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Abstract. We use a minimisation principle to analyse the variational stability of the 
translationally invariant vacuum of quantum electrodynamics, with a Coulomb two-body 
interaction. We show how the magnitude of the coupling constant cy determines the 
existence of a stable variational ground state. This ground state does exist within the 
considered variational space, provided that cy is smaller than a critical value cyc. The 
ground state collapses if cy is larger than a,. Bounds on the critical value U ,  are given, 
and the physical value cy = 1/137 is shown to be undercritical. 

1. Introduction 

The Dirac-Fock (DF) theory has led to calculations of impressive accuracy and to 
numerous successes in the study of atomic and molecular structures (Grant 1970, 
Lindgren and Rosen 1974, Quiney et aZ1987, Gorceix er a1 1987). However, this theory 
presents features that make its interpretation and implementation delicate, leading for 
example to continuum dissolution (Brown and Ravenhall 1951, Sucher 1985), to 
variational collapse (Wallmeier and Kutzelnigg 1981, Schwarz and Wallmeier 1982, 
Stanton and Havriliak 1984) and to the appearance of spurious states in finite-basis 
calculations unless specific constraints are imposed on the basis sets (Grant 1986). 
These difficulties all originate from the fact that the free Dirac Hamiltonian h D =  
a * p + pm describing the kinetic energy is not bounded below. That is to say that DF 
theory does not take into account Dirac’s reinterpretation of the vacuum. This reinter- 
pretation, which is most naturally expressed in the language of second quantisation, 
leads to quantum electrodynamics (QED) and to a positive kinetic energy Hamiltonian 
in Fock space. Consequently, a minimisation procedure in Fock space does not suffer 
from the same difficulties as a minimisation in the space of bispinor wavefunctions. 
Such a procedure allows one to establish the relativistic mean-field theory upon Q E D  
via a minimisation principle, as was developed in the previous paper (Chaix and 
Iracane 1989, hereafter referred to as I). The stationarity equations associated with 
this formalism are very similar to standard D F  equations, but include additional terms 
that are interpreted as describing vacuum polarisation effects. However, the bounded- 
ness of the complete Fock-space Hamiltonian including interactions will in general 
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depend on the interactions that are considered. It is therefore necessary, for a minimisa- 
tion procedure to make sense, that the interactions d o  not spoil the boundedness of 
the electron-positron Fock-space Hamiltonian. 

The interaction terms that may be added to the kinetic energy to form the total 
electron-positron Hamiltonian are of two kinds: there is the one-body interaction, or  
external potential, resulting from given charged sources, and there is the interaction 
between electrons and  positrons. In Coulomb-gauge QED, electrons and positrons 
interact via the instantaneous Coulomb two-body interaction and via the exchange of 
photons. In this paper, like in I, we consider the minimisation problem within a 
variational subspace of Fock space that contains no photon, so that the electron- 
positron interaction reduces to the Coulomb contribution. 

Since the study of the vacuum is the necessary first step for building more compli- 
cated states describing charged systems, in the present work we focus our attention 
on this point. Depending upon the form and intensity of the interactions, three 
situations can happen: (i) the bare vacuum is stable and remains the lowest energy 
state; (ii) the bare vacuum is unstable, and  the lowest energy state is a non-trivial Fock 
state; and (iii) the bare vacuum is unstable, the energy has no minimum and the theory 
‘collapses’. This collapse does not arise from the ‘negative energy states’ of the Dirac 
Hamiltonian since there are no longer negative kinetic energies in QED, but is due to 
the interactions. As a first step, we consider the effects of the Coulomb two-body 
interaction on vacuum stability, no  one-body external potential being applied. The 
question that arises is whether the bare vacuum 10) is the lowest energy translationally 
invariant uncharged state in Fock space. 

We discuss this issue by means of the ‘Bogoliubov-Dirac-Fock’ ( BDF) variational 
method described in I ,  and wonder whether or  not the bare vacuum 10) is the lowest 
energy translationally invariant uncharged state within the BDF variational space. There- 
fore, the work presented in this paper is a variational study of the vacuum of Q E D  

from a non-perturbative point of view, and  a first illustration of the specific aspects 
of BDF mean-field theory. 

We proceed through the following steps. First we describe the momentum-diagonal 
Bogoliubov rotation in Fock space, which allows one to define the variational dresssed 
BDF vacuum. Then we explicitly give the energy of the dressed vacuum and the B D F  

mean-field Hamiltonian as functionals of the Bogoliubov angles. As described in I, 
the B D F  stationarity equations for the energy involve this B D F  Hamiltonian and the 
vacuum density. We cast these equations in the form of a set of two coupled integral 
equations, the gap equations. Finally, for the specific case of the Coulomb two-body 
interaction, we carry on the explicit study of the minimum BDF energy and show under 
which conditions on the coupling constant CY the minimisation problem has a solution. 

2. The BDF Hamiltonian and the variational BDF energy 

The physical system under study, that is the vacuum, is assumed to be translationally 
invariant. Therefore, we only consider translationally invariant variational BDF states 
and  momentum-diagonal Bogoliubov transformations. It must be noted that allowing 
non-translationally invariant B D F  variational states may enable us to lower the energy, 
due  to the non-linearity of the B D F  equations; however a study of this possible 
spontaneous symmetry breaking is beyond the scope of the present paper. 
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The momentum representation is of course best suited to state the problem, and 
we begin by rewriting in this representation the main quantities that appear in the 
formalism. The kinetic Dirac Hamiltonian is momentum-diagonal and, for a given 
momentum k, 

where U are the Pauli matrices. h D ( k )  can be diagonalised and its eigenvalues are *wh 

where 

CA SZ cos 6 k  [(U + m ) / 2 w ] “ 2  SI, =sin $k = [ ( w  - m)/2w]”’ 
(3) 

w = wk = ( k2  + m‘) 

The plane-wave expansion of the electron-positron operator field is 

vx = (2T)-3” dk e-’hx I 
and T k  can be expanded over the four eigenvectors of the Dirac Hamiltonian ( l ) ,  that 
is over the four columns of the matrix R ( k )  (2). The components corresponding to 
the positive eigenvalue are denoted b and are interpreted as bare electron destruction 
operators, while the components corresponding to the negative eigenvalue are denoted 
d’ and are interpreted as bare positron creation operators: 

(4) 

The operator b; creates a charge - e  and a momentum k, and the operator d:  creates 
a charge + e  and a momentum k. Therefore b k ,  d i  and T k  all correspond to an 
increment of momentum -k ,  and to an increment of electric charge +e. The rotation 
R ( k )  (4) between the Fourier component TA of the electron field and the bare particle 
operators b and d’ is a particular Bogoliubov transformation (see I), characterised 
by the ‘bare vacuum Bogoliubov angle’ (3). Ok depends only on wh, and takes on 
values ranging from 0 to ~/4. 8 = 0 corresponds to the static limit (the ‘large’ component 
c k  is large and the ‘small’ component Sh is small), and 8 = 57/4 corresponds to the 
ultra-relativistic limit (the ‘large’ and ‘small’ components are of the same order of 
magnitude). 

The bare vacuum is the Fock state IO) characterised by blO) = d/O) = 0, and the Dirac 
sea is described by the projection operator upon the negative eigenvalue eigenstates 
of h , , ( k ) ,  that is the vacuum expectation value of the tensor product T+@T: 

0 )  R+. 
1 
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A charge-conserving momentum-diagonal Bogoliubov transformation mixes the b's 
and df's, and leads to dressed electron destruction operators 6 and dressed positron 
creation operators 2': 

This transformation combines with R ( k ) ,  leading to an  expansion of the Fourier 
component qk of the electron field over a new basis: 

where the matrix I? = RT' of the rotated wavefunctions is also momentum-diagonal: 

with 

?h E cos( v k  + 6,) .?h = sin( v h  + O k ) .  

The vacuum (6) of the dressed particle operators is characterised by 616) = 216) = 0. It 
corresponds to the transformed Dirac sea described by its 'density matrix', which is 
the transformed projection operator li"( k ) :  

The vacuum density b has been defined in I ( §  3)  as the expectation value in the 
dressed vacuum 16) of the normally ordered tensor product J\"[W'OT], where N is 
the normal ordering corresponding to the bare vacuum IO). Therefore, p' is the difference 

A'-) between the operators that project upon the transformed and initial Dirac 
seas, respectively. Here, p' is momentum-diagonal and expressed as 

;i" - 

This density represents the modification of the Dirac sea under the action of the BDF 

transformation. 
The Fock-space Hamiltonian under consideration has a term describing the kinetic 

energy, and  a term describing the two-body interaction between the charges at different 
points x and  y :  .=..[I dxT\Ir:h,V,+ dxdy'V(x-y)(T':.Vr)(q':.V,) . (11) 

Note that Q E D  in Coulomb gauge leads to such an electron-positron Hamiltonian. 
Photons appear in other terms that do  not contribute in the considered variational space. 

I 1 
In momentum space the Dirac operator is 

and the antisymmetrical scalar local two-body interaction can be written as 

V( kwr) = $[ V (  p - k)6,,6,, - 'V(r  - k ) S , , S , , ] G ( k +  q - p  - U )  (13) 
QPYS - 
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where k, p, q, r are momenta and  a, P, y, S are bispinor component indices. The two 
terms in the square brackets are the direct and  exchange contributions, respectively. 

The energy 8, = (6lHld) of the dressed vacuum is infinite since a ' S ( 0 ) '  factor arises 
from integration over momentum. This infinite factor is interpreted as the volume of 
position space. As usual for translation-invariant problems, one works with the vacuum 
energy per unit of volume, which is 8(,=s dk&(k) ,  with 

1 dq  V ( k  - q)(s": - s:) (;; - SE) 
r r  7 

As described in I ,  and as usual in mean-field theories, the stationarity equations 
involve a density b and a mean-field Hamiltonian h". The BDF mean-field Hamiltonian 
is h"= h,+If, where f is the vacuum polarisation potential due to the vacuum density. 
Here If is expressed (summation over repeated indices is assumed) as 

The direct part vanishes since the local charge is zero everywhere due to the translational 
invariance of the variational vacuum, and there only remains the exchange part 

This vacuum polarisation potential is momentum-diagonal, and  therefore so will be 
the BDF Hamiltonian h"= h,+?, which can be written 

h " ( k ) = ( Z  - A k  Mk ) 
where 

M k  = m - 2 dq Zr( k - (I) (,?: - s:) I 
Ak (U * k )  + 2 dq V ( k  -q)(S;E, - s,c,)( U * 4). I 

3. Gap equations 

The stationarity condition for the BDF energy is the BDF equation 

[h", P I  = 0. (19) 
This implies that the rotation d ( k )  (8) can be chosen to diagonalise simultaneously 
A(-) (9) and  the BDF Hamiltonian h"(k).  The matrix h"(k) transformed by d ( k )  is 

d+h"d 
cos[2(8+ 7) lM +sin[2(8 + 77118 cos[2(8 + 7)]A -sin[2( 8 +  7 ) ] M ( a  - k^) 

-cos[2(8+ 7 ) ]M -sin[2(8+ v ) ] S  = (cos[2(8+ 7)]A-sin[2(8+ 77)1M(a.  i )  
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where we have introduced 

6 h  

For each momentum k, l?-@ is diagonal when the off-diagonal terms vanish, 

f [ Ak ( U * k A )  + ( U k A )  A k ] = k + 2 dq 2'( k - 4) kA * $( FqFq - sqcq ) , (20) I 
cos[2(8 + 7 ) ] A  -sin[2(8 + ~ ) ] M ( u .  k A )  = 0 

which implies after multiplication on both sides by U k  ̂ that 

cos[2(8+ 7)]6 -sin[2(8+ 7 ) ] M  = O .  

The eigenvalues *A of the BDF Hamiltonian and  the corresponding stationary 
Bogoliubov angles 7 (6) are characterised by (we repeat between parentheses definitions 
from (3) for comparison): 

A; = M ; + s ~ ,  (& = m2 + k 2 )  

Since M and 6 given by (18) and  (20) are functionals of the angles 7, equations (21) 
are functional equations for the BDF angle 7. One can also get rid of the Bogoliubov 
angles by inserting the last two relations (21) into (18). One obtains a set of two 
integral equations for the functions M and 6, which determine the spectrum of the 
BDF Hamiltonian via the first relation of (21): 

M k = m -  d q V ( k - q )  I 
The equations (22) may be considered as a relativistic generalisation of the non- 
relativistic 'gap equations', characterising the changes in a mean-field spectrum due 
to pairing correlations (Bardeen et al 1957, Ring and Schuck 1980). The Hamiltonian 
( l l ) ,  which is normally ordered with respect to the bare vacuum, can be reordered 
with respect to the variational dressed vacuum ( I ,  $4 ) .  Then, H is written as the sum 
of (i) the c-number &, (ii) a one-body term where the Dirac Hamiltonian h D  has been 
replaced by the BDF Hamiltonian i, and (iii) the residual two-body interaction. At 
the stationary point, that is when the gap equations are satisfied, this reduces to 

H = Eo+ dk  A,( && + d" ;&)  +residual two-body interaction. I 
Therefore, the spectrum of the one-body part of the Hamiltonian in the BDF representa- 
tion is given by the eigenvalues * A h  of the BDF Hamiltonian, and  the relation A A  = 

( M i  + is the new dispersion relation between energy and momentum. 
The gap  equations (22) have the trivial solution Mk = m and Sk = k. This means 

that the bare vacuum is a stationary point of the energy functional in the present 
variational space. However, this stationary point may be unstable and  there may exist 
non-trivial solutions, depending on the form and  intensity of the two-body interaction 
2'. In order to illustrate this, we may specify the two-body interaction (Coulomb 
interaction with a coupling constant a )  and consider special forms of the functions 
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*.-.. M/m ,,' 
*--__- .  

i' 

Mk and Cjk  with two free parameters M and A (see § 4). We plot in figure 1 the BDF 

vacuum energy against M for a given value A and for two values cyI  and a2 of the 
coupling constant a, such that a I  < c y 2 .  The bare vacuum corresponds to M / m  = 1 
and is always a stationary point. It is stable for a = a , ,  at least within the considered 
restricted variational space (full curve). It becomes unstable for a2 large enough 
(broken curve). In this latter case the BDF energy exhibits a new minimum, which is 
stable within the considered restricted variational space, but may be unstable in the 
complete BDF variational space (this is indeed what happens, as shown in § 4). As we 
shall see in the following two sections, this example shows that, provided the coupling 
constant is large enough, the vacuum is unstable in the BDF variational space, and a 
fortiori in the complete Fock space. 

4. Minimisation of the BDF energy: the Coulomb case 

We now restrict the discussion to a pure Coulomb interaction, and we look for a 
minimum of the BDF energy density Eo (14). The two-body interaction 2' can be 
written as 

W ( x - y )  = tCYlX -yl-l 

7'"( k - 4) = ( 2 ~ )  - 3 4 ~ l k  - 41-? (23) 

or  in momentum space 

where CY is the electromagnetic coupling constant. In the following discussion, the 
coupling constant a as well as the electron-positron mass are considered as 
parameters. The vacuum energy E,  (14) is then a functional E of the Bogoliubov 
angles vk ( 6 ) ,  and a function of the parameters a and m :  

E o =  E ( m ,  CY, 7). (24) 
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c 

I ( m , a ) = I n f E ( m , a , T ) .  
v 

The vacuum energy (24) can be written as 

E ( m 5  a, 'I)= T ( m ,  7 7 ) - a ( 2 7 p V ( m ,  'I) 

where T corresponds to the kinetic part of the Hamiltonian and V to the two-body 
interaction. The kinetic energy is 

T (  m, 'I) = 4 dk  wk sin' q k  (27) J 
where wk is the kinetic energy of a particle with momentum k, and 4 sin' v k  is the 
number of particles with momentum k (there are two spin orientations for each particle, 
two particles in each pair and sin' vk pairs for a given momentum k and a given spin 
orientation). Finally the potential energy is 

dk  dq 
2s in  v k  sin q q [ s i n ( ~ 1 + 2 0 k )  s in(q ,+20q)  

+ c o s ( ~ ~ + ~ o ~ )  C O S ( T ~ + ~ ~ ~ )  k^ .  4̂ 1. (28) 
Although the functional form 2' (23) of the two-body interaction does not depend on 
m, this parameter does appear in the Coulomb contribution V(m, 7 7 )  to the energy. 
This is due  to the normal ordering, that is to the vacuum subtraction, which depends 
on m since the bare vacuum is defined relative to the free Dirac Hamiltonian. 

The mass of the electron is the only scale parameter in the problem. This implies 
the following scaling behaviour: 

E ( m ,  a,  r ] ( * ) ) = A 4 g ( m / A ,  a,  T ( A . ) ) .  (29) 

Z(m, a ) = A 4 Z ( m / A ,  a ) .  (30) 

Since 'I( . )  and ~ ( h . )  run over the same variational space, the infimum (25) fulfils 

This scaling law has important consequences: 
(i) For A = m, this gives the scaling law Z(m, a )  = m4Z(l ,  a ) .  
(ii) For m = 0, this gives Z(0, a )  = A41(0, a )  for every A, and then, since Z(m, a )  S 0, 

(iii) If Z(0, a )  = --CO, then Z(m, a )  = A4Z(m/A, a )  =limA,= A4Z(m/h ,  a )  = -03. 

Since V( m, 7 )  3 0, I (  m, a )  is a decreasing function of a. As a consequence, there 
exists a critical value a,( m )  such that I ( m ,  a )  = 0 if a < a, (m) ,  and Z(m, a )  < O  if 
a > a,( m ) .  Because of (i), the critical value does not depend on m ;  therefore a,( m )  = 
a,(O) 

Z(0, a )  is either 0 or --CO. 

ac .  Because of ( i i )  and (iii), 

I ( m ,  a ) = O  if a < a ,  (31) 

Z(m, a )  = --CO if a > a,. (32) 

Furthermore, one can see that Z(m, a,) = 0; indeed, if Z(m, a,) = --CO there exists a 
function 7 such that 

~ ( m ,  q ) - a , ( 2 . r r ) - * ~ ( m ,  ~ ) = G ( m , a , , ~ ) ~ - e < ~ ,  

a c z  (2T)*[& + T ( m ,  'I)]/ V(m, 7 7 ) .  

i.e 
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Then let us consider 

a ( 2 ~ ) * [ ~ / 2 +  ~ ( m ,  rl)I/  v ( m ,  7 ) .  

One has a <a,,  and 

E ( m ,  a, v ) =  T ( m ,  7 7 ) - a ( 2 T ) - * ~ ( m ,  ~ ) = - E / ~ s o  

which contradicts (31). 
To summarise, we have shown that the BDF vacuum exhibits a stability-instability 

transition behaviour. There is a critical value a,> 0 of the coupling constant, indepen- 
dent of m, such that 

if a > a ,  then Z(m, a )  = --x (33) 

if a s a ,  then I ( m ,  a )  = 0. (34) 
It is remarkable that a ,  does not depend on the electron-positron mass m. This stems 
from the absence of scale in the two-body interaction. 

We can conclude that the bare vacuum IO) is the lowest energy state of our variational 
space if the two-body Coulomb interaction is not too strong (that is if a <a,). On 
the contrary, if a is large enough, the negative electron-positron Coulomb energy 
exceeds the sum of the kinetic energy and of the electron-electron and positron-positron 
repulsive energies. It then becomes energetically favourable to increase the Bogoliubov 
angles and  the number of pairs in the vacuum. In this case the energy is not bounded 
below in the variational space. 

In  principle, like in perturbative field theory, the parameters a and m appearing 
in the Hamiltonian must be chosen to fit experimental values of observable quantities, 
for instance the physical electron mass me or  a binding energy. This can lead to 
choosing input values of a and m that differ from 1/137 and me,  respectively, and  
these input values in general depend on the variational space. The problem of 
order-by-order renormalisation in perturbative theory is here replaced by the problem 
of non-perturbative renormalisation in a variational space. In  the BDF variational 
space used for the description of the translationally invariant vacuum, the collapse for 
an  overcritical input value of a occurs whatever the input value of m. Therefore no 
mass renormalisation will be able to compensate for it, that is to say that the input 
value of a has to be undercritical for the theory to make sense. 

5. Bounds on the critical coupling constant 

To ensure that the Hamiltonian (11) is bounded below in the electron-positron Fock 
space and  that an  atomic-structure calculation via a minimisation procedure is legiti- 
mate, it is necessary that the coupling constant a appearing in the Hamiltonian be 
undercritical. It is therefore necessary to look for bounds on a,. A heuristic argument 
shows that one can expect a ,  to be of the order of magnitude unity: the ground-state 
energy of a ‘positron-electron’ system, as given by the fine-structure formula with a 
reduced mass m/2, goes to zero when a goes to unity. Therefore, it becomes gradually 
easier to create a real pair when a approaches unity, and pairs will be spontaneously 
created for a > 1. Greiner and coworkers (Reinhard et a1 1971, Greiner er a1 1985) 
have used and refined the argument, applied to the ‘electron-external field’ system: 
there the coupling constant is Za ( a  = 1/137, 2 =nuclear charge), and  the argument 
shows that spontaneous pair creation might occur for Z greater than a critical value 
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of the order l / a .  In our  case, this kind of argument based on one-particle theory is 
unreliable. Since there is no simple general procedure to separate the motion of two 
interacting relativistic particles into a centre-of-mass motion and  a relative motion with 
reduced mass (Bodwin et a1 1985), the use of the fine-structure formula for positronium 
and with a large coupling constant is not justified. However we will give bounds on 
a,, and show that indeed a ,  is of  the order of magnitude unity. First we give a finite 
upper bound on the critical coupling constant and  therefore show that variational 
collapse in the BDF space may occur, provided that a is large enough. Next, we give 
a non-vanishing lower bound to the critical coupling constant, and show that the energy 
is stable in the BDF variational space provided that a is small enough. 

5.1. Upper bound on a ,  and possibility of variational collapse 

Here we study the energy functional in a restricted variational space, and  we consider 
Bogoliubov angles such that 

for k < h  cos i k  EZ [(R+ hf) /2f i ]”2  sin & = [(n - ~)/2n]” ’  

Q = (k2+  M2)1/’ 
k - -  

* 
for k 2 h  6 k  E e k  

where h and M are variational parameters. 
In the restricted space, the energy functional E ( m ,  a,  7 7 )  (26) becomes a function 

E ( m ,  a,  A, M ) .  One can check after tedious but straightforward calculations that, for 
a given M, the behaviour of E for large A is 

(M-m)2AA2+o(A’).  (35) 

This shows that if a > r / l n  4, 5 has no minimum unbounded in the restricted space, 
and  afortiori in the complete Bogoliubov space. Therefore the critical coupling constant 
is finite, and  a ,  < r r / h  4. 

As an  illustration we can compute E( m, a,  A, M )  explicitly, and figure 1 represents 
as a function of M for a given value ho of the variational parameter A, and for two 

values a 1  and a2 o f  the coupling constant a. ( i )  For a ,  < r / l n  4, one can see that 
E ( m ,  a , ,  A,, M )  is minimum for M = m, and the bare vacuum is stable; (ii) for 
a,> r / l n  4, the bare vacuum is unstable, and E ( m ,  c y , ,  A,, M )  has a minimum for a 
non-trivial value M,,, of the variational parameter M. However, the above analysis 
shows that the energy functional actually is not bounded below, and that the dressed 
vacuum corresponding to ho and M,,, is unstable. 

5.2. Lower bound on c y ,  and possibility of variational stability 

The energy functional (26) can be bounded below in the following way: 

&m, f f ,  7 7 )  3 U m ,  7 7 )  - f f  ( 2 7 v  V ( m ,  77) l .  (36) 

Now, the kinetic energy increases with m :  
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and on the other hand 

+ cos( 77k + 2eL)cos(77, + 2 8 , )  i s  i1 
where the last absolute value is smaller than unity since it is the scalar product of two 
normalised 4-vectors: 

This majorisation is related to the fermionic character of the electron field, for which 
the densities are smaller than unity, and for which the squared density can be majorised 
by the density itself. Let s ( x )  be the Fourier transform of lsin ~ ~ 1 ;  we have 

g ( m ,  a,  77)>4 dxs(x)[(-A)”’-$aIxl-’]s(x). (39) 

Then we use the following lemma, which allows a comparison between kinetic and 
potential energies (a  derivation of this lemma is outlined in a mathematical note in 
the appendix at the end of the paper). 

Lemma. For any real function s such that s(x)(-A)”’s(x) is integrable over R3, then 
s ( x ) ~ x ~ - ’ s ( x )  is also integrable over R’, and one has 

[ dxs(x)lxl-’s(x)s(n- /2)  dxs(x)(-A)1’2s(x) 
J 

(furthermore n- /2  is the smallest constant for which this inequality holds for every s). 

Therefore, if a S 4/ n-, then I?( m, a, 7 7 )  2 0, and hence I (  m, a )  = 0. Then one can 

Finally we showed that the critical coupling constant a ,  satisfies: 
conclude that the critical coupling constant is greater than 4/ T. 

4/n- 6 a ,  < n-/ln 4. (41) 

The behaviour of the B D F  vacuum energy depending on the numerical value of the 
coupling constant is summed up in figure 2. (From a somewhat different point of 
view, Hardekopf and Sucher (1985) analysed the question of spontaneous positronium 
creation on the basis of the no-pair two-particle theory, and found a critical coupling 
constant = 1.8.) 

It is noteworthy that (39) brought us back to the study of (-A)”’-ylxl-’, for a 
given value of the parameter 7. The ‘0 or -a’ behaviour of the B D F  vacuum energy 
is reminiscent of the ‘stability-instability’ alternative for this ‘semi-relativistic’ one- 
particle Hamiltonian (-A)”’- yIx1-l (Kato 1966, Weder 1975, Herbst 1977a, b, 
Daubechies 1984). This Hamiltonian has been introduced in the mathematical physics 
literature as an ersatz of the one-particle Dirac-Coulomb Hamiltonian (Y p + pm - 
ylx/-’, for m = 0. It is remarkable that it occurs here, not as an ersatz, but in the study 
of a minimisation procedure applied to the Hamiltonian of QED. Therefore we have 
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Figure 2. The  stability of the B D F  vacuum with a Coulomb two-body interaction depends 
on the value a assigned to  the coupling constant.  For LY larger than the critical coupling 
constant L Y ~ ,  the  bare  vacuum is unstable and  the energy functional has no minimum. A 
,fortiori, the Hamiltonian of QLU in Coulomb gauge is not bounded below in this case. For 
a smaller than the critical value a,, the bare  vacuum is the translationally invariant 
uncharged Fock state of lowest energy, a n d  the Hamiltonian is bounded below within the 
considered variational space. However, this does not mean that it is bounded below in 
the complete Fock space.  It  is shown in P 4 that  the physical value a = 1/137 is undercritical. 

here an unexpected interpretation of the results concerning the academic Hamiltonian 
( -A)’” - Y ~ X / - ’ .  

6. Concluding remarks 

Since the physical value a = 1/137 is subcritical, the variational procedure leads one 
to choose the bare vacuum IO) for the description of the empty space in BDF theory. 
However, the collapse of the BDF vacuum energy for a > a, is of a more general 
significance. The BDF variational space is a subspace of the ‘electron-positron’ Fock 
space, and of the ‘electron-positron-transverse photon’ Fock space of Coulomb-gauge 
QED. If the BDF vacuum energy collapses in the B D F  variational space, and this does 
happen for cy > a,, then a fortiori the complete Coulomb-gauge Q E D  Hamiltonian is 
not bounded below. Since no photons are included in the BDF variational space, cy, 

cannot be considered as a reliable estimate of a possible critical value for the stability 
of Coulomb-gauge QED, but only as an upper bound: the critical value of the coupling 
constant for the collapse of Q E D  is smaller than cy,. 

This result may be compared to those deduced from perturbative approaches. The 
question of the stability of the bare vacuum in quantum-field theories where fermions 
are coupled via scalar or vector bosons has yet been addressed by several authors 
(Cohen et al 1987, Soni 1987). It can be shown within the perturbative approximation 
at the one-loop level that the bare vacuum is not the uncharged Fock state of lowest 
energy, even after one-loop renormalisation. Whether or not this instability of the bare 
vacuum is an artefact of the one-loop approximation remains an open question since 
higher-order terms of the perturbative expansions may change this result. Although 
it leaves the status of a ‘renormalisation’ in Hamiltonian non-perturbative quantum-field 
theory to be investigated, our demonstration of the collapse of Coulomb-gauge Q E D  

for a large enough coupling constant does nor rely on a perturbative expansion; it 
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therefore gives a complementary view on the question of vacuum stability in quantum- 
field theory. 

Appendix. Mathematical note 

Here we outline a proof of the following result that we used in the study of the BDF 

vacuum. 

Lemma. There exists a constant C such that for any smooth real function s with a 
compact support, we have 

dxs(x)lxl- 's(x) S C dxs(x)(-A)"2s(X). I I 
By density, such an inequality holds for the homogeneous Sobolev space 2?"232(R3), 
which is the closure of the space of compactly supported smooth real functions with 
respect to  the norm 

~~s~~ = (1 dxs(x)(-A)"'s(x) . ) 
Furthermore, C = n- /2 is the smallest constant such that the inequality holds for 

all s. 

One proof of the above inequality relies on delicate convolution properties, and 
we only sketch it. 

First of all, if s belongs to %'",'(R3), by Sobolev embeddings s belongs not only 
to L3(R3) but also to the Lorentz space L3,*(R3). Hence, s' belongs to L3'23'(R3). Since 
\xi-' belongs to L'."(R3), by Holder inequalities, the product s'(x)lxI-' belongs to 
L'3 ' (R3)  = L ' ( R 3 ) ,  that is s(x)lxl-'s(x) is integrable over R3. 

Since Sobolev embeddings define a continuous embedding from %"'3z(R3) into 
L332(R3), the above argument also yields the existence of a positive constant C indepen- 
dent o f s  such that the above inequality holds. 

For the value C = 7r /2 ,  the inequality holds for every s: if it were not the case, one 
could find a positive real number E and a compactly supported smooth real function 
s, such that 

dxs2 (x )  = 1. I dx s(x)[( -A)"2 - ( ~ / T ) ~ X $ ' ] S ( X )  G - 2 E  I 

I 

Introducing a decreasing sequence V, of smooth compactly supported negative poten- 
tials such that 

- ( 2 / n - ) l x \ - ' S  V , , G O  v, + - ( 2 / 7 r ) l x l - '  

we could deduce by continuity that for n large enough 

dxs'(x) = 1. I dxs(X)[(-A)"*+ V , ] S ( X ) ~  - E  

Next, consider the ground state of (--A)"?+ V , , ,  which exists in view of the properties 
of V, and the above itiequality. It satisfies 

dx si (x )  = 1 I [(-A)"'+ V , ] S ,  = FJ, E,, C - E  
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and has a fixed sign, say positive (this characterisation of the fundamental is easy to 
prove for the Schrodinger operator - A +  V; in the present case, it follows from the 
fact that I/tll s llsll if t = Isl, where the norm I /  * I /  has been defined above). 

Multiplying this equation by ~ ( x )  =  XI-', which satisfies 

[ ( - A ) ” 2 -  ( ~ / T ) ~ x ~ - ’ ] J ( x )  = 0 

and integrating by parts (integration which can be justified by a tedious argument), 
we deduce 

d x s , ( x ) [ ( 2 / ~ ) ~ x ~ - ’ +  V, ] lx / - ’  = E ,  dx ~X~-’S,(X) I 5 
This is a contradiction since the first term is positive and the second one is negative. 

In summary, we proved that 

5 dxs(x)(xl-’s(x) ( ~ / 2 )  dxs(x)(-A)li2s(x). I 
In this derivation, we used the fact that, in a loose sense, ~ ( x )  is the ‘fundamental’ 

( 2 / ~ ) l x l - ’ ,  with zero eigenvalue. This implies that C = 7r/2 actually is of 
the smallest C value for which this inequality holds. 
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