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Attempts to avoid the divergence difhculties of quan-
tum electrodynamics by mutilation of the theory have been
uniformly unsuccessful. The lack of convergence does in-

dicate that a revision of electrodynamic concepts at ultra-
relativistic energies is indeed necessary, but no appreciable
alteration of the theory for moderate relativistic energies
can be tolerated. The elementary phenomena in which
divergences occur, in consequence of virtual transitions
involving particles with unlimited energy, are the po-
larization of the vacuum and the self-energy of the elec-
tron, e6ects which essentially express the interaction of the
electromagnetic and matter fields with their own vacuum
fluctuations. The basic result of these fluctuation inter-
actions is to alter the constants characterizing the prop-
erties of the individual fields, and their mutual coupling,
albeit by infinite factors. The question is naturally posed
whether all divergences can be isolated in such unob-
servable renormalization factors; more specifically, we in-

quire whether quantum electrodynamics can account
unambiguously for the recently observed deviations from
the Dirac electron theory, without the introduction of
fundamentally new concepts. This paper, the first in a
series devoted to the above question, is occupied with the
formulation of a completely covariant electrodynamics.
Manifest covariance with respect to Lorentz and gauge
transformations is essential in a divergent theory since the
use of a particular reference system or gauge in the course
of calculation can result in a loss of covariance in view of
the ambiguities that may be the concomitant of infinities.
It is remarked, in the first section, that the customary
canonical commutation relations, which fail to exhibit
the desired covariance since they refer to field variables
at equal times and different points of space, can be put in
covariant form by replacing the four-dimensional surface
t=const. by a space-like surface. The latter is such that
light signals cannot be propagated between any two points

on the surface. In this manner, a formulation of quantum
electrodynamics is constructed in the Heisenberg repre-
sentation, which is obviously covariant in all its aspects.
It is not entirely suitable, however, as a practical means
of treating electrodynamic questions, since commutators
of field quantities at points separated by a time-like in-
terval can be constructed only by solving the equations
of motion. This situation is to be contrasted with that of
the Schrodinger representation, in which all operators
refer to the same time, thus providing a distinct separation
between kinematical and dynamical aspects. A formula
tion that retains the evident covariance of the Heisenberg
representation, and yet offers something akin to the
advantage of the Schrodinger representation can be based
on the distinction between the properties of non-interact-
ing fields, and the effects of coupling between fields. In the
second section, we construct a canonical transformation
that changes the field equations in the Heisenberg repre-
sentation into those of non-interacting fields, and therefore
describes the coupling between fields in terms of a varying
state vector. It is then a simple matter to evaluate com-
mutators of field quantities at arbitrary space-time points.
One thus obtains an obviously covariant and practical
form of quantum electrodynamics, expressed in a mixed
Heisenberg-Schrodinger representation, which is called the
interaction representation. The third section is devoted to
a discussion of the covariant elimination of the longitudinal
field, in which the customary distinction between longi-
tudinal and transverse fields is replaced by a suitable co-
variant definition. The fourth section is concerned with the
description of collision processes in terms of an invariant
collision operator, which is the unitary operator that de-
termines the over-all change in state of a system as the
result of interaction. It is shown that the collision operator
is simply related to the Hermitian reaction operator, for
which a variational principle is constructed.

INTRODUCTION

HE predictions of quantum electrodynamics
concerning higher order perturbation ef-

fects have long been discredited in view of the
divergent nature of the results. Several attempts'
have been made to arbitrarily remove sup-
posedly objectionable features of the theory-
the so-called "subtraction physics. " All such
efforts have been fruitless; either failing in their

avowed purpose, or lacking internal con sistency.
The unqualified success of quantum electro-
dynamics in applications involving the lowest
order of perturbation theory indicates its essen-

tial validity for moderately relativistic particle
energies. The objectionable aspects of quantum
electrodynamics are enco untered in virtual proc-
esses involving particles with ultra-relativistic
energies. The two basic phenomena of this type

P. A. M. Dirac, Proc. Camb. Phil. Soc. 30, 150 (1934);
W. Heisenberg, Zeits. f. Physik 90, 209 (1934);9/. Heitler
and H. W. Peng, Proc. Camb. Phil. Soc. 38, 296 (1942).

' R. Serber, Phys. Rev. 49, 545 (1936); H. A. Bethe and
J. R. Oppenheimer, Phys. Rev. 7'0, 451 (1946).
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are the polarization of the vacuum and the self-
energy of the electron.

The phrase "polarization of the vacuum"
describes the modification of the properties of an
electromagnetic field produced by its interaction
with the charge fluctuations of the vacuum. In
the language of perturbation theory, the phe-
nomenon considered is the generation of charge
and current in the vacuum through the virtual
creation and annihilation of electron-positron
pairs by the electromagnetic field. If the electro-
magnetic field is that of a light quantum, the
vacuum polarization eSects are equivalent to
ascribing a proper mass to the photon. Previous
calculations have yielded non-vanishing, diver-
gent expressions for the light quantum proper
mass. However, the latter quantity must be
zero in a proper gauge invariant theory. The
failure to obtain this result from a gauge in-
variant formulation can be ascribed only to a
faulty application of the theory, rather than to
an essential deficiency thereof. When the e1ectro-
magnetic field is that of a given current dis-
tribution, one obtains a logarithmically divergent
contribution to the vacuum polarization current
which is everywhere proportional to the given
distribution. This divergent result expresses the
possibility, according to present theory, of creat-
ing electron-positron pairs with unlimited energy,
a situation that presumably will be corrected in
a more satisfactory theory. Thus the physically
significant divergence arising from the vacuum
polarization phenomenon occurs in a factor that
alters the strength of all charges, a uniform
renormalization that has no observable conse-
quences other than the conHict with the empirical
finiteness of charge.

The interaction between the electromagnetic
field vacuum Ructuations and an electron, or
more exactly, the electron-positron matter field,
modifies the properties of the matter field and
produces the self-energy of an electron. The
mechanism here under discussion is commonly
described as the virtual emission and absorption
of a light quantum by an otherwise free electron,
although an equally important effect is the
partial suppression, via the exclusion principle,
of the coupled vacuum Huctuations of the e1ec-
tromagnetic and matter fields. In a Lorentz
invariant theory, self-energy e6'ects for a free

electron can only result in the addition of an
electromagnetic proper mass to the electron's
mechanical proper mass. Calculations performed
for a stationary electron' have yielded a loga-
rithmically divergent electromagnetic proper
mass, a divergence that results from the possi-
bility of emitting light quanta with unlimited
energy. It is here, as in the vacuum polarization
problem, that modifications will be introduced
in a more satisfactory theory. However, the
electromagnetic proper mass merely produces a
renormalization of the electron mass that has no
observable consequences, other than the conflict
with the empirical finiteness of mass.

It is evident that these two phenomena are
quite analogous and essentially describe the
interaction of each held with the vacuum
fluctuations of the other field. The effect of
these Auctuation interactions is simply to alter
the fundamental constants e and m, although by
logarithmically divergent factors. However, it
may be argued that a future modification of the
theory, inhibiting the virtual creation of particles
that possess energies many orders of magnitude
in excess of mc', will ascribe a value to these
logarithmic factors not vastly different from
unity. The charge and mass renormalization
factors will then diR'er only slightly from unity,
as befits a perturbation theory, in consequence
of the small coupling constant for the matter
and electromagnetic fields,

e'/4n fic = 1/137.

We may now ask the fundamental question:
Are all the physically significant divergences of
the present theory contained in the charge and
mass renormalization factors? Will the con-
sideration of interactions more complicated than
these simple vacuum Auctuation eKects intro-
duce new divergences; or will all further phe-
nomena involve only moderate relativistic ener-
gies, and thus be comparatively insensitive to
the high energy modifications that are pre-
sumably to be introduced in a more satisfactory
theory? This series of papers represents an at-
tempt to supply at least a partial answer to the
question, which has acquired an immediate im-
portance in view of recent conclusive evidence

~ U. Weisskopf, Phys. Rev. 55, 72 (1939).
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that the electromagnetic properties of the elec-
tron are not fully described by the Dirac wave

equation. Fine structure measurements on hy-

drogen, deuterium, 4 and ionized helium' have
revealed energy level displacements that imply
the existence of a weak, short range repulsive
interaction between electron and proton. Experi-
ments on the hyperfine structure of hydrogen
and deuterium, ' together with electron g value
determinations for several states of gallium and
sodium, ' prove that the electron possesses a
small additional spin magnetic moment.

Immediately upon completion of the Lamb-
Retherford experiment, it was generally recog-
nized' that the most probable explanation was

to be found in higher order electrodynamic
effects; the radiative corrections to the properties
of a bound electron other than mass and charge
renormalization. A provisional non-relativistic
calculation' lent support to this view. However,
it required a completely relativistic treatment"
to demonstrate that radiative corrections could
account simultaneously for the two apparently
unrelated deviations from the Dirac electron
theory. It is our major task to enlarge on this
development.

In order to isolate the divergent aspects of
quantum electrodynamics in a manner that is

Lorentz and gauge invariant, it is necessary to
employ a formulation of the theory that pre-
serves these covariant features at all stages.
The use of a particular reference system or gauge
in the course of calculation can result in a loss

of covariance in view of the ambiguities that
may arise in a divergent theory. The first paper
is occupied with the development of a suitable
covariant formulation. In the second paper we

treat the problems of electron and photon self-

energy, together with the polarization of the
vacuum. The third paper is concerned with the

4%. E. Lamb, Jr. , and R. C. Retherford, Phys. Rev.
72, 241 {1947).' J.E. Mack and N. Austern, Phys. Rev. 72, 972 (1947).' J. E. Nafe, E. B. Nelson, and I. I. Rabi, Phys. Rev.
71, 914 (1947); D. E. Nagle, R. S. Julian, and J. R.
Zacharias, Phys. Rev. 72, 971 (1947).' P. Kusch and H. M. Foley, Phys. Rev. 72, 1256
(1947); H. M. Foley and P. Kusch, Phys. Rev. 73, 412
(1948).

Discussion at the Shelter Island Conference on the
Foundations of Quantum Mechanics, June 1947.

' H. A. Bethe, Phys. Rev. 72, 339 (1947)."J.Schwinger, Phys. Rev. 73, 415 (1948).

major topic, the determination of the radiative
corrections to the properties of an electron, and
the comparison with experiment. Scalar and
vector matter fields will be discussed in a fourth
paper. It is hoped that successive papers of this
series will deal with such subjects as the correc-
tions to the Klein-Nishina formula, the scatter-
ing of light by light, and by a Coulomb field.

where P +(x) is the Hermitian conjugate of
f (x). The so-called charge conjugate spinor
f '(x) and its adjoint f '(x) are represented by

Here C is a matrix such that

(1 4)

which has the property of being skew-sym-
metric:

and unitary:
CT

C+C= 1.

(1.5)

(1.6)

In the latter equation, C+= C~*is the Hermitian

1. COVARIANCE IN THE HEISENBERG
REPRESENTATION

In this section, we employ the following nota-
tion: Greek subscripts assume values ranging
from 1 to 4, and a repeated index is to be so
summed. The coordinate vector of a four di-
mensional point x is denoted by x„=(r,ict) The.
real time coordinate xo= (1/i)x4 ——ct is also used.
In particular, the four dimensional element of
volume is defined as da& =dxadxidxmdxq. The four-
vector potential of the electromagnetic field is

A„(x)= (A(r, t), ig(r, t)), while f (x) designates
the four-component Dirac spinor. The spinor
index will often be suppressed; thus, if A and A~

designate a four-rowed matrix and its trans-
posed matrix, Af =QAr is a four component
spinor of which the a component is A

span

=PEA p r. Similarly, the scalar product of two
spinors, x and P, is denoted by xf=x f The.
notation y„ is used for the four Her mitian
matrices that obey the anticommutation relations

PpPv+PvPp 2~yv

The adjoint spinor f (x) is defined by
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conjugate matrix. For the particular representa-
tion in which all elements of y4 are imaginary,
while all elements of the other matrices are real,
the conditions on C are satisfied with C= —y4.
With this choice, tf'(x) =P+(x); charge and Her-
mitian conjugation are equivalent. Finally,

8 t' 1 8A) O'A

8x„L 2 8x„)8x„8x„

( 18K) 8 8PA

2 8x,) 8x, 8x„''

« =mpc/h,

where tno is the mechanical proper mass of the
electron.

The equations of motion of the coupled elec-
tromagnetic and electron-positron matter fields

can be derived from the variational principle:

8'h(x).
'A(x) =0.

XbP

(1 11)

of which the first term has no eR'ect on the equa-
tions of motion. Hence gauge invariance is re-
stricted to the group of generating functions
that obey

bJ~Zd(a = 0,

where the Lagrangian density 2 is

1 8A„(x)8A„(x)

~~@ ~+v

hc t 8 ie
f(x) y„—

I

———A„(x) I+~p f(x)
2 &8x» @ )

Invariance under charge conjugation expresses
(1.8) the complete symmetry between positive and

negative charge. The interchange of f(x) and
P'(x), together with +e and —e, evidently leaves
the Lagrangian density unaltered.

In order to obtain the equations of motion for
the matter field, it is necessary to express the
Lagrangian density entirely in terms of f(x)
and P(x), or alternatively, f'(x) and f'(x). By
virtue of Eqs. (1.3), (1.4), and (1.5), the follow-

ing relations hold

hc ( 8 ie

2 48x„hc )
f'y»P' = fC '

y» Cf =Py» P (1.12)

and is so constructed that it is invariant with
respect to Lorentz transformations, gauge trans-
formations and charge conjugation. The proof of
Lorentz in variance follows the conventional
treatment and need not be repeated. Gauge in-
variance, that is, invariance under the combined
transformations

8A(x)
A„(x)~A»(x)—

BXp

and therefore the third term of (1.9) can be
written

hc ( 8 ie—~(x) y»~I +—A„(x) I

—«f(x).
2 (8x„hc )

%'e find, as the result of variation, apart from
discarded divergences,

1 1 1 1
M =—bA„'A„+—j» +— 'A„+—j„bA„

2 c 2 c

z,e
P(x)-+exp ——A(x) P(x)

Ac

[ie
f'(x) ~exp —A(x) P'(x)

i hc

(1.10)
hc - ) 8 ie——A» I+ep f
2 (8x„hc )
hc It' 8 ie

+—y, I
——A, I+«fbk

2 (ax„kc
induced by a scalar function of position, &(x),
would be generally valid were it not for the term
in the Lagrangian density that refers to the
electromagnetic field alone. The addition to Z
arising therefrom is

hc ( 8 ie
+—A» I" (8x„hc ")

hc ( 8 ie
+—~.'I +—A. I

—«&bt=0
2 (8x„hc
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haec

j„(x)= g—(x)y„P(x)—$'(x)y„P'(x)] (1.14)
2

supplementary conditions:

8F„„(x)1
+-j„(x)4=0.

c
(1.21)

represents the four-vector of charge and current;
j„=(j,icp). It is consistent with the form of the
commutation relations imposed on the field
quantities to infer that

The commutation relations, in their conven-
tional canonical form, read

1B
A„(r,t), A„—(r—', t) =ihcb„.b(r r')— (1.22a)

c Bt
'A. (x) = j.(—x)

C

(1.15)
{P.(r, t), (f(r', t)y4)e} = 8.eh(r —r'), (1.22b)

t' 8 ie—A„(x) }+~0 P(x) =0
L,8x„hc
(8 ie

+—A„(x) l
—..y(x)=0.

E8x„hc

where the bracket symbols signify the commuta-
tor and anticommutator, respectively:

(1 16) [A,B]=AB BA, {A—,B}=AB+BA. (1.23)

Ke have written the non-vanishing brackets;
the bracket symbols whose values are zero are:

The Dirac equations for the matter field can
also be cast in the charge conjugate form

)A„(r,t), A, (r', t)],
B B—A„(r,t), —A„(r',t),
Bt Bt

l8
+—A„(x)}+~0 P'(x) =0

&8x„hc )
{y.(r,t), y, (r', t) }, {y.(r,t), P, (r', t) },

and, of course
(1.17)

(8 ie——A„(x)l-.o P'(x) =0.
E8x„hc )

To the equations of motion must be added a
supplementary condition, and the commutation
relations. The supplementary condition

(1.18)

restricts the admissible states of the system, as
characterized by the constant vector 4 of our
Heisenberg representation. The compatability of
(1.18) with the equations of motion is a conse-
quence of the charge conservation equation

[A„(r,t), P.(r', t)], etc.

It should be noted that the particle field com-
mutation relations are invariant with regard to
charge conjugation. Thus,

{If.'(r, t), (P'(r', t)~ )e}
= —{(Cp, 'P(r, t)p,)., (P(r', t) C-'p, ) }
= (y,C).„{(P(r,t)p, )„y~(r',t) }(C 'p,)~-

= b e8(r —r'). (1.24)

A further remark concerns the consistency of the
supplementary condition and the commutation
relations. Since (1.18) contains the arbitrary
point x, one will obtain additional supplementary
conditions by commutation, unless

8j.(x)-=0
Bxp,

(1 19)
8A„(x) 8A.(x')

=0
Bx'p Bxg

(1.25)

Ar BAu
pf41

BAN BXs
(1.20)

rather than the potentials, appear as derived

The customary Maxwell equations, involving the
field strengths

for arbitrary x and x'. In actuality, the canonical
commutation relations are such as to yield (1.25).
It must be realized that the commutator, con-
sidered as a function of x, obeys the wave equa-
tion, whence the validity of (1.25) is assured
provided the commutator and its time derivative
vanish for t =t'. This is easily verified.
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The physical quantities characterizing the dis-
tribution of energy and momentum in the field
are combined in the canonical energy-momentum
tensor

1 BA), 8A), 8A), BA), (BA),) '
+

2 ax„ax. ax. ax„"(ax, )
hc 8$ hc 8$'

+ 4'v~ —+—0'v~ (1 26)
2 Bx 2 BX„

since the supplementary condition is required in
the derivation and use of this identity. In Eq.
(1.32), a», represents the Dirac matrix spin
tensor:

& ~ = (7~v~ vn—~)l» (I 33)

The symmetrical energy-momentum tensor is
evidently invariant with respect to gauge trans-
formations and charge conjugation. The simple
formula

which satisfies the conservation equation

since

8 1 BA„

BX~ C Bxv

~«'2(A'+4 V')

(1 27) should also be noted.
The spatial volume integrals

Z

P = —— T4 dv
J

(1.34)

(1.35)

ie BA„
+ L4vA 0—'vA' j —=o (1 28)

2 ~xv

The canonical tensor can be replaced by a sym-
metrical energy-momentum tensor

0,. 2[F,) F.x+—F.x,&,), &;2».]—
hc (8 te p (8 ie

+—O~. l
—A la+A"I

2 EBx„hc ) (Bx„hc

form a time independent four-vector that unites
the momentum and energy integrals of the equa-
tions of motion; P„=(P,iW/c) It i.s a simple
consequence of the relation (1.32) that the ex-
pectation value of P„can be calculated from
either stress tensor. Thus

(P„)= —I(04„)dv.
c~

The operators P„form the infinitesimal genera-
tors of the coordinate translation group. It is a
consequence of the commutation relations that,
for example,

(8 ie
+0'v.

l +—A. l4'
E Bx. hc

aP, (x)—Lf (x),P.]= . (1.37)
BX„

|' 8 ie
+P'y.

l
+—A„jg' . (1.29)(ax„hc i BA„(x)—[A„(x),P,]=

However, it is only the expectation value of O„„k Bx„
(0„„)= (C,O„„C), (1.3O)

that satisfies the conservation equation

(0")=o
Bxp

as a consequence of the identity

(1.31) More generally, if F(x) is an arbitrary function
of the field variables at the point x, but does not
explicitly involve position coordinates,

8(0„„—T„,) = ,' PA „F„+F „A„j-
Bxg

BF(x)z
—[F(x),P„]=

BX,
(1.38)

1 8A„BA), BA), 8A„BA),BA,
+

2 Bxg Bxv Bxv BX& Bxy BX&

ikc 8
kj:4 .n.0+0' .xv 0'3) (~ »)

4 OXg

One can exploit this aspect of the operators P„
to prove anew that they constitute constants of
the motion, and to demonstrate that the canoni-
cal commutation relations are consistent with the
equations of motion, In a similar way, one can
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introduce other operator constants of the mo-
tion which compose the angular momentum ten-
sor. These quantities form the infinitesimal
generators of the Lorentz group, and with their
aid the covariance of the canonical quantization
scheme can be demonstrated. However, it is at
this point that we must deviate from the con-
ventional development that here has so briefly
been outlined.

The equations of motion and the supple-
mentary condition are manifestly covariant; the
canonical commutation relations lack this essen-
tial characteristic since a special Lorentz refer-
ence system is employed. The commutation
relations involve field variables at two points of
a four dimensional surface characterized by
t =const. We shall achieve the desired covariance
by replacing such surfaces with the invariant
concept of a space-like surface. The latter is such
that light signals cannot be propagated between
any two points on the surface. In terms of the
position vectors of two points, x„and x„',it is
required that

(x„—x„')'=(r—r')' —c'(~ —~')') 0 (1 39)

which clearly involves no special reference sys-
tem. Surfaces of the type t =const. form a special
non-covariant class of plane space-like surfaces.
The customary commutation relations are essen-
tially an expression of the kinematical inde-
pendence of field quantities at diferent points
of space for a given time. It is evident that the
proper covariant description of this general
property should involve field quantities at two
space-time points that cannot be connected by
light signals, that is, two points on a space-like
surface. Accordingly, we endeavor thus to gen-
eralize the commutation relations into a mani-
festly covariant form.

The simplest basis for a generalization of
(1.22a) is provided by the two statements that
express the properties of 8(r —r'):

18
A„(r,t), ——A„(r',t) =0, r~r' (1.40a)

c8t

18
A„(r,t), A„(r',t) do'=ihc—b„—, (1.40b)

c8t

in which the spatial volume integration is ex-

tended over an arbitrary region that includes the
point r. The proper generalization of (1.40a), to-
gether with the other vanishing electromagnetic
field commutators, is simply

$A„(x),A.(x')]=0, (x„—x„')')0; (1.41)

that is, the field quantities associated with two
distinct points on a space-like surface commute.
In order to generalize (1.40b), it will prove con-
venient to define a four-vector diR'erential sur-
face area:

do„=(dxpdxpdxp, dxidxpdxp,

dxidxgCxp, dxidxpdxp/i). (1.42)

Considered as defining the direction of the normal
to a space-like surface, do.„must be a time-like
vector, that is, dr„'&0.It should be noted that
our definitions of surface area and volume are
such that the volume generated by the displace-
ment bx„ imparted to the surface area dr„ is
So=do„bx„.It is evident from the notation
ds'=ido4', BAv(r', t)/Bct= pBA„(x')/Bxp', that the
proper covariant generalization of (1.40b) is

f 8 Ac
A„(x), A„(x') do.),

'=—6„, (1.43)
Bx),

'

in which the x' integration is extended over an
arbitrary portion of a space-like surface 0. that
includes the point x.

In order to demonstrate the self-consistency
of these and further covariant commutation re-
lations, we must show that the values attributed
to such surface integrals are unaltered as the
space-like surface o passing through the point x
is varied; and, for a fixed surface relative to the
point x, that the commutation relations are
compatible with an arbitrary displacement of x.
The latter requirement involves a detailed con-
sideration of the equations of motion and will

be discussed at an appropriate place. The veri-
fication of the first requirement is facilitated by
introducing the notion of the functional de-
rivative. The quantity occurring on the left side
of (1.43) involves the field variables at all points
of the surface o. and is thus a functional of the
space-like surface o, say F[o].We may compare
this with the functional of a neighboring space-
like surface o', F[o'], which surface is such that
it deviates from o only in a neighborhood of the
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point x. If the volume enclosed between the and
surfaces, Ro, is allowed to approach zero, we

obtain a definition of the functional derivative
of F[o] at the point x: {4.(x),(4(x') v~)t }«~' = 6.6 (1 5o)

bF[~] F[~'] F[—~]= Lirn
80 (x) '~ ~ 8co

F[a]= F),(x')d(r), ', (1.45)

in which the notation emphasises that we are
considering the variation in Ii produced by a
deformation of the surface 0 at the point x. A

special class of functional, as exemplified by
(1.43), is of the form

Another version of the last relation, namely

{(&~4(x'))-,A(x) }«~'= b-t (1.51)

can be obtained by taking the Hermitian conju-
gate of (1.50). To verify that the values given
to the surface integrals (1.50) and (1.51) are
independent of the particular surface passing
through the point x, we examine for example,

{(V~k(x"))- A(x) }d~~"
that is, a surface integral of a point function. 60(x')a,
The functional derivative has a particularly
simple aspect with this type of functional for,
according to Gauss' theorem,

BFg(x)
(1.46)

Ke are now prepared to ascertain the change in

(1.43) produced by a deformation of the surface
cr at the point x'~x:

t . 8
A„(x), A„(x")«),"

ha (x') &. Bx),"
= LA„(x), "A,(x')]

= ——tA„(x),j.(x')]=0, (1.47)

in which the latter statement is a consequence of
the covariant expression of the kinematical inde-

pendence of the quantities associated with the
two fields:

LA. (x)4-(x')]= {:A~(x)0-(x')]= o
(x„—x„')'&0. (1.48)

The corresponding generalizations of the
matter field commutation relations are:

{4-(x)A s(x') } = {0 (x) A(x') }
= {P (x),fs(x') } =0, (x„—x„')'&0, (1.49)

ie
=—{(&~A~(x')0(x'))- A(x) }

Ac

—Ko{f (x'),fp(x) } =0, (1.52)

in view of the vanishing of all such anti-com-
mutators for distinct points of a space-like sur-

face. It can be shown, as before, that the com-
mutation relations are also valid for the charge
conjugate matter fields. Thus

f "{(V~f'(x'))-,6'(x) }«~'
J

{(P(x')~,C)., (C-y(x)), }d.,'

f= Cs~ 'i {P,(x), ($(x')yg)g}d(r), 'Cg

=(C 'C)p =8 p, (1.53)

in virtue of (1.50). In the course of these re-
arrangements, the following relation has also
been employed

(vsC)' =vK', (1.54)

which is an immediate consequence of the prop-
erties of the matrix C.

An obviously covariant definition of the en-

ergy-momentum four-vector, replacing Eq. (1.35),
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1s
1 fP„= d—ag Tg„(x),
c~,

(1.55)

(1.12),

4"Vu =fV»'
Ãp ~Ãv Xv

(1.61)

8
Puc = Tg»(x) =0.

b~(x) axe
(1.56)

The conservation law for the total charge

1

Q =-
~~ d ~.(x)

in which the integration is extended over an
entire space-like surface. The conservation laws
now have their covariant expression in the
statement that P„is independent of the surface
0.. Thus

whence

d&u4' 7»
~

d&u 4"Y»
a Bxp 4 ~ Bxp

+ d~» 8'O'Vu) (1 62)
8

Bxp

The lemma (1.58) now assures us that

8 & 8
(4A.)= 'd

~ (4A.)=o, (163)
"ax. " ~. "ax„

in which the latter statement involves the charge
conservation equation. Therefore, P„can be
written

has an analogous expression:

8
Qc= j„(x)=0.

bo (x) ax„
(1.57)

1 r BAg BA), BA), BA), (BA),) '

2c&,
" ax„ax„ax.ax„"&ax. )It may be instructive to verify that the com-

mutation relations expressing the displacement
operator interpretation of the P„emerge from
the covariant commutation rules that have been
developed. For this purpose, the following
lemma i

8$ 8$+-
2 ~ ' I9xp Bxp

~A(x') ~4-(x)
(1.65)

The proof of the lemma is given by remarking
that the surface integral is independent of 0 ..

Bxp
and

s useful:

8 8
-L4 (x),P.1=i d~»'I0-(x) (0(x')v.)st

l do„F(x) d(r, F(x) —=0. (1.58)
g Bxy l9xp

do„' F(x') —do.' F(x')
80 (x)~, 8x,' Bxgg

Z z
—LA„( )x, Pj =—~rdo), ' A„(x),

bc~,

BA.(x')

Bxy

8 8 8 8
F(x) — F(x) =0, (1.59)

BXp Bxv Bxv Bxp

BA.(x') i r ( BA, (x')
X +—

t
do),

' A„(x),
Bx„' bc~, E Bx,'

BA.(x') ) BA.(x')

ax).' ) ax&'
and that, for the particular surface t=const. ,

the only components of (1.58) that are not
identically zero are p=4, v=k=1, 2, 3, say. But

—do„' A„(x),

BA„(x)
(1.66)

i )l da4 F(x) = dr F(x) =0 (1.60)
8xp ~ Bxk

In the latter proof, the lemma (1.58) has been

for a closed system. used, in addition to the properties of com-
In order to express the operator P, in terms mutators.

of f and P alone, we note thatacco, rding to It can now be shown that the covariant com-
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mutation relations are consistent with the equa-
tions of motion. Ke examine the change in the
commutator or anticommutator of two field
variables associated with two points on a space-
like surface, produced by a rigid displacement of
the surface. In other words, we seek to evaluate

[F(x),G(x —
&)] or {F(x),G(x —~) I,

where $„is a space-like vector and F, G are any
two field variables. It is a consequence of ele-
mentary identities that if F and G obey the
equations of motion (1.38), so also do the
brackets

[F(x),G(x ()] an—d t F(x),G(x g) I. —

Therefore, the specification of such brackets as
$-dependent multiples of the unit operator is

self-consistent, since both the derivative with
respect to x„,@nd the commutator with I'„,
vanish.

The formulation of quantum mechanics that
has now been developed is obviously covariant in
all its aspects. However, it is not entirely suit-
able as a practical means of treating electro-
dynamic questions. In the course of application,
it is often necessary to evaluate commutators of
held quantities at points separated by a time-
like interval. Such commutators are to be con-
structed by solving the equations of motion
subject to boundary conditions on a space-like
surface. This jumbling of the kinematical and
dynamical aspects of the situation is a detriment
in the systematic discussion of electrodynamic
problems. At the opposite extreme is the
Schrodinger picture, in which all operators are
time independent, and the time development of
the system is represented by a varying state
vector; a procedure that is non-covariant in its
aspect. Ke now seek a formulation that enables
us to retain the evident covariance of the
Heisenberg representation, and yet offers some-
thing akin to the advantage of the Schrodinger
representation, a distinct separation between
kinematical and dynamical aspects. The desired
separation is to be found in that between the
elementary properties of non-interacting fields,
and the modification of these properties by the
coupling between fields. For non-interacting

fields, it is a simple matter to carry out the pro-
gram previously mentioned, and construct com-
mutation relations for field quantities at arbi-
trary space-time points. In order to exploit this
advantage, it is necessary to find a canonical
transformation that changes the equations of
motion for field quantities in the Heisenberg
representation into those of non-interacting
fields, and therefore describes the coupling be-
tween fields in terms of a varying state vector.
%'e shall perform this transformation in the
next section, and thus obtain an obviously co-
variant and practical form of quantum electro-
dynamics, expressed in a mixed Heisenberg-
Schrodinger representation, which may be called
the interaction representation. "

0[0]= U[a]c, (2.1)

which depends upon the surface 0, in contrast
with the constant vector 4 of the Heisenberg
representation. The expectation value of some
field variable F(x) becomes (in this section, the
operators of the Heisenberg representation mill

be denoted by bold face letters)

(C'P'(x)c') = (+[~] U[~]&(x)U '[~]+[~])
= (+[~]F(x)+[~]) (2 2)

which defines the operators of the interaction
representation in terms of those of the Heisen-
berg representation:

F(x) = U[a]F(x) U '[0]. (2.3)

It is understood that cr is a space-like surface
passing through the point x. In order, however,
that F(x) depend only on the point x and not
on the particular surface a, the form of U[~]
must be restricted, as indicated by the following

"The interaction representation can be regarded as a
field generalization of the many-time formalism, from
which point of view it has already been considered by
S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946). Relativistic
quantum theories have also been discussed recently by
P. A. M. Dirac, Phys. Rev. 73, 1092 (1948).

2. THE INTERACTION REPRESENTATION

To alter the equations of motion in the above
outlined manner, we introduce a unitary opera-
tor U[0], defined for a space-like surface 0, and
construct the state vector of the interaction
representation



QUANTUM ELEC I'RODVNAMICS 1449

requirement:

b U[a]
F(x) U-~[a]

bo (x') ba(x')

SU[a]
Ur, ]F(x)U-~[ 7

U'- [ ]
bo (x')

BF(x)
F(x')da, .'

ba(x) ~.

the gradient of any field quantity can be ex-
hibited as a functional derivative, through an
obvious generalization of Gauss' theorem:

U[o ] F(x')do, ' U-'[o 7. (2.8)
bo (x)

5 U[a]
U '[a] F(x) =0

ba(x')

This will be satisfied if

(x„—x„')&~0. (2.4) The functional derivative in the latter form
affects both the surface of integration and the
operator U[o], whence

bU[ ]U-'[a]
bo (x')

be a Hermitian operator. Therefore, on writing

bU[o]
ihc =X(x) U[a],

ba (x)
(2.5)

we obtain a covariant equation of motion for
U[a], in which K(x) is a Hermitian operator, an
invariant function of the field quantities at the
point x, and has the dimensions of an energy
density. The equation of motion for 4'[a] is,
correspondingly,

84[a.]
ihc =x(x)+[a].

bo (x)

%'e have obtained the conditions that must be
satisfied by any canonical transformation. It
will now be shown that the special transformation
desired is attained with BC(x) chosen as the nega-
tive of the coupling term in the Lagrangian
density, that is,

3C(x) = —(1/c)j„(x)A„(x). (2.7)

To construct the equations of motion in the
interaction representation, we first note that

is an invariant function of the field operators at
the point x', since the commutation properties
on the surface 0- are unaffected by the unitary
transformation. If, further, the unitary character
of U[o] is to be preserved by its equation of
motion, it is necessary that

SU[a]i U-'[o]
ba(x)

BF(x) BF(x)
U 'La]

Bxv Bxv

r bU[o]
+ U '[o],F(x') da„'

ba(x)

8F(x)= U[o] U '[a]
BXv

Z——
~

[X,(x),F(x') ]do„'. (2.9)
Ac~.

If we first place F(x) =A„(x),it is immediately
found from the covariant commutation rela-
tions on the space-like surface 0., that

BA„(x) BA„(x)= U[o] U '[o]
~Xv l9Xv

(2.10)

'A„(x)= U[o] 'A„(x)U-'[a]

1 i BA„(x')
+-j),(x)—

~
A&(x), do.'

C AC~, BX„

1 1= —-U[a]I.(x) U 'La]+-j.(x)
C C

=0 (2.11)

the equations of motion for the electromagnetic
fieId in the interaction representation are those
of an isolated field. In addition, the supple-

which, indeed, is necessary, in order that the
electromagnetic field commutation relations re-
tain their form under this canonical transforma-
tion. However, with F(x) = BA „(x)/Bx„,one
obtains
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mentary condition is unchanged in form:

(2.12)

provided the point x lies on the surface 0. Finally,
if F(x) =y.P(x),

variant definitions:

'D(x) =0; D(x) =0, x„')0
f'aD(x)

d0„=1,
BXp

(
' —iso')A(x) =0 A(x) =0 x '&0

(2.17)

} V. + o }4(x)ax„) (2.18)

t'= Ut cr]} y, +~o }@(x)U '[cr]
ax, i

In these definitions, the surface integrations are
to be extended over a space-like surface that
includes the origin. It is easily verified that the
constant value attributed to the surface inte-
grals for arbitrary o is consistent with the other
equations. The detailed construction of these
and related functions will be postponed to the
second paper of this series; the properties con-

(2 14) tained in the equations of definition will suffice
for our present purposes. It is easily deduced for
exam le ha D ndh r od fun i

o
+-~.(x)— Li.(x),~.4(x') ]d~.'.

c bc~,

But, according to (1.12) and (1.14)

haec

,(x) = Lk(x) VA—(x) 4(x)k(x—)~.],
2

p, t t a ae d ctonsof the
coordinates:

U.(x),V.II(x')]
D( —x) = D(x), 5(——x) = —h(x). (2.19)

= —o« I v.f(x') A(x) }(vA (x))-, (2 15)
Ne note that

} V. +~o }4(x)
ax. )

8
t

a
h(x —x') h(x —x")

ao (x)&. ax„
t9—h(x —x") h(x —x') do„

Bgp

= a(x —x') (
-' —Ko') b, (x—x")

—h(x —x")( ' —iso') h(x —x')
(2.20)

(2.16)

the equations of motion for the matter field in
the interaction representation are those of an
isolated field. This completely proves the cor-
rectness of the choice (2.7) for K(x).

%'e may now proceed to construct the general
commutation laws for the field quantities in
the new representation, by employing their ele-
mentary equations of motion, This process will
be facilitated by introducing two invariant func-
tions of position, D(x) and h(x), which are
associated with the electromagnetic and matter
fields, respectively, and have the following co-

which implies that the surface integral is inde-
pendent of the particular surface 0. By choosing
a to be, successively, a space-like surface through
the points x' and x", it is inferred that

h(x" —x') = —D(x' —x") (2.21)

which proves the second statement of (2.19).
The proof for D(x) is identica, l.

The importance of these invariant functions
stems from their utility in expressing the solu-
tions of the equations of motion in terms of
boundary values prescribed on some space-like
surface. The electromagnetic potentials are
uniquely determined if A„(x) and its normal
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derivative are specified on a surface 0. The ex- and that an evaluation with a surface through
plicit realization of this relation is provided by the point x, gives

A„(x)= D(x —x') A„(x')
a

ax, '
"

8—A„(x') D(x x') do—„'.(2.22)
~&v

To verify this statement, it is sufhcient to ob-
serve that, analogously to Eq. (2.20), the right
side of (2.22) is independent of 0, which can be
specially chosen as a space-like surface through
the point x, yielding

8
A„(x') D(x' x)d—&r.

' =A„(x)
BXy

t9

h(x x')f—(x')do„'
l9x p

h(x' —x)P(x')da„'
~,8x'„'

8
+—o„„A(x'x)d(—r„'

2 ~, 8Ã„'

8
h(x' —x)do. ' P(x') =P(x)

BXp

with the aid of the lemma (1.58). The adjoint
equation

f(x) = 5(x x')y„P(x')—do„',

where

(
5(x) ={ p. —«, }S(x).

ax.

Following the general pattern, we remark that
the right side of (2.23) is independent of 0.

as the value of the surface integral. The corre-
sponding solution of the boundary value prob-
lem for the 6rst order Dirac equation is pro-
vided by

f(x) = I do„'P(x')y„S(x' x)—(2.27)

[A„(x),A, (x')]= — D (x—x")
J

can be proved directly, or inferred from (2.23).
The construction of the general commutation

relations is now trivial. To evaluate { A„(x),
A„(x')],for example, it is merely necessary to
express A„(x)in terms of the field variables on
a space-like surface that includes the point x',
and employ the commutation relations for such
surfaces. Thus

ba (x') ~,
S(x—x') y„P(x')d o„'

(5(x—x') y„P(x'))
8x

whence

X A.(x'), A„(x")d(r«",
l9xg

[A „(x),A, (x')]=ihca„,D(x x') (2.28—).
, t'

=5(x —x'){ y„,+ «o 14(x')
ax„'

( a
5(x —x')y„+«OS(x—x') }P(x')

(ax„ )
=0,

since

( 8 p 8
+ «0 .}5(x)= 5(x)y„+«,5(x)

ax„ I ax„
=( ' —«.')a(x) =0; (2.26)

In a similar way,

{P (x) fp(x')} = 5 ~(x x')

so that
X {(y„f(x"))„$p(x')}la„"

{4' (x) A(x') } = Ss(x x')—. —

1( a —«o } A(x —x'). (2,29)
i E "ax„).p
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All other matter field anti-commutators vanish.
Of course, the matter field commutation rela-
tions are invariant with respect to charge
conjugation.

Finally, we turn to the generalization of the
supplementary condition (2.12), which consists
of removing the restriction that x be situated on
the surface o. It follows from (2.22) that, for an
arbitrary point x,

BA„(x)
+[a7= "D(x x")—

B (BA„(x"))
X ( )do."4[a7. (2.30)

Bxp E Bxp

However, according to (2.9), with F= BA( x)/
OX'

B (BA„(x"))
f+[ 7

Bxp 4 Bxp

B (BA„(x"))= U[a7 ( /c

interaction representation. Although the con-
sistency of the supplementary condition is guar-
anteed by the corresponding property in the
Heisenberg representation, it is well to verify it
directly. However, since the proof involves the
commutation properties of the current four-
vector, we digress brieQy to derive the necessary
theorems.

It is easy to deduce from the expression (2.14)
for j„(x),and the anti-commutator (2.29), that

[j.(x) j (x')7 .g() „s(—'),y(')
—P(x') y.S(x' x)y„f(—x)7. (2.33)

Of course, all components of j„commute at two
distinct points on a space-like surface. However,
the important statement is that a time-like
component of j„commutes with all components
of the current at the same point. We prove this
by demonstrating that

1
li.(x) j (x')7da '=-[j.(x),Q7=0 (2 34)c"

Z f
A q(x"),

Ac

BA„(x')

Bxp

1.
X do. '-j),(x")+[a7

i p BA„(x')
K(x"), do „'0'[a7

kc~ Bx„'

where r is any space-like surface, which, in par-
ticular, can include the point x. The validity of
this statement follows immediately from (2.23)
and (2.27), since

J,[j,(x) j (x') 7da. '

=ie'c'[y(x) p„y(x)—y(x) y„P(x)7

Z

A„(x'),
Ac&.

BAg(x")

Bxy

1
X do„'—jx(x"}4[a7. (2.31)

=0 (2.35)

Indeed, Eq. (2.34) is an expression of charge con-
servation, for, according to (2,9), with F=j„(x):

Bj„(x) i 1 t.
[1'„(x),j„(x')7do.,'A„(x)Bx„kcc~

In the last transformation, we have used the
lemma (1.58) and the fact that the electromag-
netic field commutators contain only the dif-
ference in coordinates of the two points in-
volved. On introducing (2.31) into (2.30) and
performing the x" integration, we find without
further difficulty that

BA„(x) l. 1
D(x x') j„(x')da„'+[a7 —=0,—(2.32)

8x„ c

which is the supplementary condition for the

z
=—[j.(x) Q7A. (x).

Ac
(2.36)

BA„(x)
n[x, a7 =

1
t D(x —x')—j„(x')do„', (2.3'I)
0' C

To prove the suitability of (2.32) as a supple-
mentary condition, we must show that it is
consistent with the field equations of motion,
the equation of motion for 4'[a7, and the com-
mutation relations. In terms of the operator
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we must verify that

'II[x,o] =0,

bII[x,o]
i7ic +[0[x,cr],ae(x')] =0,

bo(x')

in which the charge conservation equation has
been used. We shall show that it is possible to
restore this equation to its original form, and
thus prove gauge invariance, by a canonical

(2 38b) transformation on +[o]. Indeed, the proper
transformation is

[II[x,o],II[x',o]]=0. (2.38c) +[o]~e 'o~'~+[a] (2.40)

The first statement is trivial. As to (2.38b), note
that

N[x, o] 8D (x x')—
Nc =ik j.(x')

bo (x') ax„
while

p1
G[o]=—' —j„(x)A (x)do„.

kc~, c
(2.41)

The equation of motion for the new state vector
1s

1 BA„(x)
[II[x,o.],K(x')] = ———,A„(x') j„(x')

C OXIDE

BD(x x')—
= —ik j.(x')

Gauge invariance has a diferent aspect in

the new representation from that of the Heisen-
berg representation, since the matter field equa-
tions do not involve the electromagnetic field.
On introducing a change in gauge

BA(x)
A„(x)~A„(x)—

where A(x) is a scalar function of position such
that

'A(x) =0,

the supplementary condition, commutation re-
lations and field equations of motion are un-
aA'ected, but the equation of motion for 4[o]
becomes

Sic
bo (x)

[
8 (1

(x)+ I -j„(x)A(x) [ Ko], (2.30)
ax„kc j

in view of the property of j„(x)just established.
Finally, the same property implies that

BA„(x) BA„(x')
[0[x,o],II[x',o]]=

Ox' Bxp

= —ihc 'D(x —x') =0.

b+[o] be 'o& t

iA,C +ihce'Gt ~

bo (x)
e[o]

b&r(x)

8 (1
BC(x)+ [

—j„(x)A(x) ) +[ ], (2.42)
ax„(c

as a consequence of the commutation properties
ofj„ona space-like surface. We may now employ
the simple expansion theorem

be
—'G

eiG
bG 1- bt"-

—i +—G,
bo (x) 2! bo (x)

bG--
+—G, G, + (2 43)

3! bo (x)

to deduce that

be-'o 8 (1
zace'o =

[ -g„(x)A(x) [

ba(x) Bx„Ec

i BA(x)
+ [Gj,(x)] —+

2c Bxp

8 (1
[ -j„(x)A(x) [,

ax„Ec

in which the commutability of j„with a time-like
component of j„onthe surface 0 ensures that
only the first term of the series survives. Ke have
thereby demonstrated the correctness of the
transformation (2.40).

The form of the energy-momentum quantities,
as well as their significance as displacement
operators, is altered by the canonical trans-
formation that generates the interaction repre-
sentation. In the Heisenberg representation, the
functional derivative of an operator is of im-
mediate significance in computing the functional
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derivative of the expectation value of that and the equation of motion (1.38), in the inter-
operator: action representation are to be written

h l' hF[a]
(C,F[a]C) =I C, 4 I. (2.44)

ha(x) ( ha(x) j
In the interaction representation, however, part
of the change in the expectation value is ac-
counted for by the variation in +[a]:

(@[a],F[a]+[a])
ha(x)

( hF[a]=
I +[a] +[a] I

ho (x) )

+—(+[a],[&(x),F[a]]+[a]) (2.45)
kc

Accordingly, it is natural to define the total
functional derivative of an operator,

AF[a] SF[a] i
+—[X(x),F[a]]

ba(x) ha(x) hc

hF[a]= U[a] U '[o] (2.46)
ha(x)

DP„[a] hP„[a] i
+—[K(x),P„[a]]= 0, (2.48)

ha(x) it:c

d F(x)
—[F(x),P„[o]]=

dx

8F(x) i
+—X(x),

BX~ hC

BF(x
—[F(x) P ~'&]=

Bx„
(2.50)

) F(x')da„' . (2.49)
a

Now the partial coordinate derivative BF(x)/Bx„
is that to be associated with the behavior of non-
interacting fields, and can therefore be calculated
from the energy-momentum four-vector of the
isolated fields, P„&",according to

which is composed of the partial functional de-
rivatives, expressing the explicit coordinate
variation and the implicit dynamical variation.
With this definition,

Therefore,

[F(x),P,[a]—P."']

c4,
[BC(x),F(x') ]do „'

(+I a],F[a)+[a])
ho (x)

If the functional is of the form

[F(x),3C(x')]do„' (2.51)
c~.

in which we have used the fact that only the
point x'=x will contribute to the surface inte-
gral. One may infer that

F„[o]= F(x)da„,
4

we are led to write

P [a]=P (o) —— K(x)da„,
c~,

(2.52)

where

AF„[a] d F(x)

ha(x) dx„

dF(x) BF(x) i
+—K(x), i

F(x')do„'
dxp Bxp kc

defines the total coordinate derivative. It should
be clear that the conservation theorem (1.56) =0 (2.53)

which, indeed, is compatible with the conserva-
tion theorem (2.48), since

AP„[a] BP„"'
ha(x) ha (x)

1 (BX(x) i—Pe(x),P„])ci ax„a ' "
J
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The statement (2.52) can be confirmed by
direct calculation. The appropriate transcription
of the Heisenberg operator (1.64) involves the
introduction of the total derivatives dAi/dx„
and df/dx„On. ly the latter dilfers from the
explicit coordinate derivative. Now the operator
P„&"is formally identical with (1.64), but ex-
pressed in terms of the interaction representation
operators and their explicit coordinate deriva-
tives. Therefore,

Z

&,Lo] =&,~"+—
I
"do„

2c~,

XLIt'(x), [K(x),y„p(x')]]d,'. (2.54)

However,

1
I:~(x),vA (x') ]= —li~(x)»A (x')]A~(x)

Ke shall show that one can replace the electro-
magnetic field vector, A „(x), by two scalar
fields, A(x) and A'(x), together with a restricted
vector field 8„(x),in such a way that the supple-
mentary condition involves only the scalar fields,
while the equation of motion for 4r&r]'contains
only 8„(x),the sole physically significant part
of the field. The decomposition will be conveni-
ently expressed with the aid of an arbitrary
time-like unit vector n„;n„2= —1. The procedure
of the customary theory corresponds to the spe-
cial choice: n„=(0,0,0,i).

We decompose A„(x)into the gradient in the
time-like direction specified by n„ofa scalar
operator A(x), the gradient in the space-like
direction orthogonal to e„ofa scalar operator
A'(x) and the vector 8„(x)which has no com-
ponent in the direction n„,and is divergence-less.
Symbolically

8
=~o{vA(x'),if.(x) I(vA(x))-Ai(x), (2 55) A„(x)=n„n„A()x

~&v

whence

P„[o]P„"&— (8 8)
+n„n„ ~~ (x) + e„(x), (3.1)

(8x„ 8x„)
~e

t

do„iIy„if(x'),P.(x) I
2c

L4(x), (vi4 (x))-]A~(x)do.'

where

n„n„(x)=0, e„(x)=0.
Oxide

(3.2)

M
Lf(x)v~4 (x) —v~4 (x)4(x) ]A~(x)do.

2c~

j),(x)A), (x)do;,
c2Q

which is the content of Eq. (2.52).

3. COVAIGANT ELIMINATION OF THE
LONGITUDINAL FIELD

It is the function of the supplementary condi-
tion to ensure that the electromagnetic field
contains no spin-less light quanta, which have
various unphysical properties. It is possible,
indeed to eliminate the scalar potential and the
longitudinal part of the vector potential, leaving
only the transverse vector potential as the quan-
tity truly descriptive of light waves. Such con-
ventional procedures suR'er from a lack of co-
variance which will be remedied in this section,

and

8
n„A„(x)= —n„h.(x)

BXp
(3.3)

(8 8& ( 8)~
~
~ (x), (3.4)

E8x„ 8x,i I 8x„)
in which the latter statement also involves the
field equations

'A = 'A. ' = 'Q,„=O. (3.5)

The commutation laws for A„(x)imply that

8 8
n„A(x),n. A(x') = i hcD(x —x') (3.6)—

Bx Bg„

It is our first task to construct the commutation
relations of the three fields thus defined, and in

particular, to prove that they are kinematically
independent. It follows from the definitions that
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and

8 )2 ( 8

ax„i E ax, 'i

ih—c( n„ i
D(x —x'). (3.'()

E "ax„)

Finally, we deduce from (3.1) that

[S„(x),Q,„(x')]=ihca„,D(x-x')

yihcn„n„~ni ) n(x —x')
ax), )

(8 8)—ihc] +n„ni,
i ax„axii

These can be simplihed by the introduction of
an odd function of the coordinates, 50(x), de-
fined by

or

8
X

~
+n„n.

~
X)(x —x') (3.14)&ax„ax,

2

) n(x) =D(x)
ax„)

'n(x) =0. (3.8)

[e„(x),Q„(x')]= ihca„„D(x —x')

( 8 8 ( 8
ihc—

f

—+/ n„
i ax„ax, ( ax.

The relations (3.6) and (3.7) are satisfied if

[h.(x),A(x') ]= ihcX)(x —x')
[A'(x),A'(x') ]= —ihcK)(x —x').

The further commutation relation

(3.9)

[~(x),~'(x')] = 0 (3.10)

8 ( 8
n„X(x)-,j n„(~'(x')ax„&ax.')

is consistent with the result deduced from (3.3)
and (3.4), namely

8't 8+n„)n),
~
n(x —x'). (3.1S)

ax„) axe)

It will be noted that this commutation rule is
compatible with the restrictions (3.2) imposed
on e„(x).

The supplementary condition involves only
the scalar fields and, indeed, only the combina-
tion h. (x) —i1'(x), since

a q2
A„(x)=

~ n„~(&(x) —&'(x)). (3.16)ax„Eax„&

Equation (2.32) will now be satisfied if

( 8 8

,+n.n. , ID(x —x') = o (3 11)
~

X(x) —i1'(x) —
J
"$(x—x )"iax„' " "ax,')

The commutation properties

[A„(x)+n„n„A,(x),niAi(x') ]= 0,

(8 8)
(ax„ax„i

8 8
yn„n. ~A, (x) =0, (3.12)

E ax„' ax.'i

when combined with the commutativity of A

p.nd A', imply that

X—j„(x')do„'~@[0]=0. (3.17)
C

The equation of motion for 4[0.] becomes

am[~]
ikc

a~r(x)

1 8 (1--j„(x)e„(x)+
~

—j„(x)A'(x)
~

c ax„&c

1 8—-n~„(x)n„(A(x)—A'(x)) 4'[0.). (3.18)
c Bxi

[A(x), 8„(x')]=[A'(x),8„(x')]=0. (3.13) It may be expected that, by a suitable gauge
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=A'(x) —
)I n(x —x')—j„(x')do „'.(3.25)

a C

transformation, A (x) can be eliminated, leaving series (3.23) survive:
A(x) —A'(x) and S„(x)as the fundamental vari-
ables of the electromagnetic field. Accordingly,
we introduce the transformation (Cf. (2.40) and

(2.41)).

where
e[n]~e 'G-'~'j @[0],

1 1
G'[e ]=—

~

—j„(x)A'(x) da„.
AC~ pC

(3.20)
(A.(x) —A'(x))@[a]=0. (3.26)

(3.19)
Hence, the supplementary condition becomes,
simply,

The new equations of motion and supplementary
condition are:

a% [0] ae
—"c'&'~

ihc - +ihce'G ~ j 4'[0]
ao (x) arr(x)

1 a t1=e"~ & --j„(x)o.„(x)+
~

-q„(x)A'(x)
I

c ax„(c

—-n„j„(x)n„(A(x)—A'(x))
C BX„

In a similar way

(aA'(x) aA'(x) ) aA'(x)
e'c'&'&

I +n„n. Ie
—'0'& t =

& ax„
" "

ax„ ) ax„
aA'(x) t. ( a a )+n„n„

a. &ax„ax,)
1

X $(x —x')—j),(x")day', (3.27)
C

and

and
Xe—*e'~'t+[ ] (3.21) . ,

~e " " a t'1
zhce' '&'& =

I

—j„(x)A'(x) I

8~(x) ax„&c )
1 t.aK)(x —x') 1 1

j~(x) j (x)« ~ (3 28)I
A.(x) —e'e'~'jA'(x)e-'0'~ ~

2~ g BX~ C C

n(x x')-j„(x—')d~„' I@[~]=0. (3.22)J, c ) The equation of motion for +[o] now reads

1 t. (1 aK)(x —x')
——j„(x)C„(x)—c" "

&. &2 ax„
aS(x —x') ) 1 1

+n„n„ I
—j„(x)—jg(x')do), '

ax„ ic c

The transformation now under discussion dif- &+[~]
fers from the previous gauge transformation in

ao (x)
that A'(x) is an operator, subject to the com-
mutation relation (3.9). To indicate the modi-
fications thereby introduced, we first evaluate

e' '~'jA'(x)e-' '~'=
A( )x+i[G'[o] A'(x)]

1—,L '[ ][ 'L ] '(-)]]+ ( )
21

Now

z[G'[0],A'(x)]

i t- 1
= ——' [A'(x),A'(x') ] j„(x')d(r„'—

hc~.
' c"

(3.24)

hand therefore, only the firs& two terms of the

1 8n„j„(x)n„—(A—(x) —A'(x)) +[a] (3.29)
C BX„

which, in view of the supplementary condition
(3.26), reduces to

a+[o] 1
ihc = —-j„(x)Q,„(x)

bo (x) c

t
t'1 an(x x') —az)(x —x') )

+n„n,J. E2 ax„"" ax„ i
1 1

X—j„(x)—jg(x')do), ' 4'[0]. (3.30)
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%'e have thereby succeeded in constructing an
equation of motion for +[o] which no longer
contains the electromagnetic field variables in-
volved in the supplementary condition. The
additional term thus introduced is evidently the
covariant generalization of the Coulomb inter-
action between charges.

To exhibit the latter property somewhat more
clearly, we must restrict the arbitrary space-like
surface r to a plane surface with the normal e„.
The advantage thereby acquired is the possi-
bility of asserting that

and

i 8 i 8
V~—$(r,0) =-—D(r,0) = —B(r), (3.35)

c Bt c Bt

1 8
——$(r,0) =
c Bt 4+r

(3.36)

in which the latter statement involves the con-
tent of the equations of definition (2.17) as
adapted to the special coordinate system. It
follows from (3.35) that

of which the covariant expression is(a a)
+n„n, ~n(x —x') =0,&ax„"ax„) 8 1 1

n„X)(x—x') =-
n. (x.—x.') =0 (3.31) ax„4[(x„—x„')']&

which enables (3.30) to be simplified, yielding: n„(x„—x„')=0. (3.37)

B%'[0]
zoic

Bo (x)

1 1 ( BX)(x—x')—-j„(x)e„(x)——
~

n.
The energy-momentum four-vector is modified

by the unitary transformation (3.19), according
to

1
X—n~„(x)-j),(x')da), ' 4'[0]. (3.32)

P [0]~cig'[aj~ C~]c
—iG' f'] (3.38)

The evaluation of the new operator P„[s]in-
volves the following transformations, which we
note without proof':

To prove (3.31), it is sufficient to verify it in a
particular coordinate system. It is always pos-
sible to construct a reference system for which
the normal to a plane space-like surface is di-
rected along the time axis; in other words, in
this reference system, n„=(0,0,0,i). Equation
(3.31) then states that the spatial derivatives of
$(r —r', t —t') vanish for t=t'. This will be true if
X)(r,0) =0 for all r, that is, if $(r, t) is an odd
function of t. New, in this special coordinate
system, (3.8) becomes

e'c''jA (x)e-'s't' =A (x)

t'( a
+n„n. I Z)(x —x')-j, (x')dir, ',

&. &ax„ax„j c

ay ay
d~ 4V. — kV. s ""

2J. " "a „a.
ay ap

~ir, kV. — kV.
2 g Bxy ax@

t'1 a)'
~

——
~

~(r, t) = PX)(r, t) =D(r, t) (3.33)
Ec at)

1 aX' 1 as'-
+—

~ d&v—gx —d&x—J)kc, c Bxg c Bx,
(3.39)

and, since (2.17) assures us that D(r, t) is an odd
function of the time, the necessary property of
S(r,t) is established. As a final step, we note In virtue of the supplementary condition (3.26),
that, in this special coordinate system we may write

l9 1 8
n, $(x —x') =——S(r—r', 0),

QXp c 8$

BA.'(x) q
A~(x)e[&]=

( &~(x) — ]+[&]. (3 4o)
ax„ )

n„(x„—x,') =0 (3.34) It follows, as a result of straightforward simpli-
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fication, that
~ 88' 88'

P, t o]=— der„
2cs» y Bxp, Bx)g

88' 8 ' $8 8&,) '

8x„8x„&8x, )
8$ 8f

+—
I do

1 1 1» 8n(x x')—
+- « -j.(x)~»(x)+-

~
&r

g4~ f 2~g Bxt

1 1.
X—ng„(x)—jz(x')do), ', (3.41)

C C

which has been stated as an operator equation,
rather than a derived supplementary condition,
with the understanding that the operator A —A'

shall no longer appear in the theory.
As the final comment of this section, we re-

mark that the derivatives of Cq, occurring in

(3.41), can be combined into the field strengths

(+4»),+&»~S,) =0,
Bxg

while the divergence-less nature of 0',
„

is com-
bined with (1.58) in the following proof:

88» 88& 8C& 88» 88& 88,do„+ —8»,
Bxg Bx„BX„Bxg Bx Bxg

1 t' 8 88' 8(Xq 88»
dip Ciy + Spy+ Sg

2~g Bx& Bx Bx„. Bx

88„p 8 8
+ g~

Bx - ~ Bing Bx

1 f 8 8
(e,ei+ a~e.)

2~, Bx, Bx),

8 8

e
(e,a.) =0. (3.45)

Bxg Bx

The lemma (1.58), together with the anti-
symmetry of F„~,then informs us that

(3.42) 4. THE INVARIANT COLLISION OPERATOR

with the result that

&.Lo] =—«»P»i&. ) +&.P»i. ~g~».&i']
2c& ~

h r 8f 8'
do» 'kv» kv»

2~ . Bx Bx„

1 ) 1 1 t 8S(x—x')
+-, do„-j»(x)e»(x)+-, nt

1.
X n~»(x) -j),(x')d~—' .

C C

We need only notice that (Cf. (1.32))

88' 88' BCg BQg (88gp
+Bx„Bx„Bx,Bx„&Bx)

=&»P'r) +&.P'»i $&».&).'—
8 88„80!q

+ (@.8'»~+ &») @.) +
Bxg Bing Bx

Bolq 88„88g88
+ —8»„- . (3.44)

Bxy Bx)I, Bxy Bx), ~[o]= Vgo, o,]+Io,] (4.1)

While the interactions between fields and their
vacuum fluctuations are conveniently regarded
as modifying the properties of the non-inter-
acting fields, other types of interactions are often
best viewed as producing transitions among the
states of the individual fields. %'e shall conclude
this paper with a brief discussion of a covariant
manner of describing such transitions. The
change in state of several fields arising from
their mutual interaction is described by the equa-
tion of motion (2.6) for the state vector @Lo].The

(3 43) question that must be answered in order to
describe collisions between the particles associ-
ated with the quantized fields is: given the state
vector on a surface 0.~, what is the state vector
on the surface 0~, in the limit as 0~ and 02 recede
into the remote and past and future, respect-
ivelyP In this limit, no precise characterization
of the surfaces is required and we shall accord-
ingly denote them by the symbols —~ and
+ ~, respectively. It will be useful to derive the
state vector on an arbitrary surface 0. from that
for the initial surface cr& by a unitary operator:
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U[o,o,]=SC(x) U[o,o,],
bo(x)

which is to be determined by an equation of electrodynamics, of the sum and difference of
motion advanced and retarded potentials rather than

the latter alone. The integral equation (4.6) can
be rewritten as

and an initial condition

U[0'y, o'y] =1. (4 3)

Z f'
U[o, —~ ]+ ' K(x') U[o', —~ ]do)'

2lc

The functional diR'erential equation (4.2) is
conveniently replaced by a functional integral
equation, which incorporates the initial condi-
tion (4.3):

a

U[o,o &]= 1 —— GC(x') U[o', o &]du)'. (4.4)
kc

—" X( ') U[",— ]d '

z
=1— X(x') U[o', —~]da)'

2kc

F00

+) K(x') U[o', —~ ]d(u', (4.11)

The volume integral in this equation is extended or
between the surfaces 0~ and a. In particular,

U[o', +& ]+ o[0',0 ]3C(x ) U[o, —ao ]dc'
2kc co

U[o2, op] = 1 —— K(x) U[o,o,]d(g. (4.5)
kc~, a

In terms of the limiting surfaces &~, the
integral equation becomes

Z P
U[o, —~]=1——

~l 3C(x') U[o', ~]des', (4.6)
kc~

„

while

(y 00

= 1 —
I sc(x') U[o', —~ ]du)', (4.12)

2hc

where o[o,o']=1 if o' antedates the surface o
while e[o,&r']= —1 if o' succeeds the surface o.
It is useful to introduce the functional V[o]
according to the definition

00

S=1—l Se(x)U[o, ~]d~jkc

U[o, —~]
(4.7)

Here
S= U[ eo, —oo ], (4.8)

=V[ ]~ 1 — sc(x)U[, —
2kc

= V[o]k(1+S)which we call the collision operator, determines
the over-all change in stat~ of the ~y~t~~ as the th t
result of interaction:

(4.13)

+[ ]=S+[- (4.9)

The expectation value of some physical quantity
F can then be calculated in the final state, for a
prescribed initial state:

(+[ ]~+[ ])
= (0'[— ],S 'FSC [ ]) (4.10)—

from which the probabilities of various transi-
tions can be inferred.

The problem of determining the unitary colli-
sion operator 5 can be replaced by that of de-
termining a Hermitian operator X, which we

may call the reaction operator. Our procedure
will be precisely analogous to the use, in classical

00

V[o]+ I o[o,o']K(x') V[o']do»' = 1. (4.14)
2kc~

On computing S from (4.7) and (4.13), we learn
that

or

S—1 1
i =

l sc(x) V[o]d~ =E, (4.15)
S+1 2kc~

„

1 —ZX
S=

t+iE
(4.16)

While the Hermitian character of E is an im-

mediate consequence of the unitary nature of S,
it is instructive to give a direct proof. Associated
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with the integral equation for V[o] is the Her-
mitian conjugate equation

or
(4.20)

V+[~7y —, d~' V+[~']X(x')e[~',~7 = i, (4.17)
2kc~

An important stationary property of the re-
action operator X should be noted. On writing
(4.19) as

+'J" U-[-]x(.) [...]x(")U[-]d-d-

V+[0]X(x)drat '

in which we have used the evident relation 00

(4 18) 2hcJ V+[07X(x) V[0]d(0

and the Hermiticity of X(x).We may now multi-

ply (4.14) to the left with V+[0]X(x), multiply
(4.17) to the right with X(x) V[a], and integrate
with respect to x over all space-time. A com-
parison of the resultant formulae yields:

V+[o ]X(x)V[o ]dry+
2kc

&& t V'[~]X(x)~[~,~']X(x') V[~']d~d~'

= Jt X(x) V[0]d(u =
J

V+[0]X(x)d&u (4.19)

X X(x') V[ ']d ', (4.21)

we obtain a formula for E which is homogeneous
in U[0] and V+[0] and stationary with respect
to small variations of V[cr] and V+[a]. On per-
forming such a variation, we obtain

()d &'&& Jt ()V[7d Ii Jtd UL ] () UL

00 90

+ ~
e[&r,o']X(x') V[0']d(o' — X—' ' X(x') V[(r']des' +2hc ~ U+[a]+

2hc~ 2kc 2kc

V+[g']X(x')~[ii', 0]did' —
~l U+$o']X(x')did'E 'X(x)SV—[o]did. (4.22)

2kc~
„

Evidently, if V[~r] satisfies (4.14) and (4.15),
together with the Hermitian adjoint equations
for V+[0], 8K=0. Conversely, if E is stationary
for arbitrary variations, the quantities within
brackets on the right side of (4.22) must vanish.
It is easily seen that the functional

X(x') V/IT')did'
~

2ACK (4.23)
( ~ae q

—i

)

obeys Eqs. (4.14) and (4.15), while V'+[0] obey
the corresponding Hermitian adjoint equations.
This type of variational principle has been ex-
tensively applied in the treatment of scattering

(4.24)[SP &'&7=0.

This is the energy-momentum conservation law
for collision processes, since, according to (4.10),
the expectation value of P„&')is unchanged by
the course of interaction, for an arbitrary initial
state.

'~ J. Schwinger, Phys. Rev. 72, 742 {1947)and unpub-
lished lecture notes.

problems, " and will be discussed in detail
elsewhere.

As a 6nal remark, we observe that the repre-
sentation of 8 as an integral extended over all
space-time indicates that it is unaffected by a
translation of the coordinate system, and there-
fore commutes with the operator P„&'& (cf. Eq.
(2.5o)):


