

PNC project at Villetaneuse: last news

C. Stoeffler, F. Auguste, A. Shelkovnikov, B. Darquié, C. Daussy, O. Lopez, A. Amy-Klein, C. Chardonnet

NCPCHEM meeting, Rennes, 05/10/2011

06/10/2011

Equipe HOTES - LPL

06/10/2011

Equipe HOTES - LPI

UNIVERSITE PARJ S 13

06/10/2011

Equipe HOTES - LPI

Jet spectroscopy of MTO with a multipass cell

\pm 280 MHz explored around the *R*(20) CO₂ laser line

06/10/2011

What we know from time of flight measurements

changing nozzle diameter

T_{reservoir} ~ 80°C

06/10/201

Jet spectroscopy of MTO with a multipass cell

changing nozzle diameter

06/10/2011

Jet spectroscopy of MTO with a multipass cell

changing nozzle diameter

Perspectives

- Towards higher resolution jet-spectroscopy \Rightarrow line centre pointing
 - Further increase the linear absorption S/N ⇒ increase the number of passes, Fabry-Perot cavity
 - Even colder beam?
- \checkmark Demonstrate ultra-high resolution spectroscopy of MTO in a jet \Rightarrow saturated absorption
- 2-photon spectroscopy of MTO
- In Thanks to Thérèse's last results \Rightarrow further the improve analysis of the LPL spectra

Recycling solid state molecules

06/10/2011

Equipe HOTES - LP

Recycling solid state molecules

- we recovered mainly crystals (+ brown powder?)
- ✓ look like MTO crystals naturally forming at LADIR and LPL
- ✓ 25 to 50% of the mass is recovered (but the process induce losses)
- has been in contact with the pump oil

process will be improved

✓ a recycling set-up will be installed on the 2nd chamber

modulation frequency: 5 kHz, depth: 200 kHz, 2^{nd} harmonic detection, +160 MHz away from the R(20) CO₂ laser line

06/10/2011

MTO

Saturated absorption spectroscopy of the recycled crystal

recycled MTO

modulation frequency: 5 kHz, depth: 200 kHz, 2nd harmonic detection, +160 MHz away from the R(20) CO₂ laser line

Development of a QCL based spectrometer

compact, transportable

- \checkmark widely tunable (1000 times more than a CO₂ laser)
- ✓ several QCLs can potentially cover the whole mid-infrared domain (from 2 to 20 µm)
- ✓ relax the wavelength constraint on potential candidates for PNC experiments

Development of a QCL based spectrometer

- characterize frequency tunability and stability
- \checkmark phase-lock the QCL on a frequency stabilize CO₂ laser
- lock the QCL on a molecular line
- Iock the QCL on an ultra-stable Fabry-Perot cavity
- ✓ lock the QCL on our new 1.55 µm frequency comb

