓ line width ~ 60 kHz (2×10⁻⁶ cm⁻¹)

calculated shift for CHFClBr:
 $\Delta v_{NCP} = 2.4 \text{ mHz} (8 \times 10^{-17})
(exp sensitivity 8 Hz)$

Schwerdtfeger et al, *Phys. Rev. A* (2002) Schwerdtfeger et al, *Phys. Rev. A* (2005)

Possible improvements

- supersonic jet spectroscopy: no collisions (+ cold molecules)
- Ramsey fringes spectroscopy (matter-wave interferometer): line width ~ 100Hz (3×10⁻⁹ cm⁻¹)
- more favorable new molecules: organo-metallic complexes

 $\Delta v_{\rm NCP} \sim 1 \text{ Hz} (5 \times 10^{-14})$

 $Os(\eta_5\text{-}C_5H_5)(\text{=}CCl_2)Cl(PH_3)$

Schwerdtfeger and Bast, J. Am. Chem. Soc. (2004) De Montigny, Phys. Chem. Chem. Phys. (2010)

New experimental set-up

"New" experimental set-up

sensitivity on the line center pointing: ~ 0,6 Hz soit 2×10^{-14}

 \Rightarrow expected sensitivity for a differential measurement: < 0.1 Hz soit ~ 10⁻¹⁵

Shelkovnikov et al, Phys. Rev. Lett. (2008)

Requirements for the candidate molecule ?

- ✓ show a large PNC shift Δv_{PNC} ;
- ✓ be available in large ee, ideally in enantiopure form;
- ✓ allow the production of a supersonic expansion;
- ✓ be available at gram-scale;
- as "simple" as possible (experimental sensitivity depends on the partition function);
- avoid nuclei with a quadrupole moment to avoid large hyperfine structure;
- have an intense band within the CO₂ laser operating range (850– 1120 cm⁻¹)
- have a suitable 2-photon transition (joining a v = 0 and a v = 2 level).

Molecules considered for a new PV test J. Crassous, L. Guy, T. Saue, R. Bast, P. Schwerdtfeger

 \Rightarrow too weak PNC shift!

 \Rightarrow low stability (iodinated compounds)

 \Rightarrow synthesis in enantiopure form and gram quantity is difficult

Crassous et al, *J. Phys. Chem. A* (2003) Jiang et al, *Chirality* (2005) Soulard et al, *Phys. Chem. Chem. Phys.* (2006)

Schwerdtfeger et al, *Phys. Rev. A* (2002) Schwerdtfeger et al, *Phys. Rev. A* (2005)

Molecules considered for a new PV test J. Crassous, L. Guy, T. Saue, R. Bast, P. Schwerdtfeger

<u>Tp ligand-based oxorhenium complexes:</u> solid phase

Tp(Re=O)Ephe

 \Rightarrow calculation of the PNC shift complicated

 \Rightarrow not suitable for molecular beam experiment (too high sublimation temperature, >250°C)

Lassen et al, Inorg. Chem. (2006)

Molecules considered for a new PV test J. Crassous, L. Guy, T. Saue, R. Bast, P. Schwerdtfeger

Sulfur ligand-based oxorhenium complexes: solid phase

2 3

4

5

\Rightarrow not suitable for molecular beam experiment, decompose upon heating

De Montigny et al, Chem. Comm. 4841 (2009); De Montigny, Phys. Chem. Chem. Phys. (2010)

New approach J. Crassous, L. Guy, T. Saue, R. Bast, P. Schwerdtfeger

methyltrioxorhenium (MTO)

CH₃ │ ○^{字Re}≃Se

sufficiently low sublimation temperature (< 100°C)
calculated PNC shift large enough for some chiral derivatives:

 $\Delta v_{PNC} \sim 400 \text{ mHz}$ Re=0 stretching

 \Rightarrow synthesis and separation of chiral derivatives under progress

translational and rotational cooling ~ 10K jet velocity ~ 400 to 2000 m/s

Experimental set-up nozzle skimmer jet carrier gas (He) heated ~ 100°C P2 P1 molecules nozzle **P2 P1 P1** carrier gas (He) reservoir

Jet-spectroscopy of MTO

ideal achiral test molecule, parent molecule of candidates for the PNC test
gas phase rovibrational spectrum never observed yet

Fourier-Transform MicroWave spectroscopy (by T. Huet, PhLAM, Lille)

rotational spectroscopy
hyperfine structure partially resolved

Jet-spectroscopy of MTO

ideal achiral test molecule, parent molecule of candidates for the PNC test
gas phase rovibrational spectrum never observed yet

<u>Fourier-Transform InfraRed spectroscopy</u> (by P. Asselin and P. Soulard, LADIR, Paris)

demonstration of supersonic jet-spectroscopy of organometallic molecules
signal accessible to the CO₂ laser

Saturated absorption spectroscopy of MTO in a cell at LPL

Linear absorption jet-spectroscopy of MTO at LPL CO_2 laser photodetector $T_{iet} \sim 30K$ Wavenumbers/cm⁻¹ 975.9350 975.9355 975.9360 Linear absorption signal (a.u.) He + MTO (~10%) with MTO -1 rovibrational spectroscopy hyperfine structure not resolved 0.0005 cm⁻¹ 10 MHz without MTO major step -30 -20 -10 20 0 10 Frequency/MHz offset by 29 257 818.53 MHz integration time: 40 min $(2g/h^{-1})$

Spectra analysis, fitting and simulations

Combined analysis of microwave (from PhLAM) and infrared spectra (from both LADIR and LPL) and global fit (using SPFIT program of H. Pickett)

	Set 1	Set 2
A/MHz	3849.81 ^{<i>a</i>}	3854.01(1.27)
<i>B</i> /MHz	3466.96481(39)	3466.96481(39)
D_J/kHz	$0.705(50)^{b}$	$0.705(50)^{b}$
D_{JK} /kHz	$2.208(118)^{b}$	$2.208(118)^b$
eQq/MHz	716.54005(192)	716.54005(192)
$C_{\rm aa}/\rm kHz$	$-52.22(37)^{b}$	$-52.22(37)^{b}$
$C_{\rm bb}/\rm kHz$	-51.464(92)	-51.464(92)
$\nu_{\rm as}/{\rm cm}^{-1}$	975.9665(3)	975.9667(3)
A'/MHz	3847.14(34)	3851.35(1.12)
<i>B</i> ′/MHz	3463.4362(224)	3463.4362(224)
ξ	-0.0011(4)	0.0^{a}
D'_{I}/kHz	$0.705(50)^{b}$	$0.705(50)^b$
D'_{JK}/kHz	$2.208(118)^b$	$2.208(118)^b$
eQq'/MHz	694.779(44)	694.779(44)
$\tilde{C_{aa}}/kHz$	$-52.22(37)^{b}$	$-52.22(37)^{b}$
$C_{\rm bb}'/{\rm kHz}$	-53.005(149)	-53.005(149)

^{*a*} Fixed value. ^{*b*} Fitted and constrained to the corresponding ground state/excited state value.

✓ a set of accurate spectroscopic parameters

 \checkmark simulated spectrum \Rightarrow identify the most intense lines

✓ validate the approach chosen by our consortium

 ✓ procedure to reiterate with chiral candidates for PNC experiment

Towards higher resolution jet-spectroscopy

We need to increase the signal to noise ratio!

Towards higher resolution jet-spectroscopy

We need to increase the signal to noise ratio!

Perspectives

 \checkmark Further increase the linear absorption S/N \Rightarrow line centre pointing

- increase the number of passes
- Fabry-Perot cavity
- ✓ Demonstrate ultra-high resolution spectroscopy of MTO in a jet ⇒ saturated absorption
- ✓ 2-photon spectroscopy of MTO
- ✓ Ramsey fringes on MTO
- ✓ Reiterate the same whole study on chiral derivatives of MTO

Issues

- ✓ synthesis of large quantities of new chiral molecules with large ee
- ✓ confrontation with relativistic quantum chemistry calculations
- development of ultra-high resolution spectroscopy techniques for complex molecules
- confrontation with the electro-weak theory and the standard model, especially at low energy
- ✓ link with bio-homochiralité

Contributors

Clara Stoeffler, Frédéric Auguste, Alexandre Shelkovnikov, Christophe Daussy, Olivier Lopez, Anne Amy-Klein, Christian Chardonnet

Jeanne Crassous

Laure Guy

Trond Saue, Radovan Bast

Peter Schwerdtfeger

Pierre Asselin, Pascale Soulard

Thérèse Huet

Thank you for your attention

Work supported by:

Contracts NCPMol (2006-2010) and NCPChem (2011-2014)