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Negative energy states in classical mechanics

Non-relativistic free particle:

E =
1

2
mv2 =

p2

2m
; ⇒ E ∈ [0,∞〉

Relativistic free particle:

E 2 = m2c4 + c2p2; ⇒ E ∈
〈
−∞,−mc2

]
∪
[
+mc2,∞

〉
We can ignore the negative energy states since the energy can only
change in a continuous manner

We can connect the non-relativistic and relativistic energy expression
by a Taylor-expansion of the former

E = mc2

√
1 +

p2

m2c2
= mc2︸︷︷︸

rest mass

+
p2

2m
− p4

8m3c2
+ . . .︸ ︷︷ ︸

kinetic energy
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Negative-energy states in quantum mechanics

Dirac equation for an electron in a molecular field[
V + mc2 c (σ · p)
c (σ · p) V −mc2

] [
ψL

ψS

]
=

[
ψL

ψS

]
E

Negative energy solutions can not be ignored,
since quantum leaps are allowed

Problem:

I Matter is not stable !
I The hydrogen atom would have a lifetime of about a

nanosecond...
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Anti-particles

The solution proposed by Dirac

I All negative-energy solutions are
occupied.

I The Pauli exclusion principle then
hinder electrons descending down
the negative-energy branch.

I The excitation of an electron from
the negative-energy band leaves a
hole of positive charge,
corresponding to the creation of a
electron-positron pair.

The theory of Dirac is confirmed in 1932 when the US physicist Carl Anderson
discovers the positron.
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Charge conjugation symmetry

External fields are introduced through minimal substitution
p̂→ π̂ = p̂− qA; E → E + qφ
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Non-relativistic two-electron atom
E. Hylleraas, Naturwissenschaften 17 (1929) 982

One-electron problem (point nucleus)[
− ~2

2m
∇2 − Ze2

r

]
ϕZ (r) = εZϕZ (r)

Coordinate scaling r → Z−1r :[
− ~2

2m
∇2 − e2

r

]
ϕZ=1 (r) = εZ=1ϕZ=1 (r) ; εZ = Z 2εZ=1

I Two-electron problem:[
ĥZ=1 (1) + ĥZ=1 (2) +

1

Z
Vee

]
Ψ (1, 2) = E ′Ψ (1, 2) ; E = Z 2E ′

I The two-electron interaction appears as perturbation with Z−1 as
corresponding perturbation parameter
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Perturbational solution

Correlation energy:

Ec = E exact − EHF

I where E exact will be taken to be full CI.

Perturbation theory:

I Both HF and Ci starts from the same zeroth-order function

Φ0 =
∣∣∣ϕ(0)

1s αϕ
(0)
1s β
∣∣∣

I ... so that zeroth and first-order energy corrections are identical

E0 =
〈

0
∣∣∣Ĥ0

∣∣∣ 0
〉

= 2ε1s = −Z2

E1 =
〈

Φ0

∣∣∣Ĥ1

∣∣∣Φ0

〉
=
〈
ϕ

(0)
1s ϕ

(0)
1s |ϕ

(0)
1s ϕ

(0)
1s

〉
=

5

8
Z

I Correlation energy:

Ec = ECI
2 − EHF

2 + O
(

Z−1
)

=
∑
ia

〈ij ‖ ab〉 〈ab ‖ ij〉
εi + εj − εa − εb

+ O
(

Z−1
)

(the MP2-like expression is evaluated using the orbitals of the one-electron problem)
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Relativistic two-electron atoms

Proceeding as before

Ec =
∑
ia

〈ij ‖ ab〉 〈ab ‖ ij〉
εi + εj − εa − εb

+ O
(
Z−1

)
Problem:

An infinite number of doubly excited Slater determinants Φab
ij

are degenerate with the reference determinant Φ0

The Dirac-Coulomb Hamiltonian has no bound solutions !
[G. E. Brown and D. G. Ravenhall, Proc. Roy. Soc. London A 208
(1951) 552]

No-pair approximation: embedding the DC Hamiltonian by projection
operators onto positive energy orbitals [J. Sucher, Phys. Rev. A 22 (1980) 348]

HDC → Λ+H
DCΛ+

The negative-energy solutions are treated as an orthogonal complement
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QED effects in chemistry?

In the past thirty years it has become clear that relativistic effects are
important for the theoretical description of molecules containing
heavy atoms

We seek to investigate the importance of QED effects on molecular
electronic structure and properties

QED effects reduce relativistic effects by about one percent
K. G. Dyall and C. W. Bauschlicher and D. W. Schwenke and P. Pyykkö,
”Is the Lamb shift chemically significant?”, Chem. Phys. Lett. 348 (2001) 497.

However, this study was limited to valence properties. QED effects
are probably more important for properties that sample the electron
density near nuclei, such as NMR parameters. A study by Pyykkö and
Zhao indicate that for NMR parameters QED effects could have the
same importance as solvent effects
P. Pyykkö and L.-B. Zhao, ”Search for effective local model potentials for simulation

of quantum electrodynamic effects in relativistic calculations”,
J. Phys. B. 36 (2003) 1469
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Present-day QED

QED is a marvel of modern science,
allowing predictions of accuracy beyond that of experiment

Yet QED in its present formulation only allows precise calculations on
few-electron atomic systems

Extension to many-electron molecular systems may be possible
through effective QEDpotentials
E.A. Uehling, Phys. Rev. 48 (1935) 55; P. Pyykkö and L.-B. Zhao, J. Phys. B, 36 (2003)

1469; V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Phys. Rev. A, 88 (2013)

012513; V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A 72 (2005) 052115

I ...but such potentials are designed for energy corrections, not properties

Present-day QED is formulated as perturbation theory

Here we go for a variational formulation
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Second quantization

The electron density can be obtained from the quantity

ρ (1) = N

ˆ
Ψ† (1, 2, . . . ,N) Ψ (1, 2, . . .N) d2 . . . dN

The electron density integrates to the number of electronsˆ
ρ (1) d1 = N.

We now introduce an operator

N̂ =

ˆ
ψ̂† (1) ψ̂ (1) d1

... in terms of operators ψ̂†(1) and ψ̂(2), creating and annihilating
electron density amplitude at position 1, respectively.

We want the total operator N̂ to return the particle number N,
when acting on an object representing an N-electron system.

Trond Saue Towards variational QED CAS, Nov 1 2017 11 / 38



Field operators

In order to represent electrons (fermions) field operators must obey
the following anti-commutation relations[

ψ̂†(1), ψ̂†(2)
]

+
= ψ̂†(1)ψ̂†(2) + ψ̂†(2)ψ̂†(1) = 0

[
ψ̂(1), ψ̂(2)

]
+

= ψ̂(1)ψ̂(2) + ψ̂(2)ψ̂(1) = 0

[
ψ̂(1), ψ̂†(2)

]
+

= ψ̂(1)ψ̂†(2) + ψ̂†(2)ψ̂(1) = δ(1− 2)

Bosons obey corresponding commutator relations.
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Quantum field theory

The field operators do not relate to specific electrons; rather, they
sample contributions to the electron quantum field in space

Quantum field theory explains why electrons are the same everywhere;
they all belong to the same field !
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Expansion of field operators

Suppose that we have some orthonormal orbital basis {ϕp(1)}Mp=1

ˆ
ϕ†p(1)ϕq(1)d1 = 〈ϕp|ϕq〉 = Spq = δpq

We now expand the field operators in this basis

ψ̂(1) =
∑
q

ϕq(1)âq; ψ̂†(1) =
∑
q

ϕ†q(1)â†q

We find the expansion coefficients âp and â†p by

âp =

ˆ
ϕ†p(1)ψ̂(1)d1; â†p =

ˆ
ψ̂†(1)ϕp(1)d1

I âp is denoted an annihilation operator
I â†p is denoted a creation operator and is the conjugate of âp
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Annihilation and creation operators

The algebra of the annihilation and creation operators follows from
the algebra of the field operators. We have[

ψ̂(1), ψ̂†(2)
]

+
= δ(1− 2)

.. from which we deduce[
âp, â

†
q

]
+

=

[ˆ
ϕ†p(1)ψ̂(1)d1,

ˆ
ψ̂†(2)ϕq(2)d2

]
+

Further manipulation gives[
âp, â

†
q

]
+

=

ˆ ˆ
ϕ†p(1)ϕq(2)

[
ψ̂(1), ψ̂†(2)

]
+
d1d2

=

ˆ ˆ
ϕ†p(1)ϕq(2)δ(1− 2)d1d2

=

ˆ
ϕ†p(1)ϕq(1)d1 = δpq
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Algebra of annihilation and creation operators

We just found that (using an orthonormal basis)[
ψ̂(1), ψ̂†(2)

]
+

= δ(1− 2) ⇒
[
âp, â

†
q

]
+

= δpq

In a similar manner we find that[
ψ̂†(1), ψ̂†(2)

]
+

= 0 ⇒
[
â†p, â

†
q

]
+

= 0

[
ψ̂(1), ψ̂(2)

]
+

= 0 ⇒ [âp, âq]+ = 0
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Occupation-number vectors

Let us consider a simple example:
We have 4 orbitals {ϕ1, ϕ2, ϕ3, ϕ4} (M=4).

With two electrons (N=2) we can build

(
4
2

)
= 6 determinants.

One example is

Φ (1, 2) =
1√
2!

∣∣∣∣ ϕ1(1) ϕ3(1)
ϕ1(2) ϕ3(2)

∣∣∣∣
or, in short-hand notation

Φ (1, 2) = |ϕ1ϕ3|

We can map this into an occupation-number vector

Φk (1, 2) = |ϕ1ϕ3| → |k〉 = |k1, k2, k3, k4〉 = |1, 0, 1, 0〉

... where occupation numbers kp are either 0 or 1,
since electrons are fermions.
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Occupation-number vectors
Vacuum state and annihilation

Another example is

Φm(1, 2, 3) =
1√
3!

∣∣∣∣∣∣
ϕ1(1) ϕ2(1) ϕ4(1)
ϕ1(2) ϕ2(2) ϕ4(2)
ϕ1(3) ϕ2(3) ϕ4(3)

∣∣∣∣∣∣ = |ϕ1ϕ2ϕ4| → |Φm〉 = |1, 1, 0, 1〉

A special occupation-number vector is the vacuum state

|vac〉 = |0, 0, 0, 0〉

Annihilation operators reduce occupation numbers by one and
therefore all give zero when acting on |vac〉

âp |vac〉 = 0; ∀âp

This even serves as a definition of the vacuum state.
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Operators

The number operator counts electrons

N̂ =

ˆ
ψ̂†(1)ψ̂(1)d1 =

∑
pq

{ˆ
ϕ†p(1)ϕq(1)d1

}
â†p âq =

∑
p

â†p âp

There is also an operator for counting electron pairs

N̂pair =
1

2

ˆ
ψ̂†(1)ψ̂†(2)ψ̂(2)ψ̂(1)d1d2 =

1

2

∑
pq

â†p â
†
q âq âp =

1

2
N̂
(
N̂ − 1

)
The second-quantized Hamiltonian

Ĥ =

ˆ
ψ̂†(1)ĥ(1)ψ̂(1)d1+

1

2

ˆ
ψ̂†(1)ψ̂†(2)ĝ(1, 2)ψ̂(2)ψ̂(1)d1d2+VNN

(notice the order of electron coordinates in the two-electron operator)

This gives a formula for finding the second-quantized form of any
one- and two-electron operator.
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Notation/Summary

Einstein summation convention employed throughout
Field operators: can be expanded in different one-particle bases
defining in turn different sets of creation and annihilation operators

ψ̂(1) = ϕp (1) ap = ϕ̃p (1) ãp

Second-quantized Hamiltonian

Ĥ =

ˆ
ψ̂†(1) ĥ(1)︸︷︷︸

Dirac

ψ̂(1)dτ1

+
1

2

ˆ ˆ
ψ̂†(1)ψ̂†(2) ĝ(1, 2)︸ ︷︷ ︸

Coulomb

ψ̂(2)Ψ̂ψ(1)d1d2

= hpqa
†
paq +

1

4
Lpq,rsa

†
pa
†
r asaq

Anti-symmetrized two-electron integrals: Lpq,rs = (pq | rs)− (ps | rq)
Orbital classes

a, b, c, d︸ ︷︷ ︸
virtual

, . . . i , j , k, l︸ ︷︷ ︸
occupied

, . . . p, q, r , s︸ ︷︷ ︸
general

, . . .
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Hartree–Fock theory in second quantization

Starting from a selected orbital set {ϕp},
Slater determinants (Hilbert space) map into occupation-number
vectors (Fock space)

|Φ〉 = a†1a
†
2 . . . a

†
N |vac〉

which are eigenfunctions of the number operator N̂ = a†pap

The vacuum state is the occupation-number vector giving zero when
acted upon by all annihilaton operators

ap |vac〉 = 0; ∀ap

Hartree-Fock variational ansatz: exponential parameterization∣∣∣Φ̃〉 = exp [−κ̂] |Φ〉 ; κ̂ = κpqa
†
paq; κpq = −κ∗qp
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Hartree–Fock theory in second quantization

The Hartree-Fock variational ansatz can be re-written as∣∣∣Φ̃〉 = exp [−κ̂] |Φ〉 = Ûa†1a
†
2 . . . a

†
N |vac〉

= Ûa†1Û
†Ûa†2Û

†Û . . . Û†Ûa†N Û
†Û |vac〉

= ã†1ã
†
2 . . . ã

†
N |vac〉

Transformed creation operators

ã†p = exp [−κ̂] a†p exp [κ̂] = a†qUqp; U = exp [−κ]

Important: To derive the above we have used

exp [−κ̂] |vac〉 =
(

1− κpqa†paq + . . .
)
|vac〉 = |vac〉
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Hartree-Fock theory in second quantization
Transformed creation operator

To connect to orbital rotations we recall the formula

a†p =

ˆ
ψ̂†(r)ϕp(r)d3r

...from which we obtain

ã†r =
∑
p

a†p {exp [−κ]}pr =
∑
p

ˆ
ψ̂†(r)ϕp(r) {exp [−κ]}pr d3r =

ˆ
ψ̂†(r)ϕ̃r (r)d3r

which provides the connection∣∣∣Φ̃〉 = exp (−κ̂) |Φ〉 ⇒ ϕ̃r =
∑
p

ϕp(r) {exp [−κ]}pr
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Relativistic Hartree-Fock theory

Hartree–Fock energy:

EHF [{ϕi}] = hii +
1

2
Lii ,jj

The orbitals are found from solving an effective
one-electron equation

F̂ [{ϕi}]ϕp = εpϕp

which has solutions of both positive and negative energy

Minmax principle (Talman 1957)

I
{
κ++
ia

}
: minimize

I
{
κ+−
ia

}
: maximize

... corresponds to the implicit use of projection operator

It is updated in every SCF iteration and kept frozen at the
correlated level (no-pair approximation)
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Towards QED

Conventional 4-component relativistic calculations are based on the
no-pair approximation: Λ+H

DCΛ+ where the negative-energy
orbitals are treated as an orthogonal complement.

In QED the negative-energy orbitals take on physical reality to
describe the polarizable vacuum

I will consider QED in the semiclassical limit,
that is without quantization of electromagnetic fields.

Particle-hole formalism

ψ̂ = ϕpap → ψ̂ = ϕ+
p bp + ϕ−p d

†
p

I electron annihilation operators bp associated with the positive-energy
electronic orbitals ϕ+

p

I positron creation operators d†p describing the creation of positrons
whose orbitals are obtained by charge conjugating the associated
negative-energy electronic orbitals ϕ−p
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The QED Hamiltonian

Ĥ = h++
pq b†p bq + h+−

pq b†p d
†
q + h−+

pq dpbq + h−−pq dpd
†
q

+
1

4
L++++

pqrs b†p b
†
r bsbq +

1

4
L+−++

pqrs b†p b
†
r bsd

†
q +

1

4
L+++−

pqrs b†p b
†
r d
†
s bq +

1

4
L+−+−

pqrs b†p b
†
r d
†
s d†q

+
1

4
L++−+

pqrs b†p dr bsbq +
1

4
L+−−+

pqrs b†p dr bsd
†
q +

1

4
L++−−

pqrs b†p dr d
†
s bq +

1

4
L+−−−

pqrs b†p dr d
†
s d†q

+
1

4
L−+++

pqrs dpb
†
r bsbq +

1

4
L−−++

pqrs dpb
†
r bsd

†
q +

1

4
L−++−

pqrs dpb
†
r d
†
s bq +

1

4
L−−+−

pqrs dpb
†
r d
†
s d†q

+
1

4
L−+−+

pqrs dpdr bsbq +
1

4
L−−−+

pqrs dpdr bsd
†
q +

1

4
L−+−−

pqrs dpdr d
†
s bq +

1

4
L−−−−pqrs dpdr d

†
s d†q

The QED Hamiltonian couples occupation-number vectors with
different particle number, but conserves charge.
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Hartree-Fock theory in semiclassical QED

Reference occupation-number vector (bound electronic states):

|Φ〉 = b†1b
†
2 . . . b

†
n |vac〉

QED vacuum state

(bp |vac〉 = 0, ∀bp) and (dp |vac〉 = 0, ∀dp)

Variational Hartree-Fock ansatz:∣∣∣Φ̃〉 = exp [−κ̂] |Φ〉

Orbital rotation operator:

κ̂ = κ++
pq b†pbq︸ ︷︷ ︸
κ̂++

+κ+−
pq b†pd

†
q︸ ︷︷ ︸

κ̂+−

+κ−+
pq dpbq︸ ︷︷ ︸
κ̂−+

+κ−−pq dpd
†
q︸ ︷︷ ︸

κ̂−−
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Number and charge operators

Number operators

N̂e = b†pbp and N̂p = d†pdp

I The κ̂ operator commutes with neither number operator[
κ̂, N̂e

]
=
[
κ̂, N̂p

]
= κ̂−+ − κ̂+−

Charge operator

Q̂N = e
(
N̂p − N̂e

)
I The orbital rotation operator of QED conserves charge but not the

particle number:[
κ̂, Q̂N

]
= 0
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Vacuum polarization

Using the unitarity of the orbital rotation operator we may now
rewrite the HF ansatz as∣∣∣Φ̃〉 = exp [−κ̂] |Φ〉 = b̃†1b̃

†
2 . . . b̃

†
n |ṽac〉

Transformed creation operators

b̃†p = exp [−κ̂] b†p exp [κ̂] = b†qUqp; U = exp [−κ]

The dressed vacuum

|ṽac〉 = exp [−κ̂] |vac〉 =

=
{

1− κ++
pq b†pbq − κ+−

pq b†pd†q − κ−+
pq dpbq − κ−−pq dpd†q + O(κ2)

}
|vac〉

6= |vac〉
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Vacuum expectation values

The vacuum expectation value of the charge operator is zero〈
vac

∣∣∣Q̂N

∣∣∣ vac〉 = e
〈
vac

∣∣∣(N̂p − N̂e
)∣∣∣ vac〉 = e

〈
vac

∣∣(d†pdp − b†pbp
)∣∣ vac〉

However, the vacuum expectation value of the Hamiltonian is infinite〈
vac

∣∣∣Ĥ∣∣∣ vac
〉

=

〈
vac

∣∣∣∣. . . h−−pq dpd†q . . .+
1

4
L−−−−pqrs dpdrd

†
s d†q . . .

∣∣∣∣ vac

〉
= h−−ii +

1

2
L−−−−iijj

The infinite negative energy is avoided by writing the Hamiltonian on
normal ordered form

ĤN = Ĥ −
〈
vac

∣∣∣Ĥ∣∣∣ vac〉 .
I The question is:

F What vacuum should be used ?
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Choice of reference vacuum

A reasonable choice is the free-particle vacuum built from orbitals
{
ϕ−[i ]

}
.
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Re-ordering of field vectors

The normal-ordered QED Hamiltonian

ĤN =

ˆ {
Ψ†(1)ĥ(1)Ψ(1)

}
d1

+
1

2

ˆ ˆ {
Ψ†(1)Ψ†(2)ĝ(1, 2)Ψ(2)Ψ(1)

}
d1d2

From Wick’s theorem we obtain:{
ψ̂ (1) ψ̂ (2)

}
= ϕ[p] (1)ϕ[q] (2) {âp âq}

= ϕ[p] (1)ϕ[q] (2)
(
âp âq −

{
a†paq

})
= ψ̂ (1) ψ̂ (2)− ϕ−;†

[i ] (1)ϕ−[i ] (2)
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Re-ordering of field vectors

With a bit more work we find{
ψ̂†(1)ψ̂†(2)ψ̂(2)ψ̂(1)

}
= ψ̂†(1)ψ̂†(2)ψ̂(2)ψ̂(1)

+ ϕ−;†
[i ]

(1)ψ̂†(2)ϕ−
[i ]

(2)ψ̂(1) + ψ̂†(1)ϕ−;†
[i ]

(2)ψ̂(2)ϕ−
[i ]

(1)

− ϕ−;†
[i ]

(1)ψ̂†(2)ψ̂(2)ϕ−
[i ]

(1)− ψ̂†(1)ϕ−;†
[i ]

(2)ϕ−
[i ]

(2)ψ̂(1)

− ϕ−;†
[i ]

(1)ϕ−;†
[j]

(2)ϕ−
[i ]

(2)ϕ−
[j]

(1)

+ ϕ−;†
[i ]

(1)ϕ−;†
[j]

(2)ϕ−
[j]

(2)ϕ−
[i ]

(1)

The normal -ordered Hamiltonian accordingly reads:

ĤN = Ĥ −
〈
vac0

∣∣∣Ĥ∣∣∣ vac0

〉
= Fpq

[{
ϕ−[i ]

}]
a†paq +

1

4
Lpq,rsa†pa†r ssaq

−
(
h−−[ii ] +

1

2
L−−−−[ii ,jj]

)
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Hartree–Fock energy

In atomic orbital (AO) basis the conventional HF-energy reads:

ϕp = χµcµp ⇒ EHF = Dµνhνµ +
1

2
DµνLνµλκDκλ

I AO-density matrix Dλκ =

(+)∑
i

cλic
∗
κi

Introducing vacuum polarisation

DHF
λκ → DQED

κλ = DHF
κλ + DVP

κλ ; DVP
κλ =

(−)∑
i

(
cκic

∗
λi − cκ[i ]c

∗
λ[i ]

)
...and the associated vacuum polarisation density

ρVP(r) = −enVP(r) = −eDVP
κλ χλ (r)χκ (r)
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Good news
REHE2017, Marburg, Sep 3 2017, talk by Ephraim Eliav
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Conclusion and perspectives

I have presented a theory that allows the introduction of vacuum
polarization (and self-energy) into a variational framework.

However, numerical studies indicate that there are regularization
problems to tackle.

I This should preferably be done in coordinate space, contrary to
momentum space of conventional QED

This is where the hard work starts.

Recent Fock-space coupled cluster calculations by Ephraim Eliav are
very promising and will be explored.

The present scheme may take QED outside the perturbative regime

I ... and may be extended to other forces than electromagnetic ones.
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