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The covariant formulation of quantum electrodynamics,
developed in a previous paper, is here applied to two
elementary problems —the polarization of the vacuum and
the self-energies of the electron and photon. In the first
section the vacuum of the non-interacting electromagnetic
and matter fields is covariantly defined as that state for
which the eigenvalue of an arbitrary time-like component
of the energy-momentum four-vector is an absolute
minimum. It is remarked that this definition must be
compatible with the requirement t'hat the vacuum expec-
tation values of a physical quantity in various coordinate
systems should be, not only covariantly related, but
identical, since the vacuum has a significance that is inde-
pendent of the coordinate system. In order to construct
a suitable characterization of the vacuum state vector, a
covariant decomposition of the field operators into positive
and negative frequency components is introduced, and the
properties of these associated fields developed. It is shown
that the state vector for the electromagnetic vacuum is
annihilated by the positive frequency part of the trans-
verse four-vector potential, while that for the matter
vacuum is annihilated by the positive frequency part of
the Dirac spinor and of its charge conjugate. These de-
fining properties of the vacuum state vector are employed
in the calculation of the vacuum expectation values of
quadratic field quantities, specifically the energy-mo-
mentum tensors of the independent electromagnetic and
matter fields, and the current four-vector. It is inferred
that the electromagnetic energy-momentum tensor, and
the current vector must vanish in the vacuum, while the
matter field energy-momentum tensor vanishes in the
vacuum only by the addition of a suitable multiple of the
unit tensor. The second section treats the induction of a
current in the vacuum by an external electromagnetic field.
It is supposed that the latter does not produce actual elec-
tron-positron pairs; that is, we consider only the phe-
nomenon of virtual pair creation. This restriction is
introduced by requiring that the establishment and sub-
sequent removal of the external field produce no net change
in state for the matter field. It is demonstrated, in a general
manner, that the induced current at a given space-time
point involves the external current in the vicinity of that
point, and not the electromagnetic potentials. This gauge
invariant result shows that a light wave, propagating at
remote distances from its source, induces no current in the

vacuum and is therefore undisturbed in its passage through
space. The absence of a light quantum self-energy effect
is thus indicated. The current induced at a point consists,
more precisely, of two parts: a logarithmically divergent
multiple of the external current at that point, which
produces an unobservable renormalization of charge, and
a more involved finite contribution, which is the physically
significant induced current. The latter agrees with the
results of previous investigations. The modification of the
matter field properties arising from interaction with the
vacuum fluctuations of the electromagnetic field is con-
sidered in the third section. The analysis is carried out with
two alternative formulations, one employing the complete
electromagnetic potential together with a supplementary
condition, the other using the transverse potential, with
the variables of the supplementary condition eliminated.
It is noted that no real processes are produced by the first
order coupling between the fields. Accordingly, alternative
equations of motion for the state vector are constructed,
from which the first order interaction term has been
eliminated and replaced by the second order coupling
which it generates. The latter includes the self action of
individual particles and light quanta, the interaction of
different particles, and a coupling between particles and
light quanta which produces such effects as Compton scat-
tering and two quantum pair annihilation. It is concluded
from a comparison of the alternative procedures that, for
the treatment of virtual light quantum processes, the
separate consideration of longitudinal and transverse
fields is an inadvisable complication. The light quantum
self-energy term is shown to vanish, while that for a par-
ticle has the anticipated form for a change in proper mass,
although the latter is logarithmically divergent, in agree-
ment with previous calculations. To confirm the identi-
fication of the self-energy effect with a change in proper
mass, it is shown that the result of removing this term
from the state vector equation of motion is to alter the
matter field equations of motion in the expected manner.
It is verified, finally, that the energy and momentum
modifications produced by self-interaction effects are
entirely accounted for by the addition of the electromag-
netic proper mass to the mechanical proper mass —an
unobservable mass renormalization. An appendix is devoted
to the construction of several invariant functions associated
with the electromagnetic and matter fields.

HE first article of this series' was concerned
with a formulation of quantum electro-

' Quantum electrodynamics. I. A covariant formulation,
Phys. Rev. V'4, 1439 {1948), hereinafter referred to as I.
References to equations in the work will be written in the
typical form {I,2.3).

dynamics that has the following essential
features —explicit covariance with respect to
Lorentz transformations, and a natural division
between the properties of independent fields and
the eR'ects of field interactions. As the simplest
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example of the latter, we consider, in this second
paper, the phenomena of vacuum polarization
and the self energies of photon and electron,
which arise from the coupling between the
matter and electromagnetic fields and their
vacuum Huctuations. It will first be necessary to
construct a suitable covariant definition for the
vacuum of the independent matter and electro-
magnetic fields.

1. DEFINITION OF THE VACUUM

In order to define the vacuum of the electro-
magnetic fields, it is convenient to introduce
two auxiliary four-vector fields that obey the
same differential equation as A„(x)

1 r dT
A„&+&(x)= A„(x—zr) —, (1.1a)

2' Z T

where

A„&'&(x) =zLA„&+&(x) —A„&-&(x)j,

and I' symbolizes the principal part of the
integral. It will be noted that A~&" A2'" A3("
and Aa&'& = (1/z)A4&» are Hermitian operators, in
view of the Hermitian character of the corre-
sponding components of A „(x). Accordingly,
A„( & is the Hermitian conjugate of A„&+', where
p, =0, 1, 2, 3.

The significance of the associated fields
A„&+&(x), A„& &(x), and A„&"(x) can best be
appreciated in terms of a Fourier representation
of A„(x),

A„(x) =
) A„(k) b(k&, ') exp(zk»x„) (dk), (1.6)

A„'—'(x) = ~ A„(x+zr) , —(1.1b)
2~~c, "

in which the contour C+ is extended from —~
to + ~, deformed below the singularity at v=0.
It is intended that e„be a time-like vector,
e»'&0, with eo ——(1/z)ez) 0, which are covariant
requirements. The fields A„&+&(x) and A„&—

&(x)

are then independent of the special choice of ~„.
A simple connection between the three fields is
obtained by rewriting (1.1b) as

A„'+'(x) = A„(k) 5(k&,z) exp(zk„x„) (dk)
aJ 2~$1 f d7

A„&-'(x) = i A„(x er)—
2xi ~g T

(1 2)

X t exp( —ikge&, r)—,
~c+ r (1 7)where C is extended from + ~ to —~, de-

formed above the singularity at ~=0. Evidently
the sum of the contours C+ and C is a closed
contour drawn about the singularity at the
origin, whence

1
A„& &(x) =)I A„(k)8(k&,') exp(ik»x„)(dk)

27ri

dT
X I exp(zk&, e~r)—.

~c+ 7'

(+&(x)+A (—&(x)

But
A»(x er) =A„(x-) (—1.3).

27ri 7'

where (dk) =dkodkzdkzdk» is the four-dimen-
sional volume element in wave number, or k
space. The delta function, b(k&, '), ensures that
the individual terms of the expansion obey the
wave Eq. (I, 2.11), leaving the Fourier ampli-
tudes, A„(k), quite arbitrary. According to the
definition (1.1a) and (1.1b),

A &+&(x) =-'LA (x) —zA„&'&(x)j,
A. ' '(x) = zLA»(x)+zA»&" (x)j

(1.4)

On choosing the contours C+ and C to coincide
with the real axis, save for appropriate semi-
circles of negligible radius drawn about the
origin, one obtains from (1.1a) and (1.2) the
fofITls

f d7 1, —k) ~), &0
exp ( —zk&, e&,r)—=

2%i g+ T' 0, —k)~) &0,

whence

A„&+'(x) = A„(k) b(k&, -")

—&) e) &0

Xexp(zk„x„) (dk), (1.9)
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A„&-'(x) = A„(k) &&(k&,')

Relations analogous to (1.3) and (1.4) are valid,
of course, for the various D functions:

~ —k)&,e)&, &0

Xexp(ik„x„) (dk) .(1.10)

( k«)—k,«, = ko«ol 1—
k,«, &

' (1.11)

The two domains in wave number space charac-
terized by the sign of —k„z„are actually inde-

pendent of e„, provided the latter is a time-like
vector with a definite sign for e(l. It is sufficient
to observe that

D&+&(x)+D&—
&(x) =D(x),

D&+'(x) = —,
' [D(x) —iD "&(x)], (1.15)

D' '(x) = o[D(x)+iD&"(x)]

In addition, D'"(x) shares the reality property
of D(x), and D& &(x) is the complex conjugate
of D'+&(x). Further, the odd nature of D(x), as a
function of the coordinates, implies that D"'(x)
is an even function

(
ko«o

f
ko

I

D'"(—x) =D'"(x),
(1.12)

which has as a consequence that

(1.16)

in which the last inequality presupposes that e„
is time-like and k„either a null vector or a time-
like vector. Accordingly, the sign of —k„e„ is
determined by that of koeo, and if eo is restricted
to be positive, itself an invariant requirement,
it is inferred that —k„c„possesses the algebraic
sign of ko. It is now clear that if A„(x) is con-
structed as an arbitrary superposition of plane
waves,

exp(ik„x„) =exp[i(k r —koxo)],

the functions A„'+&(x) and A„& &(x) consist of the
positive and negative frequency parts, respec-
tively, which is an invariant decomposition. The
function A„'"(x) contains both the positive and
negative frequency parts of A„(x), but with the
factors i and —i, respectively.

The commutation properties of the auxiliary
fields with A„(x) are easily constructed. Ac-
cording to the definitions a.nd Eq. (I, 2.28),

D&-&(x) = —D&+&( —x). (1.17)

Finally, the validity of the differential equations

'D&+&(x) = 'D&-&(x) = 'D&'&(x) =0 (1.18)

It follows by direct calculation that

[A„&+&(x),A„&+&(x')]

1 dT d7'
= ikc&&„, D(x x' «(r -r'))—-—

(2&ri)' ~c~

1 I 1
=ikcb„, d—c&e' "D(x x' «X)——

2m~ „ 2gi

will be evident.
The essential commutation properties of the

auxiliary fields are contained in the statements

[A„&+&(x), A, &+&(x')]
= [A„' &(x), A, & '(x')7=0. (1.19)

[A„&+&(x), A „(x')]=i Ace&„„D&+&(x x'), —

[A„&—
&(x), A„(x')]=i7ic&&„„D& &(x x'), (1.13—)

[A &'&(x) A„(x')]=ihc&'&„„D&'&(x x')— X
~c+

d7 i P dT
= Q, (1.20)

T 2mz~c+

where

1 dT
D&—

&(x) =
I D(x «r)—

2xz ~c T

Oo dT

VC Qo T

in which the decisive steps are the introduction
of a Fourier integral representation for the T

dependence of D(x —«r), and the observation
(see Eq. (1.8)) that the two resulting contour
integrals are never simultaneously different from

(1 14) zero (except for the isolated point a=0). Alter-
natively, we can remark that the positive fre-
quency character of A„'+&(x) is incompatible
with the physical requirement that the com-
mutator involve only x„—x„', the interval be-
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[A„' '(x), A„'+'(x')] =ihcb„„D& '(x x') —(1..22)

It should also be noted that, in view of the
identity

[A &'&(x) A &'&(v, ')]—[A (x) A (x')]
= —2[A„&+&(x),A.&+'(x')]

—2[A.' '( ), A ' '( ')] (1 23)

the commutation relations (1.19) imply that

[A„"&(x),A„&"(x')] = [A„(x),A, (x')]
= ikcb„.D(x —x').

(1.24)

In a manner quite analogous to that presented
for A„(x), various associated functions can be
defined for e„(x), A(x), and A'(x). Without
entering into repetitious detail, let us merely
record the definitions

e„&+&(x)=--', [e„(x)—i&t &'&(x)]

8 ' '(x) =-'-[8 (x)+i 8, '"(x)]
(1.25)

and the commutation relations

[&~."&( ), &'t."&( ')]=[o.' '( ) &t.' '( ')]=o,
(1.26)

[e,„&'&(x), e„(x')]=iIicS„„D&'&(x—x')

&3 && f && && ) &&

ikc — + I
n„+n„ln-,

ax„ax, E "ax„ax„& ax,

X n&'&(x —x') (1 27)

We shall consider the vacuum of the isolated
electromagnetic field to be that state for which
the eigenvalue of the energy, or better, an
arbitrary time-like component of the energy-
momentum four-vector, is an absolute minimum.
This definition must also be compatible with the
evident requirement that the vacuum expecta-
tion values of a physical quantity in various

tween the two points x and x', unless the com-
mutator vanishes, The proof for A„& ' is iden-
tical. The commutator of A„&+&(x) with A.& &(x')

can also be directly evaluated along the lines of
(1.20), but it is sufficient to combine (1.19) with

(1.13) to obtain

[A„&+&(x), A„& '(x')] =il'ic&&„„D&+&(x—x'), (1.21)

coordinate systems should be, not only covari-
antly related, but identical; the properties of
the vacuum are independent of the coordinate
system. In order to utilize the minimum energy
definition, we apply (I, 1.38) to the positive
frequency part of the physically significant elec-
tromagnetic field vector Q„(x),

8
6„&+&(x)P, —P„e„&+&(x) =— e„&+&(x). (1.28)

4 Bxg

which further reduces to

8„&+&(k) W—We„&+&(k) = h(u 8„&+&(k) (1.30)

on multiplication with a unit time-like vector e,
such that eo&0.

Here
W'= —~„P„c, co = —e„k„c (1.31)

represent invariant expressions for energy and
frequency in an arbitrary coordinate system
specified by ~,. Ke may now apply both sides of
(1.30) to the state vector 4'0 representing the
vacuum of the electromagnetic field and obtain

W[6„&+&(k)%,]= (W, —ji~) [&i',„&+&(k) %.,], (1.32)

where S'0 is the eigenvalue of 8 in the state
described by 4'0. This result implies that in the
state described by 8„'+'(k)4'0, W has the eigen-
value Ã0 —kM. Inasmuch as the defining prop-
erty of 8,„&+&(k) guarantees that &o is positive, we
are confronted with a state of lower energy than
that in the vacuum. This contradiction can be
resolved only if

&t„&+&(k)%'o=0, (1.33)

which serves to specify %0. Since (1.33) is valid
for all k, we may write

8„&+&(x)% &&
=0, (1.34)

which is self-consistent, in view of the com-
mutation properties of 8„&+&.

The definition of the vacuum thus obtained
can be used to evaluate vacuum expectation
values of quadratic held quantities, of which

On considering a particular Fourier component
of 8„&+&(x), the latter equation becomes

&j,„&+&(k)P„—P„e„&+&(k)=kk„e„&+&(k), (1.29)
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the basic form is

{e„(x), e,(x') }= e„(x)e.(x') + e,(x') e„(x).

Now

{e„(x), e,(x') ',

= (2e„&—
&(x) —pe. "&(x))e (x')

+ e„(x')(2e,„&+&(x)+ie '"(x))

({&&,.(x), 5'&,.(x') })p=—2hc 'D&'&(x —x')

=0. (1.40)

As an elementary application of these vacuum
expectation values, one may consider the com-
putation of the vacuum average value of the
mechanical quantities comprised in the electro-

= —p{ e„&»(x) (x')] magnetic energy-momentum tensor
XJ y ~v(X

+ 2(e„& &(x) e.(x')+ e„(x') e„&+&(x)), (1.35)
—-,'8„„{e,.(x), e,.(x) }, (1.41)

where the first term is a known commutator and
the second has a vanishing vacuum expectation which has the important property of being
value. Thus trace-less,

( e„& &(x) e,(x') y e.(x') e„&+'(x))p

= (ep, (e„&(x)e, (x')+ e,(x') e, + (x))1&p)

= +(e„&+&(x)%'p, e„(x')@p)

Evidently,

0„„=0.

(0„„)&&

———hc -D &'& ($)
8(„8$„

(1.42)

(1.43)

+(4o, e,(x') e„&+&(x)%'p) = 0, (1.36)

which involves the fact that, to within a minus

sign for @=4, the Hermitian conjugate of 8,„( )

is 8„&+~. Hence,

({e„(x), e„(x') }).=hc8„.D«&(x —x')

which is indeterminate in view of the singularity
of D"&($) as $„'—+0. However, the form of (1.43)
can be inferred from quite general requirements.
Since D&»($) is a function only of $„', the tensor
resulting from the indicated process can only be
a multiple of 8„„

8 8 ( 8 8 ) 8—hc +{n„
8x„8x„&. 8x, 8x„) 8xg

D&&& ($) Xf&&pv I (1.44)

X n&»(x —x').

From this result, one can compute that

(1.37)
and, on placing p, =v, with the implied summa-

tion, we learn that

f 8 8
=hcl 8&„

8x„8x,
+8„,

~X'), ~&v ~&p, ~&v

whence

41&. = 'D&'&($) =0, (1.45)

(1.46)

8 8 )
lD& &(x—x'), (1.38)

BX), BXcr~

of which two successive specializations are

( {~.( ), ~..(') }).

= —hcl 2 +8„„~ID&»(x —x )
E. ax„ax„)

= —2hc D&'& (x—x'), (1.39)

This, indeed, is the only result compatible with

the requirement that the properties of the
vacuum be independent of the coordinate system.
The values ascribed to the symmetrical tensor

(O„,)p can be identical in all coordinate systems
only if the tensor is a multiple of 6„,. If, in

addition, it is restricted to be trace-less, the
tensor must vanish. Thus, a non-vanishing elec-
tromagnetic vacuum fluctuation energy is incom-

patible with relativistic requirements.
The process of defining the vacuum of the

matter field follows the pattern that has been
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(1.57)
1 t d7

P(+) (x)=, P(x er)—
2xi ~ |.~ T

(1.47)
is an even function of x obeying the diA'erential

equation
( ' —&(o') 6('& (x) =0. (1.58)(1.48)

presented for the electromagnetic field, with where
appropriate modifications. The spinors

are the positive and negative frequency (or
energy) parts of P(x). They may be written

tt ("(x)=
kL4 (x) —~&I'"(x)j,

(1.49)
4' '(x) =

2 L|}(x)+i0("(x)j,

(1.50)

The explicit construction of this and the other
functions that have been introduced is per-
formed in the Appendix. The elementary argu-
ments used to prove (1.19) will also serve to
demonstrate that

t4-'+'(x), 0p'+)(x') } = l4-'+'(x), Pp' '(x') } =0,
(1.59)

I4 ' '(x) A( '(x') }=I4-( '(x) A"&(x')}=o

1
I0-'+'(x) kp'+'(x') } = ~-&'"(x x'), —

1 I" dr
f(»(x) = P~ g(x—er)—(1.51) (1.60)

1
I4-( '(x), 6( '(x') } =-.~ »( '(x-x')

which makes it evident that

The same operations can be applied to the whence
adjoint spinor f(x). In particular,

0("(x)=0("(x) It can also be shown, analogously to (1.23), that
1.52

This, in turn, implies the relations

0(+)(x) =0( '(x) 0( '(x) =0(+)(x) (153)

replacing the simpler reality properties of the
functions associated with the electromagnetic
four-vector potential. The decomposition of the
charge conjugate spinors follows directly from
the definitions (I, 1.3). Thus,

y~(+) —cp(+) —cp(—) p'(—) = cp(—) = c&I (+&, (1 54)

I4 '"(x) 6("(x')}=I4 (x) A(x') }
(1.61)

1
=—S.()(x—x').

All such commutation relations are invariant
with respect to charge conjugation. As an ex-
ample,

I tI -""(x),kn'(x') }

g/(+) pl (—) c—lp(+&

1t,'(—) —P'(+& —C—iP(—)
(1.55)

= '(Ck'"(x)) &C V(x')) }

IA(x') 0 '"(x)}cM '

The commutation relations of P with the
various associated fields can be constructed
immediately. In particular,

Il '"(x) 0p(x') }= - I4 (x) A'"(x') }

=—5.p(i& (x—x')

1 (' ()

i E ax„).p
1

=—5 p(" (x—x'). (1.62)

1( a —.0 }
~"&(x—x')

(&x„).p

The characterization of the matter field
vacuum as the state of minimum energy can be
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(1 63)p&+&(x)% 0 ——0,

exploited, in complete analogy with the pro-
cedure for the electromagnetic 6eld, to yield the
following defining equations for the vacuum state
vector 0'0

of the matter field (see (I, 1.29)),

kc0.= ——('Y )e L4' (x+-5) &I'«(x -k) j
4

4'+ (x)+o=f (x)Co=0. (1.64)

The latter equation can also be written as the the trace of which is (see (I, 1.34))
charge conjugate form of (1.63) 0„„=mpc'-', Lg, (x), f.(x)j. (1.71)

p'&+& (x)+0 ——0. (1.65)

In order to evaluate the vacuum expectation
value of the typical bilinear expression

[0-(x),A (x') j=4-(x)A(x') A(x')4—-(x)

we write

Lk-(x), A(x') j
= (24-& '(x) —~4-&"(x))A(x')

—A(x') (24-'+'(x)+~4-"'(x))

= —~ I4«&" (x), A(x') I

+2(4-& '(x)A(x') —A(x')0-&+'(x)), (1 66)

and observe that the vacuum expectation value
of the second term is zero.

On adding the two equivalent, charge conjugate,
expressions for the current vector we find, accord-
ing to (1.68), that

iec
(i.)0 =—(v.)e-((LW-'(x), 6'(x) 3)o

4 —(L4-(x), A(x)]) ) =o (1 72)

which is a simple expression of the charge sym-
metry of the theory. Alternatively, direct cal-
culation yields

iec
(i.)0 = ——(B.(x), A(x) ])0(V.)e-

2

(1.73)

(+o, (4.& '(x)A(x') —A(x') 4-"'(x))+0) =2iec 6&"($)
~4

=0,
- )=0

=(0-& "(x)+0 4e(x')+o)

—(e„P,(x')P.&+&(x)e,) =0, (1.67)

(Lk-(x), A(x') j)o= (L0-'(x), 6'(x') 3)o
(1.68)= —S.«&'& (x—x') .

We may apply this result to the evaluation of
the expectation values of the current four-vector,

haec

i.= ——L4-(x) 6 (x)l(~.)e-
2

haec
=—L4-'(x), A '(x) j(v.)e-,

2

(1.69)

and the symmetrical energy-momentum tensor

since the Hermitian conjugate and adjoint
spinors are linearly related. Hence

since 6&'&(() is an even function. In (1.73) the
symbol Tr indicates the trace, or diagonal sum,
of the Dirac matrices. The following trace evalu-
ations have been used:

'rry„y„= 46„„, Try„= 0, (1.74)

In the latter proof, p5 pg+2+3+4
Dirac matrix, completing the set obeying the
anti-commutation relations (I, 1.1).

The vacuum expectation value of the energy-

the proofs of which involve only the anti-com-
mutation properties of the p„, and elementary
theorems concerning traces. Thus,

Trv.v. = Tr 2 (v.v.+v.v.) =44
and

Try„= Tr~y„(yqy&+y&"r&) = Tr2 (y~y6+p& rI )ps =0.
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momentum tensor is

Ac t' 8 8 )+~.
4 ( 8)p Bpp j

state by a unique state vector 0'0, without the
inconsequential ambiguity associated with gauge
transformations. The alteration of the state

- $~0 vector, produced by the external field, is de-
(1 75) scribed by

=2hc 6&"(g)
~4 ~$.

8e[o]
skc

bo (x)

1
= ——j„(x)A „(x)%'[0]. (2.1)

The trace of (0„„)0 can be computed directly
from (1.71), Following the program of I, Section 4, we replace

(2.1) by the functional integral equation
(0„„)0 ———moc'-,' Tr5'" ( t) ](=0

=2hcao'6'"(()]( 0,
(1.76)

@[0]= @0+ I j„(x')A„(x')@[0']den', (2.2)
kc' ~

@[0]—&g, , g-+ —x), (2 ~)

(1 7 7)
and can be solved by successive substitution.
We shall be content with the first approximation,

(1 78) which regards the disturbance of the vacuum as
small.

(0„.)0 =IA„.,

K = —,'(0„„)0———,'hcao'6"&(0).

Unlike the electromagnetic field situation, the
trace of the matter energy-momentum tensor
does not vanish and, indeed, is divergent. There
can be no objection, however, to altering the
definition of the energy-momentum tensor by
the addition of a suitable multiple of 8„„,which
is so chosen that the vacuum expectation value
of 0„, is zero.

y[~]=~ 1+ ~ j,(x')g„(x')d ' ~y,

(2 4)
= U[~ —"]+o

The operator U[a, —~ ] is unitary, to the order
of approximation considered. The expectation
value of j„(x), computed for the state of the
system as modified by the external electromag-
netic field, is

2. THE POLARIZATION OF THE VACUUM

The first problem to which we turn our atten-
tion is the induction of a current in the matter
held vacuum by an electromagnetic field —the
polarization of the vacuum. It is supposed that
the matter field, initially in its vacuum state, is
perturbed by the establishment of an externally
generated electromagnetic field, described by the
potential A„(x). It will be convenient to assume
that the potential vanishes prior to the creation
of the field, as well as after the eventual removal
of the field, which restricts the otherwise un-

limited group of gauge transformations associ-
ated with an external electromagnetic field.
Indeed, according to this specialization, the
function A(x) that generates a gauge transforma-
tion must be constant before the establishment
of the field. In placing this constant equal to
zero, no further assumption is introduced. We
may then characterize the initial matter vacuum

(j.(x)) =(+[~],j.( )x+[~])

=(+o & '[~ —"]j.(x) ~5~ — ]+~)

=(~ 'L, —"]j.( )~[, — ])o (25)

To the required order of approximation,

]j.(x) f'[~, —"]
z pd'

=j.(x)+ I [j.(x),j.(x')]~.(x')d~'
Pi.c'

(2 6)

whence

An important test to which this expression
should be subjected is that of gauge invariance.

which result also follows from (1.75). According
to the general arguments presented in con- which includes the initial condition
nection with the electromagnetic energy-mo-
mentum tensor, (0„,)o must be a multiple of b„„:
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We must requige that, in the absence of a real
electromagnetic field, no current be induced in

the vacuum; that is, A„(x) = B—h(x.)/Bx„m ust

imply (j„(x))=0. On introducing this form for

A„(x), we find that

(j.(x)) = ——
Ac' ~ „Bx„'

& I([j.(x) j.(x')])o~(x') }

since y}; anti-commutes with all components of
y„. Therefore,

Tr[S& (x —x)Y„S(x—x)Y„
—S'"(x —x') y.S(x' —x)y„]

85&'&(x —x') 8&& (x x—')

X Tr(pic„y.Y„+ye„y.p„)

~ d~.'([j.(x), j.(x')])p~(x')
Ac' ~.

hc

+&&p'6&»(x —x')A(x —x')Tr(y„y, +Y„Y„) (2.12)

(2 8) in which the even and odd natures of 6&'& and 6
have been employed. Now

pxpp+YJ+v+ pxpvpapy 2~yo+x+»

+2l&..Y&y„—28„„y&y., (2.13)

as required. In the course of this proof we have
employed the commutability of all components
of the current at two distinct points of a space-
like surface, and of a time-like component of the
current with j„at the same point, as contained
in (I, 2.34). The previously discussed require-
ment that A vanish in the remote past is also
involved.

Jn ord'er to construct the vacuum expectation
value of the commutator contained in (2.7), we
write (see (I, 2.33)):

[j.(x) j (x')]
ie'"c'

I [4.(x) A(x')](Y.S(x' —x)v.)&-
2

—[P.(x'), fp(x)](y„S(x x')y„)&&.I, —(2.9)

whence

([j,(x), j.(x') ]).
M c

Tr[S&'&(x' x)Y S(x—x')y—
2

—S&'&(x —x')y.S(x' —x)y„]. (2.10)

~&ewe.v) =0.
Indeed,

Tr Yw'Yv'Y& Tr2 Yg Yv YX(Y575+ Y6Yp)

(2.1 1)

Tr p (Y& Y~ Y& Yp+'YAsVvVK)'Y 0, p

To evaluate this trace, we first remark that the
product of any three y's (more generally, an odd
number) has a vanishing trace:

so that

Tr(v, v„v,v„+v&,v.v,v„)

= 8(8„,8&„+l&.,8g„—8„.&»„), (2.14)

and, finally

([j.(x) j,(x') ])p

0A(x —x') Bh&" (x x')—
= —4ie'c'

Bh(x —x') 86&»(x —x')
+

(86(x x') 86"&(x—x')—

(9x)&

+~p'i1(x —x')a&»(x —x')
} . (2.15)

)
In order to simplify further discussion, we

shall suppose that the electromagnetic field under
consideration does not produce actual electron-
positron pairs in the vacuum; that is, we treat
on1y the phenomenon of virtual pair creation,
The restriction thereby imposed can be obtained
from (2.4). The final state of the matter field,
resulting from the establishment and subsequent
removal of an electromagnetic field in the vac-
uum, is given by

+[~]=}1+ ~ g„(x')Ap(x')d&d' }op, (2.16)
kc' )
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which must be simply 4'0 if no real pair creation (2.20) is the fact that
has occurred. Hence,

(2.22)

j„(x)A„(x)d(u 40 ——0
00

(2.17)

is the condition describing the absence of real
pair creation events. According to the discussion
in I, Section 4, (2.17) will indeed result if the
energy and momentum conservation laws cannot
be simultaneously obeyed in the course of the
pair producing interaction between the electro-
magnetic field and the fluctuating current in the
vacuum. To exploit this limitation, we may
rewrite (2.7) as

which is demonstrated by remarking that e(x)
varies only by crossing a space-like surface
through the origin, on which D(x) vanishes.

It will now be shown that

=8is'c' G(X) —tl„„'G(X), (2.23)
Ox' &xi&

where

BA(X) c&6i»(X) O'G(X)
(2.24)

and l& = —(x„—x„')'. The function G(X) is made
precise by requiring that it vanish at infinity. Let

y, —,'(1+e(x—x'))A„(x')dm', (2.18) it first be noted that

BG(X)
(2.25)

8 l9

G(X)+28„„
Bxp Bxy BX

so that

where «(x) is +1 or —1 according as xo is ~~(x) ~~~"(x) ~~(x) ~~ "(x) ~'G(l&)

positive or negative, which is eft'ectively in-

variant since only time-like intervals x„—x„'
occur in (2.18). The condition (2.17) now enables
us to replace (2.18) with

Xe(x —x')A.(x')dao'. (2.19)

The advantage of this form is the possibility of
writing

c&Z(x —x') M, '» (x—x')
=Sie'c'

BZ(x x') Bh'—"(x x')—
BXy BXp

BGP)
H(X) =-', 'G(X) +2 +»O'A(X) 6&'& (X)

8X

O'G BG(X)= —2X —2 +»O'Z(X)hi»(X).
BX2 BX

The stated simplification of II(X), namely

H(X) = 'G(X),

can be proven with the aid of the theorem

(2.27)

(2.28)

(&[j„(x),j,(x')))«(x —x')) =0 (2.29)

since the indicated differentiation, applied to
(2.26), yields

shares with 6"&(x) the property of being a func-
tion only of ) = —x„'. Involved in the relation

0 = [ 'G(X) —H(X) ), (2.30)
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from which (2.28) follows. To verify (2.29), (A.33)):
observe that the left side reduces to 1 t" (

&(I«) =
I exp~ iI a+i —)dn,

8
a«(x x )

(li.(x). J,(x') ])0
8Xp

(2.32)
«o') p

&'"(&)=
I exp~ ihP+'i

~
dP

4~'~ . &, 4pi (p(

z«p (1 1) P
Xexp iI«(a+P)+

~

—+-
~

nP dndP,
4 &~ p) (p(

z~p' (1
G(X) = exp iX(u+P)+

~

—+—
~

(2&r)' & 4 En PJ
e'-'

(i.(x)) =4—'

h~„ np 1(n P)
X —

i + i
dudP (2.33)

(n+P)'2 E ]n] JP f)

Now a~(x —x')/ax„ is a, non-vanishing time-like
vector only if x and x' lie on a space-like surface,
and, since a time-like component of the current
commutes with j„at all points on a space-like

8P' (2 i4 gsurface, the validity of (2.29) becomes evident.
The introduction of the relation (2.23) into

the formula (2.19) for the induced current gives,
after an integration by parts that employs the
vanishing of the external potential in the remote
past and future,

( a aA„(x') )
x/ "A (x')—

ax„' ax„'
in which a symmetrization with respect to rx and
P has been performed. It will now be useful to
introduce new variables, v and m', defined by

e~
I
" 8

= —4— ' G(X) F„.(x')d(u'
h~ „ax„' (2.31) ~p'- 1 ~p'

Ct = t P

2w 1 —v 2w 1+v
(2.34)

~2 )m
G(&)Jp(x')des',

hc~ „
where J„(x) is the external current genera, ting
the electromagnetic field. In this form, the
gauge invariance of the theory is made explicit.
The induced current depends, not upon the
electromagnetic potentials, but rather the 6eld
strengths. Our result goes further, however, and
states that the induced current at a given space-
tirne point involves only the external current in
the vicinity of that point. This has the important
consequence that a light wave, propagating at
remote distances from its source, induces no
current in the vacuum and therefore is undis-
turbed in its passage through space. There is no
light quantum self energy phenomenon akin to
that for electrons, as we shall further discuss.

Our last task is the explicit construction of the
function G(X). On inserting the integral repre-
sentations for A(I«) and 6&'&(I«) (Eqs. (A. 15) and

which are such that

2i t
" ( «09.

G()&,) = «0' exp I
me+i

(4v)4 ~ „& w(1 —v'))

1(1+v 1 —v ) dv dw
x-i +

2(JI+vf JI —v) 21—v' w'

dv f
~p4 I'

(4&r)4 "
g 1 —v' ~ w'

2i

(
Xexp~ iw+i (. (2.35)

w(1 —v') )

= i(4&r) '«04

( «09,

w(1 —v') )
w)w( (1 v2)2

(2.36)

The integral representation

( k„'
'

(dk) exp(ik„(x„—x„')) exp~ i w(1 —v')
~

~J ( 4~g'
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then transforms (2.35) into

G(li) = — (dk) exp(ik„(x„—x„'))
8

(42r) '

dzo
X l (1 —v')dv l

0 ~n

k„2
Xcosi 1+ (1-") iw (2 37)

4~02

The Fourier integral contained in the second
term of (2.39) can be recognized as related to
that of the function h(x) (Eq. (A. 10)):

f exp(ik„x„)
~(x) = P il (dk). (2.41)

(22r) ' ~ k„'+a22

Indeed,

1 f exp (ik»x»)
(dk)

(2 )' " 1+(k.'/4 o')(1 —v')
which can be followed by an integration by
parts with respect to v, according to

( v ) f dw ( k»" dj v ——
)
„—cosi ly (1—v') )w3) &2 w E 4&22

so that

16~22
(2.42)

(1—v')' ((1—v2)& )

2 f cosw k» f' ( v
dw- —

I
1—iv dv

3 "2 w 2222 "o & 3)
G(li) =

1
log 8('x —x')

48m' ym 0

( k„'
dw sini 1+ (1—v') iw. (2.38)

0 4a22

The first I integral is logarithmically divergent
at the origin. On introducing a lower limit, mo,

we obtain

1 —(v'/3)2 1
—log——— P

~

n2dv
3 yw2 2~22 & 2 1+(k„2/42 ') (1—v')

as the value of the integral (2.38), where

y =1.781. The insertion of this result into (2.37)
yields

G(li) =
1 1

log -8(x —x')
48m"- ymo

4 1 l' ( V')
(

1 ——iv'dvP
(42r)' ~22 &, E 3 )

exp�

(ik„(x„—x„'))
X ~' (dk) (2.39)

1+(k„2/4K22) (1—v'}

in which it has been noticed that the operator
' is equivalent to multiplication by —k„' in its

effect on exp(ik„x„}, and that

exp(ik„x„) (dk) = b(x)
(22r)' ~

= b(x2) 8(xi) ii(x2) b(x2). (2.40)

1 f' ( 2
(x —x')

i

42r2 ~2 E(1—v2)&

p w9

—v'dv. (2.43)
(1 v2) 2

T& expression for the induced current that is
obtained from this form for G(li) is

n 1 4
()„(x))=——log - J„(x)——u

l

d~'
3% +MD

f'-(
X t Zi —(x —x')

(( (1—v-') &

1. —-'v2
3

X v'd vJ„(x'), (—2.44)
(1 —v')'

where u=e2/42rkc is the fine structure constant.
The current induced at a given point is thus
exhibited in two parts: a logarithmically diver-

gent multiple of the external current at that
point, and a finite contribution involving the
external current in the vicinity of the given
point. The first part reduces the strength of the
external current by a constant factor and hence
produces an unobservable charge renormaliza-
tion, as discussed in I. The second part of (2.44)
is therefore the physically significant induced
current.
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An alternative form for the latter is'

t'
(j„(x)}= a——d(a' Z~ (x —x')

I

vr ~ &0 ((I—v')&

1 —-'v'
v'dv "J„(x'). (2.45)

(1 v2) 2

If the external current varies sufhciently slowly,
the relevant unit of length being 1/~0=k/mac,
one can obtain a series in ascending powers of

' applied to J„(x).This may be done by con-
tinued application of the relation:

2 ) (1—v')'

k(1 —v')& j 16~0'

where d v' here denotes a three-dimensional
volume element. Now

G(r) = &(r, xo)dxo (2.49)

obeys the differential equation

(j„(x))= -—a dr' ' dxo'
J,

jt' 2 2
XZ( (r —r), —(x,—x,') )

E (1—v') (1—v')

1 ——v
v'dv V"J„(r'), (2.48)

(1 v2) 2

(V- —~02)G(r) = —8(r) (2.50)
M2gi

and is therefore the three-dimensional Green's4ao' E(1—v')& I
function:

a 1 a 1
(j„(x)) = — —'J„(x)——— d(o'

15% Kp" x Kp Accordingly, 4

G(r) =
4xr

(2.51)

1

X,I Zi (x —x')
i

Jo E(1—v')&
0. f

(j.(x))=-
4m'2 "

2ao
exp/ J

r —r']
E (1—v')& j

1~2

X v'dv " "J (x')
p2

1.

'J„(x)
15m ~p'

(2.47)

p23
X v'dvV" J„(r')

p2

~K(r —r') V"J„(r')d r',

(2.52)

a (1
140v I ~0' )

If, however, the first term' is not an adequate
approximation, the series will usually be incon-
venient and recourse must be had to the original
integral expression.

A particular case of importance is that of a
time independent external charge or current dis-
tribution. In this situation, (2.45) can be
specialized to

'Formulae equivalent to (2.45) have been given by
R. Serber, Phys. Rev. 48, 49 {1935).

I The original discussion of the polarization of the
vacuum were confined to this term. P. A. M. Dirac, 7'
Conseil Solvay, 203 (1934);W. Heisenberg, Zeits. f. Physik
90, 209 (1934).

3m& e-'"0"
K(r) = xpr )&1.

Sr (Kpr)&

(2.54)

4 An equivalent result has been derived by F.. A.
Uehling, Phys. Rev. 48, 55 (1935).

'W. Pauli and M. E. Rose, Phys. Rev. 49, 462 (1936).

with

1 q (]2—I)I
K(r) = '

~
I+

~
d$. (2.53)

r & 2~2i P

We shall be content to record the asymptotic
forms of K(r), which can be expressed in terms
of the Hankel function of imaginary argument,
Ko(2Kpr), and associated functions:~

I p 1 Sq
K(r) =—

I log —— I, ~0«&1
r 4 yfipr 6&
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. ~~[-]
ibad

bn(x)

1
= ——j„(x)A„(x)+[o], (3.1a)

(8A„(x) t 1
——

I D(x —x')-j„(x')d~„' I~[~]=O,
I, ax„

(3.1b)

3. THE SELF-ENERGY OF THE ELECTRON

The second problem to be treated is the
modification of the matter field properties arising
from its interaction with the vacuum fluctuations
of the electromagnetic field. The coupling
between the fields can be described in two
equivalent ways; either employing the complete
electromagnetic four-vector potential, together
with a supplementary condition

action eRects have no direct physical significance,
but only exhibit themselves to the second order
in such processes as the virtual emission and
subsequent absorption of a light quantum by the
matter field, thus producing the interaction
between diRerent particles and the self-energy
of a single particle. We shall therefore attempt
to construct an equation of motion for 4[0]
from which the first order interaction term has
been eliminated and replaced by the second order
couplings which it generates.

In order to carry out this program, we must
exhibit the first-order solution of the equation
of motion for +[rr]. As in the discussion of
vacuum polarization, the required solution, of
(3.2) say, is given by

or using the transverse four-vector potential,
which requires no explicit use of the supple-
mentary condition

w [~]
ihc —= —-j„(x)8,,(x)

80(x) c

1 t (1 aX)(x —x') BS(x—x') )
c' ~, (2 Bx„Bx„)

+[ ]=-I 1+, ~,(")tt.(")d ' I~, (33)

where + is the state vector in the absence of
interaction. Although this solution has been
chosen to fit a boundary condition as o.—+—~,
the absence of any real first-order eRect, as
expressed by

I

Xj„(x)ji, (x')do), ' +[o]. (3.2)
j„(x)e„(x)der = 0, (3 4)

In discussing either of these equations of motion
for 4'[0], we shall employ a perturbation method
based on the weakness of the coupling between
the two fields, as measured by the smallness of
u=e'j4iriric=1j137. Physical quantities will ac-
cordingly be classified as to order of magnitude,
depending upon the power of e, or better n&,

which they involve.
To zero order, there is no interaction between

the fields, and the state vector %[rr] is constant.
The first-order coupling between the two fields
corresponds to the emission or absorption of a
light quantum by a free electron, or in the
course of creation or annihilation of a pair. It is
important that all such processes are virtual;
that is, in consequence of the impossibility of
simultaneously satisfying energy and momentum
conservation laws, a free electron cannot emit or
absorb a light quantum, nor can a light quantum
create a pair, or a pair annihilate with the emis-
sion of a single quantum. Hence first-order inter-

enables (3.3) to be rewritten:

0[a]—(1—i5[e ])0
j. oo

5[0']= —
I j„(x')Q„(x')e[rr, rr, ']d(g',

2kc' &

(3.5)

1-i~[~]-k(~[~])', (3.6)

which in turn may be replaced by any rigorous
unitary operator that agrees with (3.6) to the
desired degree of approximation. The simplest
choice of such an operator is e ' & '. Accordingly,
we introduce the state vector transformation

4[0]~e—'e'i+[a] (3.7)

in which form there is no distinction between
past and future.

The operator 1 —iS[a] is unitary only to first
order. In order that the unitary property be
valid to the second order, the operator can be
extended to
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8%'[a] i
i Lj.(x)[t.(x),

[ia(x) 4hc' &

So[a] Se-'«)
iAC +ikceist']

ba(x)
gr(x ) (Xr(x ) ]a[or a' ]dna+[a]

i)a(x)
1 [» (1 8m(x —x') c)X)(x—x') )
~ J. &2 ax„"" ax„)-e*' ['-j (x)8, (x)e ' []

C

in which the new state vector varies only in and
response to second-order interactions. The new

equation of motion, replacing (3.2), is

BX)(x—x') )
ax„)

1 i t 18n(x —x')
+n„n„

c' &. (2 Bx„

Xj„(x)j&(x')do), ' 4'[a], (3.8)

in which corrections to the generalized Coulomb

term have been discarded, since we shall con-

sistently retain only second-order terms. Q'e are
required to evaluate

Xj„(x)j),(x')da), ' a[a]. (3.13)

The same operations can be carried out with
Eq. (3.1a); in particular, the functional S[o]
occurring in the unitary transformation (3.7)
has the same form as in (3.5), but with A„(x)
replacing S„(x).The result of the transformatio[i
is, evidently,

So[a]
' [j.(x)A. (x) j.(x')A. (x')]

ba(x) 4kc'

be-"t ]

ei8t[r]

ba(x)

and

bS[a]
Z

8o (x)

1- &S[a]-
+—S[o], + (3.9)

2 bo (x)

Xo(x —x')dia' 4'[a]. (3.14)

However, we must also consider the supple-
mentary condition (3.1b), which becomes:

c)A „(x) 1
eiS[rr) e—iS[rr) D(X Xr)eie[rr]

Bxp c~,
e's')j (x)[t„(x)e 's[' =j (x)[i', ( -)

Xj„(x')e-"[']do ' +[a]=0. (3.15)

+i[S[a],j„(x)e„(x)]+ . (3.10)
In order to simplify

Now S[o],as defined in (3.5), satisfies the equa-
tion of motion

c)A„(x) BA„(x) BA„(x)
e i s [rr] e—i s [ ] —rr+ i S[a]

Bxp 8xp l9x~

whence

8S[a] 1
Pic- — —= ——j„(x)Q,„(x),

isa(x) c
(3.11)

observe that

BA„(x)——S[o], S[o], ——+
Bxp

be
—is [a]

iEiceis &']--
1

+eis[rr] j (x) g (X)e
—is[a]

c

i 1=—S[o]—j„(x)8„(x)
2 c

GO

Lj.(x) tt. (x) j.(x') @.(x')]
4(ic' & „

Xo[a, a']A&', (3.12)

1

c~,
(3.16)

c)A„(x)
i S[o],

Bxp

i i 8A„(x)
, A„(x') j„(x')o(x—x')dca'

2kc' ~ Bx„

1 f
(D(x x') j„(x'))a(x x')d—ia'—

2c ~ 8x„'
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The first-order terms are thereby removed from the current in virtue of the first-order coupling.
the supplementary condition, which now reads This potential satisfies

-BA„(x)
do„' der "D(x x')—

Bx„4hc' ~.

X fj„(x'),j„(x")]A„(x")o[o,o "] 0'[o]=0. (3.1'I)

1
28A„(x) = —j„(x),

8A„(x) =0,
BXp

(3.22)

The commutator contained in (3.14) can be and is simply half the sum of advanced and
simplified in the following manner: retarded potentials classically ascribed to the

current distribution j„(x).Similarly,
I:j.(x)A.(x), j.(x')A. (x')]

=
2 [A.(x) A.(x')]{j.(x) j.(x') }

+2[j.(x) j.(x')]{A.(x) A.(x') }

saic
6„„D(x-x'){j„(x),j„(x') }2"
+-,'[j„(x),j„(x')]{A„(x),A„(x') }, (3.18)

which brings the equation of motion into the
form

I [j„(x),j„(x)]f A„(x), A „(x ) }
8hc' ~

Xo(x—x')des' 4'[o]. (3.19)

Both terms have an elementary interpretation,
describing the self-action of each field through
the intermediary of the other field. First note
that the operator replacing A „(x), in consequence
of the state vector transformation, is

o'o~'A (x)e "~'

=A„(x)+i[S[o],A„(x)]+

=A„~x)+- }I D(x x') j„(x')d~'+—
(3.20)

The additional term thus produced,

6A„(x) =— }I D(x x') j„(x')du)', (3.—21)
c,i

represents the electromagnetic field induced by

8%'[a] 1
ihc -= —

i {j„(x),j„(x')}D(x x')dco'—
bo(x) 4c' "

e""j.(x)& ""=j.(x)+&p'[o], j.(x)]+
(3.23)=j.(x) +~j.(x)

where

Xo(x —x') des' (3.24)

is the current induced by the electromagnetic
field. It is the vacuum expectation value of this
current that was considered in the previous
section. We now observe that (3.19) may be
written

8~I [o'] 1
~bc -= ——{j„(x),bA„(x) }

So(x) 4c

——{bj„(x),A„(x) } +[a], (3.25)
4c

in which the two terms evidently represent the
interaction of the current with the electromag-
netic field generated by the current, and of the
electromagnetic field with the current induced
by the field. The factor of —,

' (other than the ~2

accompanying the symmetrization of the prod-
ucts) is that inevitably associated with the self-

action of a system.
The equation of motion (3.13) can be given

an analogous interpretation except that the
interaction between the current and the field
generated by the current occurs in two parts,
associated with the transverse and longitudinal
potentials of the current distribution. However,
this more involved representation of the field
differs from (3.21) only by a gauge transforma-
tion. The transverse potential induced by the
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current is becomes

Z t

&&,(x) = [e„(x), e.(x')]j„(x')«[o, cr']dca'
2kc' ~

Hence,

n„n„S(x—x') jg(x') do ~'.
Bx„

D(x x') j—„(x')dco'
c~

1 t 8 0 t' 8
+—

I +( n„
2c «i Bx~ lPxy E Qx„

+n„~ng $(x —x')
ax, i ax, .

Xj„(x')«[o, r'c]d 'co(3..26)

+Sp, 'U)c

~xv

X $(x—x') j„(x')«[o, o']dco'

1
I

cl t' cl

+n„n,
2~ ax„' &ax„ax„i

XS(x—x')j„(x') «[o, o']d~'

gg,„(x)=gg„(x) ——
I~

(

&. iax„a „&

X $(x—x') jp(x') der),
'

1
+ —

I ng $(x—x')
BXp 2 ~ BX)c

Xn„j„(x')«[o, a']dco' . (3.29)

The gracfient term can be completely eliminated,
in the approximation of retaining only second
order quantities, by a suitable gauge trans-
formation on the state vector. The second term
of 8Q„(x) exactly cancels the Coulomb coupling
expression, and we are left with

&~[a]
iIcc = ——

f j„(x),5A„(x) }

ba(x) 4c

1——
I &j.(x), O'. (x) l +[a] (3 3o)

4c

6
+n„n„~S)(x-x') j&(x')dcr), ',".&ax„cIx„i

1
t

8 8
n„nr, X)(x—x') j„(x—') «[o., o']dco'

2 «i l9xp BX'pc

ng $(x—x )npgp(x )«[a', a' ]dco
c)xp 2 I9xg z

(~j.(x)).= ~"([j.(x), j.(x')])«
2jzc' J

X 8„(x')«[a, a']dco', (3.31)
8

+— n&, $(x—x') j„(x')n,
2 Bxg Bxp

(3.27)
as the simplified form of (3.13). Here 6j„(x) is
given by (3.24) but with (X„(x) replacing A„(x).
It will be evident from this discussion that the
separate consideration of longitudinal and trans-
verse fields is an inadvisable complication in the
treatment of virtual light quantum processes.

The current induced by the electromagnetic
field is naturally divided into two parts, that
existing in the absence of any charged particles,

X«[a, o']dco'. 3.28
and that specifically associated with the presence
of matter,

It is a consequence of the time-like nature of the
gradient of «[o, a'] that (~j.(x))c= ILj»(x), j (x')]

2kc' ~

8 8n„«[a, a'] =n„«[o, a'],
Bxp BX„

—&[j.( ), j ( ')]) I o' ( ') L ']d ' (3 32)

Were the vacuum induced current different
whence the second term of the right side of (3.28) from zero, Eq. (3.30) would contain a term
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describing modifications in the properties of the
electromagnetic field, without the presence of
charged particles. ' Such a light quantum self-

energy effect does not in fact exist, since no
current is induced in the vacuum by a light
wave, as we have shown in the previous section.
However, note that while

(Be,(x) i
'e„(x)—

l )
=0,

8x„( Bx„

as required in the proof, further discussion is
required for A„(x), since the supplementary con-
dition is involved in the treatment of BA „(x)/Bx„.
Now

into two parts, of which one is associated with
the vacuum Ructuations of the electromagnetic
field,

——{(Bi.(x))i 8.(x) }o=— ~' Lj»(x),j.(x')]i
4c SAc' ~

X({Ct„(x), e„(x') })Oe(x—x')dko', (3.36)

and the other exists only in the presence of
actual light quanta:

——{(Bi.(x))i tt. (x) }i = — "Lj.(x) j.(x')]i
4c 8kc' &

X {S„(x), S„(x') ) &e(x —x')des'. (3.37)

In these formulae, the subscript one indicates
the difference between the quantity and its
vacuum expectation value. The second part of
the interaction, Eq. (3.37), describes the real
coupling between matter and radiation, as ex-
hibited in such processes as the scattering of a
light quantum by an electron, and the two quan-
tum annihilation of an electron-position pair.
The first part, Eq. (3.36), contains only the
dynamical variables of the matter field and con-
stitutes a portion of the electron self-energy.

A similar decomposition can be performed with

{(Bj.(x))o, A.(x) }+[~]

„i~([j.(x), j.(x')])Ol A, (x)A, (x')
2$c2 J

+A„(x')A„(x)]e(x—x')da&'4[0]

A„(x)) ([j„(x),j,(x')])0
hc'

XA, (x') e(x —x')d(u'@[~]

1
+— (Lj.(x), j.(x')]) ~(x —x')

2c ~
1 Z

XD(x —x')d '+[ ] (3 33) ——{(Bj.(x)),A. (x) )
= — "[j.(x),j (x')]

4c 8hc' "

I t is convenient to divide the interaction of
the electromagnetic field with the current that it
lnducesi

——{(Bj.(x))& ~.(x) ) =-
4c

[j.(x), j.(x')]i
Shc' &

ln the first term on the right side of Eq. (3.33),
BA „(x')/Bx„' operates directly on 4'[o ], per-
mitting the supplementary condition (3.&7) to be
invoked and is effectively equal to zero since a
fourth order quantity is to be neglected. The
second term of (3.33) also vanishes since

([j„(x),j„(x')])oe(x—x') is an even function,
while D(x x') is an odd fun—ction of x —x'.
Therefore,

{(Bj„(x))p,A„(x) ) 4'[0]=0. (3.34)

X {A„(x),A, (x') }e(x —x')d(o' (3.38)

except that the definition of the vacuum for the
field described by A„(x) requires a slight dis-
cussion. Evidently a statement concerning the
vacuum state of the longitudinal fields is mean-
ingless since these fields are completely elimi-
nated by the supplementary condition. However,
it is certainly permissible to adopt a conven-
tional definition that unifies the treatment of the
longitudinal and transverse fields, with the full
knowledge that the eventual elimination of the
longitudinal fields will deprive the particular
convention of any physical content. For this
reason, the definition of the vacuum (1.34) may
be extended by the conventions

A'+&(x) 00 ——0, .V&+& (x)+0 ——0,
X {8„(x), Q„(x') }e(x—x')des', (3.35)

' A logarithmically divergent term of this type was ob- thus yielding
tained by W. Heisenberg (see reference 3), A „'+'(x)%'0 ——0

(3.39)

(3.40)
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as the natural de6nition of the vacuum in a while

treatment that employs the complete four-vector
potential. Expectation values of quadratic forms
can be computed as before:

(A„(x)A,(x')+A„(x')A„(x)),
= —i[A &'&(x), A„(x')]

(3.41)= Aced„„D"&(x —x').

In particular,

Z——I(aj.(x))&, A.(x) Io = — [j.(x),j.(x')]&
4C 8c' ~

Xe(x —x')D&'&(x —x')dko'. (3.42)

That nothing of a physical nature has been
added by adopting the vacuum definition (3.40)
can be made more convincing by proving the
equivalence, to within a gauge transformation,
of the two expressions (3.36) and (3.42), in-

volving their respective definitions of the
vacuum. Now

——I(aj.(x))&, ~.(x) I0= ——I(ajar(x))&, A.(x) IO
4c 4c

X S "&(x—x')e(x —x')da)'

8 1
[j„(x),j„(x')]in„n&,

axe 2 axe

XS'"(x—x')e(x —x')de', (3.44)

since

[j.(x), j.(x')]&n~
2~ 8X),

a
X S&'& (x—x')n„e(x—x') dco'

BXp

1 l 8
[j.(x), j.(x') ]«~

2~ Bx),

8
X n~" (x x')n„— ~ (x —x') d(u'

BXy
Z

+ , Lj.(x), j.(x')]&~
8C + E QXp QXy

( a a) a)
+] „n+ „nf n, &ax„ax„) ax&, ) =0

X)~'& (x —x') n„[j„(x),j„(x')],d~„'
o

(3.45)

X S&"(x—x') e(x —x') d&o', (3.43) Therefore,

and

(a a a aq
Lj.(x), j.(x')]&~ +n.

2& (ax„ax„ax„ax&,]
X X)'" (x—x') e(x —x') d(u'

1 ~ a (a a)
[j.(x),j.(x')]i] +n.n~

2& ax„' (ax„axe)

1——f(aj (x))i + (x) Io
4c

1
= ——

I (aj„(x))„A„(x)I 0

4c

8
+ [j„(x),j„(x')]in„n&,

OX' 8C ~ t9X&

X X&&"(x—x') e(x —x')des'
X S&'&(x—x')e(x —x')des', (3.46)

p(a a$
+n„n, —~n& &(x—x)

~.Lax„" ax)
X[j„(x),j„(x')]&do„'=0,

which establishes the stated equivalence.
The elimination of the first-order terms in

(3.1) and (3.2) has thus resulted in the following
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equations for the new state vectors:

beL ]
ihc -= ——

I j„(x),bA„(x) )
bo (x) 4c

1——
I (bj.(x)) i, ~.(x) I ~

4c

of which the last term can be eliminated by the
canonical transformation

+La]—+e—*~'~ t+Lo],

G'L.]=, ((bj,('))ii 1'( ) Id..
4IE.c' ~,

——I(bj.(x)), ~.(x) I +L ],
4c

8A„(x) 1
D(x-x')(bj„(x')) ido„'

Bx„2c~,

)& @LE]=0, (3.47b)

A(.)-A'( )+ LG'L.] (A( )-A'( ))]

in analogy with (I, 3.19, 3.20). However, the
3.47a

elimination is only to the required second order
since the commutation properties of bj„(x) are
unlike those of j„(x) in the situation cited. The
new supplementary condition, correct to the
second order, is

1
ihc = ——

I j„(x),bA„(x) I
Bo (x) 4c

—t(bj.( )) , ~.( ) I .
4c

——I(~j.(x))i, ~t.(x) Ii +L~].

j.
5)(x —x') (bj„(x')),do„' C~L0] =0. (3.51)

2c ~,

Happily, bj„(x) does commute with A(x) —A'(x),
which is all that is required in order that the new

(3.48) supplementary condition be simply:

The matter interaction terms in (3.47a) have
been obtained in a natural and direct manner,
while the same quantities in (3.48) have resulted
from rather elaborate operations designed to
unite the longitudinal and transverse I1eld con-
tributions. On the other hand, the elimination of
the longitudinal fields has yet to be performed
in (3.47a), while the term describing radiation
processes in (3.48) requires no further manipula-
tion. To complete the picture of these alter-
natlvc pI ocedul cs foI dealing %'1th scconcl-order
effects, we shall carry out the elimination of the
longitudinal field in (3.47a), thus finally per-
forming the process that has already been incor-
porated in (3.2) and its successor, (3.48).

We erst observe that

j.——I(bj.(x))i, ~.(x) I = ——I(~jp(x))i, O'. (x) I
ic ic

1 8—n„ (bj„(x))„n„ (A(x) —A.'(x)}
4c Bx„

+ —I(bj„(x))i, A'(x) J, (3.49)
Bx„4c

LA(x) —A'(x) ]+La]=0, (3.52)

as in (I, 3.26). To verify the stated commutation
law, note that

bj.(x) = [j.(x), j.(x')]~(x-x')
2hc' ~

X C„(x')+n,ni (A(x—') —A'(x')), (3.53)
Bxy

in which the omitted 8A'(x')/Bx„' term is easily
shown to give no contribution. The proof is
completed by remarking that there is a vanishing
commutator for A(x) —A'(x) at two different
points. The new form of the supplementary
condition ensures that the second term on the
right side of (3.49) does not contribute to the
state vector equation of motion. Furthermore,
the supplementary condition reduces the ex-
pression for the current induced by A „(x), (3.53),
to that induced by 8„(x). We have thereby
demonstrated that the elimination of the longi-
tudinal fields in (3.47a) yields (3.48).

The coupling of the matter field with itself
includes both the interaction of different par-
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ticles and the self-action of individual particles.
Our next task is the separation of the matter
interaction terms into these component parts.
The basis for such a decomposition in to what
may be called one particle and two particle terms
lies in the interpretation of the spinors describing
the matter field as particle creation and anni-
hilation operators. The operator commutation
law

[0(x) Qj=fe„i"[4(x), (Ax')V.)-]4-(x')d~, '

(3.54)

= eP(x),

when applied to an eigenstate of total charge,
4'(Q'), states that

Qk(x)+(Q') = (Q' —e)0(x)+(Q') (3 55)

Evidently P(x) acts as an operator decreasing
the charge of the system by e and therefore
either annihilates a particle of charge e, or
creates a particle of charge —e. Similarly, P'(x)
or g(x) either creates a particle of charge e or
destroys a particle of charge —e. Quantities of
the typical form fP consequently induce such
eAects as the annihilation of a particle in one
state and the creation of a similar particle in
another state, which can be viewed as the transi-
tion of particle between the two states. Such
quantities may be called one particle operators,
although the nomenclature is only strictly ac-
curate when the vacuum expectation value of

is subtracted. The latter arises from the
creation and subsequent annihilation of par-
ticles of charge —e, occurring in the absence of
matter as a vacuum fluctuation. The more com-
plicated operators of the type Ping induce a
variety of effects including the annihilation of
two particles and creation of two others in

different states, which is to be regarded as the
transition of a pair of particles from one set of
states to another. Such two-particle effects are
to be distinguished from phenomena in which
one particle makes a transition while another is
created and then destroyed. This one-particle
transition coupled with a vacuum fluctuation is
observationally indistinguishable from the simple
one particie effects previously mentioned. Of
course, gfiPQ also produces phenomena in the

vacuum, in which both transitions are vacuum
fluctuations. It is in this way, by successively
restricting the possible transitions to be vacuum
fluctua. tions, that gnfgiP, and more general ex-
pressions, can be decomposed into operators
associated with various numbers of particles.

The operator to which we shall apply this
decomposition is

Ij.(x), j.(x')
1
= —e'e'I2[0(x)7. , 0(x)j,

X 2[&(x')7., 0(x')lI (3 5&)

In order to evaluate its vacuum expectation
value, it is merely necessary to replace the bi-
linear products PP and PP, in all possible com-
binations, by their vacuum expectation values.
However, since j„(x) and j,(x ) have a vanishing
vacuum expectation value, it is only products
of the type g(x)P(x'), f(x')f(x), P(x)g(x') and
P(x')P(x) that need be included. To discuss one
term in detail, consider

(v.)-e(v.)&ok-(x)A(x)k. (x')A(x') (3 57)

The operator Po(x'), acting on the vacuum state
vector, produces a particle of charge —e (an
electron, say). The effect of P, (x') can be to
immediately annihilate this particle, but, for the
reason mentioned above, such a term would be
cancelled on considering the second part of the
expression for j„(x'). Thus, the essential result
produced by f~(x') will be the creation of a
particle with charge e (positron). The remaining
two operators must destroy the electron and
positron that have been created in order that
we deal with a vacuum eEect. Hence Pe(x) must
annihilate the particle generated by g~(x'),
which elf ectively replaces fe(x) P„(x') by its
vacuum expectation value. Finally, P (x) must
destroy the electron created by Po(x'), thus
replacing the product P (x)Po(x') by its vacuum
expectation value. There is no difficulty in

associating P (x) with Po(x'), despite the two
intervening operators, since f (x) electively
anticommutes with both operators, acting as it
does on a diferent particle from those affected
by the operator product Pe(x)g~(x'). Therefore,
the vacuum expectation value of (3.57) is

(7 ) eh'. ) o(4' (x)A(x'))o(fe(x)4' (x'))o (3 58)
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But

(A(x)k. (x'))o =
2 I A(x), 4.(x') I

+2(LA(x) 4~(x') j)o

= ——Se, (x—x') ——,
' Se,&» (x —x')

2
'

to (2.23):

8
Ij.(x), j.(x') I o =4e'c'~

E ax„ax, )
X (I (X) —I.&"(X)), (3.64)

where

iS—,»&+(&x x—'), (3.59)
yah(7)~ ' a'I, (x)

4
ax'

(3.65)

iS( (x—' x)+iS—i &+&(x' x)— f'ML&" (x) q
' O'I &'&(X)

a7& j ax'
iS—i.& '(x—' x)—,

whence (3.58} becomes

(3.60)
In particular,

Ij.(x), j.(x') Io—Tr [y„S&+&(x—x') y„S& & (x' —x) $. (3.61)

Continuing in this manner, we find that

Ij.(x),j.(x') Io

= e'c'Tr)y„S&+& (x—x') y„S& &(x' —x)

+y„S&
—'(x —x') y„S&+&(x' —x) g

(3.62)

Tr [&,S(x x')&„S(x' x)— —
2

+y„S&»(x —x') y,S&"(x' —x)]
An evaluation of this trace, employing the same
method used to derive (2.15), yields

Ij.(x),j.(x') Io

ad (x—x') ah(x —x')
=2e'c' 2

Xp ~&v

- ta~(x —x')q '
—

~
+&&0'(A(x —x'))'

axe )
ah&'&(x —x') M, &»(x —x')

—2—
- paa&'&(x —x') q

'-

+a„. I—
E axe )

+&&0'(6&'&(x—x'))' . (3.63)

This, in turn, can be replaced by a form analogous

= —12e'c' '(I (X) —I &'&P )). (3.66)

To find the one particle component of (3.56),
we shall isolate that part of the operator that
induces the transition of a positron, say, from
one state to another with no other observable
change in the matter held. We may again con-
sider the typical term (3.57). The operator f&(x')
either annihilates the single positron present or
creates an electron. If it is the destruction of the
original positron that occurs, the second operator
g~(x') can only re-create a positron, in what is
generally another state. The third operator can
annihilate the previously generated positron,
thus forming the vacuum expectation value of
Pe(x)f~(x'), or create an electron. However, if
the latter occurs, P (x) must annihilate that
electron, in order that only a one-particle transi-
tion occur. But this would form the vacuum
expectation value of p, (x)f»(x), which, as we
know, is eA'ectively cancelled by the second term
of j„(x). Thus, if the original positron is first
annihilated, the only event that can ensue is a
vacuum fluctuation, followed by the creation of
the positron in its final state. If, on the other
hand, the erst process to occur is the creation of
an electron, this must be followed by the creation
of a positron in what will turn out to be the 6nal
state; the immediate annihilation of the electron
need not be considered, for previously stated
reasons. The third operator fe(x) can now only
annihilate the original positron, and f (x)
destroys the electron. The two sets of transitions
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that have thus been described in detail are those
induced by the operator

(v.)-e(v.)» {{:4-(x)A(x') 7&(A(x)4~(x') )o

+L4 ( )4.( ')] (4-( )A( '))o}, (3.67)

which, indeed, is the one-particle part of (3.57)
since it has a vanishing vacuum expectation
value.

It is now only a short step to the one-particle
part of (3.56):

g 2c2

(v.)-e(v.) p{EW-(x) A(x')7&
2

X(LP»(x), P, (x')])o+Llp(x), P~(x')]&

X(g.(x), P,(x')]),}
e'c'-

{Lk(x) v.~'"(x—x') vA (x') 7&
2

1
aC&, p(x) = ——{j„(x),hA„(x) }&

4c

{(~j (x))& ~ (x) }o

4c

1
I {j„(x),j„(x')}&D(x x')d—oo'

4c' &

Z

Lj.(x), j.(x')7&
8c' &

Xp(x —x')D~'&(x —x')d~' (3 73)

Xz o(x) = {j„(x), 8A„(x) }z
4c

XD(x—x')d~', (3.74)

and the actual quantity of interest

{j.(x).j»(x') }&

8 c
{Lk(x), v.5'" (x —x') vA (x') ]&

+Lk(x') v.~'" (x' —x)v 4'(x) 7& } (3 69)

Of course, the two particle part of (3.56) is

simply

{j.(x) j (x') }p = {j.(x) j (x') }

Z

Lj (x) j (x')7&p(x —x')
8kc' ~

X {&„(x), 8„(x') }&do&'. (3.75)

In these quantities the subscripts refer to the
number of particles and light quanta whose
transitions are described by the term in question.
The change in the properties of the vacuum
arising from the coupling between matter and
radiation is produced by

{Jp(x) 2 (x ) }& {2p(x) 2 (x ) }p (3'70) ~ 3ez I lz(L () ) I (&&() ))D(x xf)d

= —3e'(I (0) —D"(0)), (3.76)and we shall have no occasion to further simplify
it.

N Lrr]
z&&zc— = {Ko p+K&, p(x)+Xz, p(x)

bp (x)
+X&,&(x) }eL~], (3.71)

X.&, p(x)
e"-

{L|t'(x) 7 ~ (x x )vA'(x ) 7&D(x x )
8 J

+g (x), y„8(x—x') y„P(x') 7&D&'&(x —x')

where

1
X'o, o= ——{j.(x), &~.(x) }p

4c
+g (x') y„S&'& (x' —x)y„, P(x) ]&D(x—x')

+L4(x')v, s(x' —x)v. , 4(x)7&D'"(x—x') }d~'"{j.(x),j.(x') }o
4c' ~

XD (x x') dh&', —(372) =-'L0( ) 4( )]+lL4().4( )] (3.77)

It is now possible to write the second-order which implies nothing of physical interest, how-

state vector equation in the detailed form ever. Ke turn, at last, to the quantity describing
the altered properties of individual particles:
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y(x) = bmc'P(x), (3.79)

where

e'
y(x) = ——I ~ [D(x—x')5&'&(x —x')

J

+D&»(x x') 8—(x x') ]—y„P(x')dp&'. (3.78)

We shall prove that p(x) is simply a multiple of

4 (x),

simplified,

BP(X)
e')I y„P(x')dp&'

Xp

8
P(X) „P( ')d '

BXp

.,
I

I P(z)P( ')d '. (3.85)

whence

l&C&, p(x) = &Bc g(x), P(x)]&

= mme'-,'[P(x)P(x)+P'(x)P'(x)]&. (3.80)

Hence,

y(x) =e'
«p) -Q(7)P(x')d&p', (3.86)

where

Q(X) =2[D(X)h'»(X)+D&»(X)Z(X)] —P(X). (3.87)
It will be evident that bus is the electromagnetic
mass of the electron.

The identity The explicit construction of P(X) and Q(X)
proceeds analogously to that of G(X) in the

(3 8l) second section. We 6rst note that
ax, J" E ax,

enables p(x) to be written:

y(x) =e' I yg D(x x') 5&»(—x —x')
Bxy

BP(X)

and

1
expf iX(n+p)+i f-

(2') 4 & 4n)

1(n P)
Xn-f + fdndP,2( fnf fPf)

+D~»(x —x') A(x —x')
Bx),

+2& [D(x—x')5&'&(x —x')

+ D'"(x—Y')Z(Y —x')] P(x')dp&' (3 82)

Z p ( vo'~
PP) =— ~ expl ix(nyP)+i

(2 )' " 4nJ

n 1(n P)
X -l + — fdndP. (3.38)

n+P2 &fnl

Zp')
Q(».)= ~ expf iz( yp)+i

(2pr) 4 4nJar P,) as&»(X) ai(7)
=D(7) +D~'&(Z) (3 83)

8A, 8X n )1(n Pg
Xf 2- I-f + — ld dP. (3.89)

n+&» & lnlThe utility of this quantity stems from the rela-
tion

In terms of the variables v and m, defined by
(2.34), this reads8D'" (x) 86(x)

D(x)— ——+D'" (x)
BXp Xp, 3 —v I.

"dw

4(2~) 4 ~-& (1 —e')'BP(X) BP(X)= —2x„=, (3.84)

Hence,
We now define P(X), a function of X = —(x„—x„')p

according to

which permits the first term of (3.82) to be

& —v XKO'

&(exp iw +i—, (3.90)
2 w(1 —-.i')
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which in turn becomes

Q = (dk) exp(ik„(x„—x„'))
16(2or)' &

1 " dm
X,I' (3-.)d. t'

1 —v k„'
Xexp~ i + "

(1—v) w ~, (391)
2 4Ko' )

on using the integral representation (2.36).
We now remark that f(x) satisfies the second

order differential equation

( ' —Ko'-)P(x) =0, (3.92)

which implies that a Fourier decomposition of
33 (x) into plane waves of the form e'"i*~ involves
only such propagation vectors that obey

K p ~ (3.93)

'1 herefore, in evaluating the integral

t Q(X)P(x')doi',

Q(P, ) = I' exp(ik„(x„—x„'))F(k„')(dk), (3.94)
(2m.) 4

with Q(li) expressed as a Fourier integral in-

volving e'~~( ~ *~', multiplied by a function of k„:

To complete the evaluation, it is convenient to
integrate by parts, according to

dL(v —5) (1 —v) 7
mp 16m ~

t
"dm f'1 —v)'

X (I cos/
)

w
~o w ( 2

n r cos'w I' (1 vp=—6 II dtv+ II (5
8K ~o w & i 4 2

~oo ($ p) 2

X I sin( )
udw&2)

3+1 1 5=——log +-
2%' 2 pK'p 6

(3.97)

whereby we obtain a logarithmically divergent
result for the electromagnetic mass of the
electron or positron. An alternative evaluation
can be given, which permits comparison with
previous treatments, ~ by employing directly the
Fourier integral representations for the functions
D(x), h(x), D"'(x) and 6"'(x), in (3.82). One
thus obtains the electromagnetic mass as an
integral over the momenta of the virtual quanta
involved in the self energy process, with the
result

the latter quantity may be replaced by —Kp2.

'fhus

6ns 3n X+Ep 1=—log
mp 2m Kp 6~ „

(3.98j

Q(li) P(x') doi'

1

) (dk) tdio'
(2~) '

Xexp (ik„(x„—x„')) F(—Ko') P(x')

= F( Ko') 3t (x), — (3.95)

which confirms the statement that g(x) is pro-
portioned to P(x), and yields as the value of the
constant:

where Ko= (13.'+Koo) &. Evidently 1/wo (&/Ko)'.
To justify the identification of bm with the

electromagnetic mass, we must show that it is
possible to remove the term Ki, o(x) from (3.71)
and thereby alter the equation of motion for the
matter field into that of a particle of mass
ss =ssp+8m, thus demonstrating the unity of the
two contributions to the actual electron mass.
Accordingly, we introduce the state vector
transformation

~L.7= UL.7~L.7, (3.99)

bmc'= —moc' II (3—v)dv
8- J,

t "dzu t'1 —vq '
X I

—cos( i w. (3.96)
"p & E 2

where ULo 7 is designed to remove the variation
associated with 3'.i, o(x) from %'Lo7 and therefore

7 V. Weisskopf. Zeits. f. Physik 89, 27 {1934);90, 817
(1934), and Phys. Rev. 56, 72 (1939).
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is subject to the equation of motion

h U[o]
i&&ic = K&, p(x) U[a].

ha (x)
(3.100)

8&(x) Bg(x)=U 'Lo]

Thus, we return to a Heisenberg representation
for the description of self-energy eA'ects. The
transformation (3.99) induces a concomitant
change in the matter held operators,

|t&(x) = U—'[o]P(x) U[o], (3.101)

in which we use bold face letters to designate the
new operators as well as the new state vector.
To construct the equation of motion satished by
g(x), we require an equation analogous to
(I, 2.9). Since the roles of interaction and Heisen-
berg representations have been interchanged, we
find that

correct to the second order, by the equation of
motion

SV [o]
(», p(x) +HI, 1(x) I e'[o], (3.107)

&1o(x)

which governs the second order interaction of a
particle with a light quantum or another par-
ticle.

It will be our final task to examine the form
which the energy-momentum quantities assume
as a result of the succession of transformations
which have culminated in (3.107). In particular,
we shall again con6rm the complete amalgama-
tion of the mechanical and electromagnetic
mass of the electron. We may first remark on the
generality of the arguments that led to the
expression for the energy-momentum four-vector
in the interaction representation (I, 2.52):

1
P„[o]=P„~P&——)tX(x)do„(3.108a)

[|t&(x'), H&, p(x)]do„', (3.102)
Ic ~.

1
3C(x) = ——j„(x)A„(x). (3.108b)

whence

I&' pl

+zp [|lI(x)
Bx„

z
= ——i" [V,4(x'), »p(x) ]do.',

bc~,

8mc
i I' b.4(x') C-(x)]do.'0-(x)

This form must be preserved on subjecting the
state vector to a transformation, provided. one
employs the appropriately transformed X', (x).
We shall prove this by direct calculation, how-
ever. The energy-momentum operator associated
with the new state vector in the transformation
(3.7) is, to second order,

1
P„[o]=e'e&'& P "&+— j (x)A, (x)do„e 'e"

c2

= —iia|tt(x),

where

Finally, then

8p: = 8mc/h.

( +. ~g(x)=0ax„j

(3.103)

(3.104)

(3.105)

=P„"'+i[S[o],P„"']
', [S[o],—[S-[o],P„"']]

1
+— j „(x)A„(x)do„

g2 J
1

+i S[o],— j„(x)A„(x)do„. (3.109)

with
~ = mc/l'p, m =mp+ &1m, (3.106)

which is the desired result. The 0-variation of
the state vector that remains after removal of
K&, p(x), and Xp, p (which we may include, without
altering the previous considerations) is described,

The interpretation of P„& ) as the displacement
operator for the independent 6elds, when applied
to the displacement of a functional, leads to

&. &I&S[o]
[S[o] P &P&]= i —do„, (3.110)

&.bo(x)
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whence

1[8[a],P„&'~]+—I'j„(x)A„(x)d&r„=0, (3.111)

and

fP„[o]=P„'"——
i~ d&r„[j„(x—)A„(x), 5[a]].

(3.112)

This indeed is still of the form (3.108a), with
3C(x) the quantity occurring in (3.14). There is
no difhculty in proceeding to the form

P.[a]=P,"'—— I [Ko, o+X&,o(x)
c~,
+Kg, p(x)+X, , „(x)]da„, (3.113)

associated with the state vector equation (3.71).
The last transformation to be considered is

(3.99), which provides us with the energy-
momentum four vector:

P„[a]= U '[&r]P„&"U[a] —— [Xo,oc~,

removed, in accordance with the trivial possi-
bility of adding a multiple of 8„„to the energy-
momentum tensor of the system. With this
result, we have confirmed that, for an individual
particle, the energy and momentum modifica-
tions produced by self-interaction eAects are
entirely accounted for by the addition of the
electromagnetic proper mass bm to the mechanical
proper mass mp —an unobservable mass renor-
malization.

Z(x) = ——,'S(x).(x) = —,'a(x) (A. 1)

where «(x) is +1 or —1 according as xp is positive or
negative. This sign factor is effectively an invariant since
only time-like vectors x„need be considered in (A.1).
This is emphasized by the invariant representation of «(x):

APPENDIX

In the course of this development of quantum electro-
dynamics, various functions associated with the electro-
magnetic and matter fields have been defined, notably
D(x), D(')(x), A(x) and 6('){x). It is now our task to
construct these functions explicitly. KVe begin with the
invariant function associated with the matter field, A(x)
(from which D(x) can be obtained by placing f&:0=0). Its
construction is facilitated by considering the associated
function

+H, , o(x)+H1, (o)x+H g(&x)]d „a(3.114). «(x) =-
/ «„x„f

(A.2)

Now, according to (I, 1.64) and (3.102),

U '[a]P„&o'U[a]=p„&o&+—i"da„
2c ~,

X[/(x), [y„Q(x'), H&, p(x)]]rda„', (3.115)

in which the subscript one indicates that P„(P),
or I „&", is constructed to have a vanishing
vacuum expectation value. On evaluating the
second term of (3.115) as:

da„1 &&y„g(x'), g.(x)}bmc'-', [g(x), g.(x) ]ada. '

8mc'-'-,'[Q(x), Q(x)]do„=— t H (x)d „,
c ~.

we find

where «„ is an arbitrary time-like vector with «p&0. It
will first be noted that

( ' —
f&, p')Z{x) =0, x„g0 (A.3)

since only at the time-like neighborhood of the origin is
a sign change of «(x) combined with a non-vanishing
value of d, {x). To evaluate the left side of (A.3) at the
origin, we consider

Limf dry( ' —x02)Z(x)

L d
ax{x)

d
a~(x)=Lim dog 10+ ()xl o— Qxp,

in which the region of integration Ro is extended between
two space-like surfaces cr+ and 0, which lie in the future
and past, respectively, relative to the origin, and coincide
in the limit with the space-like surface cr through the
origin. Thus

85(x)
Lim d«p( ' —&p')a(x) = — dog ———1, (A.5)

bc@ Bx~

which shows that
i

&"[o]=&""'— [H1, o(x)+Hr, r(x)]do„(3.116) { 2 —~P)F(x) = —g(x), (A.6)

, J.
a(x) = S(xp) a(x, )S(x,)S(x,) (A.v)

from which the vacuum term 3'.p p has been is the four-dimensional delta-function. Evidently ~(x)
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plays the role of a four-dimensional Green's function. In
terms of the integral representation

B(x)=, exp(ik„x„)(dk}, (A.S}

Kp~ ~~
sin xa 1——= vrReIIp&» {Kp)&)

p 4n n
(A.20)

This discontinuous value can be compactly represented by

{dk) =dkpdkgdkgdks, (A 9)
H((»{KpX&}

7{x)=—S(X)—Re-
4m 8~ Kp) &

(A.21)wc obtain as a particular solution of (A.6),

Z(.)= ' ~ "P{"")(~k)
(2m}4 k) 2+ Kp2

which, as will be shown, provides a function A(x) that
satisfies the equations of definition {I,2.18).

The integral representation

(A 10)
where

0,( )(..X~)
'(Kp ), ~&O

Jg Kp)«)

0, 0&x, (A.22}

and the delta-function of ) arises from the discontinuity
of (A.20) at X =0. Clearly A(x), and therefore A(x),
vanishes if x„&0 which is one of the defining properties
of the latter function. On placing Kp=0, we obtain

D (x) = --,'D {x)~{x)=—S(X}
1

4x

I'—= —-g e' '—dar 2 ~"- )a(

with v-=k)t, '+Kp'-, enables the integration over k space to
be effected:

provided X&, with X negative, is interpreted as iiX~&.
Finally,

~{x)= —
g

—day {dk}2(2x)4~-- [a[
gexp{iak„'+ik„x„}exp(ia K '-)

ZQ A"p"—exp —~—"+ia Kp'
32m' ~—a' 4a

with the aid of the formula

f (dk) exp(iak„'+ik„x„)

x2=f (dk) exp(iak ') exp —iP 4a

~
K'

exp
a)al 4a

The introduct. ion of the new variable,

a = 1/4a,

brings (A. 12) into the form

1 .KP
6(x) =— exp 0 e.+i—dn,

8H 4n

Equivalent forms of (A. 15) are:

(A. 12)

{A.13)

(A. 16)

1=—t{x &),
4~ (A.23)

which evidently corresponds to the propagation properties
of electromagnetic pulses.

An integral representation for ~(x) itself can be con-
structed with the aid of the Fourier inversion of (A.11):

in the form
)a) m

{A.24)

e{x)= — =—Pg exp{iex„7)—. {A.253
epxp S f . . dT

j e„x„)

On employing the first expression of (A. 12) for D(x), wc
obtain

(.)=-„', f( )f.—: f.'—;

)rexp(i(k„+s„r)x„) exp(ia(k„'+so')) (A.26)

which becomes

it(.) = „',,f-(dk)f ~'~d.i'f '
&&exp( 2ias„k„r) exp(ia—c„'r')

yexp(ik„x„) exp{ia(k„'+Kp')) (A.27)
Kp"

~(x) =~(X)=— cos X~+—d~
4H 4n

Kp
sin Xa+—lcd.4x' N 4e (A. 17)

In order to evaluate the last integral, we define a new

variable of integration, according to

Kp

on. introducing the transformation k„~k„—c„v. It may
now be argued that (A.27} is independent of e„, provided

only that it is a time-like vector with positive ep. However,
these essential characteristics can be maintained with
—e„an arbitrarily small positive number. It is, therefore
permissible to evaluate (A.27) in the limit e„~0, which,

in view of the formula

d7 . a et k„P exp( —2iae„k„v)—= —mi—
—CO )a) )e„k„)

a=mi—e(k),
lal

sin(KpX& cosh''}d8, X &0

f sin(~0—( —X)& sinhd)d6, X &9 (A. tp)

~Jp{Kph&}, X &0
0, 0gz.

yields

A{X)= — — (dk) da exp(ia(pp'+ K(p)}
(2x}4

Xexp(ik„x„)&(k}

exp(ik„x„)~(k„~+«~).{k)(dk).
(2x)'

(A.29}
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-g (dk)e(k)P
i 1 j' dt

CQ

Xexp( —ik„c„t}exp{ok„x„)~{42+Kp-')

1—2, exp(ik„x„)5{k„'+«g) {dk}, (A.31)

which is also easily derived, in a less formal manner, by
means of the decomposition into positive and negative kp.
In order to evaluate 6&'«{x) in a manner similar to 6{x},
we employ the integral representation

This result makes it evident that 6{x), as constructed,
satisfies the proper differential equation

(Q' —ss')A(x} = Jexp(sk s )(k),'+ss'-}

X ~{k«,'+ Ko') ~{k)(dk)
=0, (A,30)

since xb(x}=0. Ke have thereby completed the proof of
the integral representation (A.10) since the three equations
of definition for b, {x) have been verified, the integral
condition being equivalent, according to (A.5), to the
differential equation defining 6{x).

An integral representation for 6"«(x) can be obtained
imniediately from that of A(x). According to the equation
of definition (1.57), and (A.29):

=1 dt
6&'«(x) =-P 6{x—qt}—

Further rearrangements of (A.33) yield
'sco

K
a&'«(x) =5&'«{))= —— sin )n+—da

2x 4N

1. K
COS XOI+-

2m2 Ã 4n a' (A.34)

(i)( )
p I II/ {Kpk )

4' Kp) &

Kp2 .VI {Kpk&)

4x KpV.o- I=I{Ko{-~)~)
;,( —x)~

(A.37}
) &0.

The singularity of 6"«(x) at ) =0 can be exhibited by
writing

Again utilizing the transformation (A. 18), we now 6nd

f -(-"-".')'-:
r ooJ cos(so}8 cosh')d8, })0

cos(Ko( —X)& sinh6)dd, X &0 {A.35)
oo

—m..Vp(KpX&), X &0
2Ãp(Kp( —'A)&), ) &0,

which is summarized in

COS )cx+——= —7rImHp&' (KpX&). (A.3&)
Kp2 dc'

p 4(x n

Unlike the situatiop in (A.19), there is no discontinuity
at X=O. Therefore

h(t) =— e"'da
2x' (A.32)

with t =k„-'+«p', and perform the integration over k space since

a( «(x}= —,+—' Il ' ' +=, (A.38)2x'X 4m Kpk& m Kp'P

(i«3 "(x)=, da (dk) exp(iuk„'-+ik„x„)

)cexp(ia Kp'-')

f .xp, . ~ G dc
exp —i—"+ia Kp'-

16s' — 4s ia i

a'-'

.Kp A'
exp isa+i— - do..4~-'~- 4a ~o:~

(A.33)

H] ( «(Kp)&) 2i 1 1 «t'Kp
j
~

I
~

Kp'A& ~ Kp"-P ~ 2 2

where y=1.781. On letting Ko~0, we obtain

1 1 1
D('«(x) =-

2m~X 27r~ x '-"

(A.39)

{A.40)


