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From quantum electrodynamics to mean-field theory: 
I. The Bogoliubov-Dirac-Fock formalism 
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BP 12, 91680 Bruyires-le-Chitel, France 

Received 5 June 1989 

Abstract. A relativistic mean-field theory for interacting Dirac particles in an external field 
is derived from quantum-field theory using a minimisation principle, and discussed in the 
context of atomic physics. In this approach, electrons and positrons are treated on the 
same footing, and neither final ‘reinterpretation’ nor ‘positive energy projection’ are needed. 
We obtain mean-field equations of Dirac-Fock type containing a vacuum polarisation term 
that does not exist in the standard Dirac-Fock equations. However, the standard Dirac- 
Fock equations, as well as the equations resulting from earlier attempts to build a mean-field 
theory from quantum electrodynamics, are recovered as non-variational approximations. 
The minimisation principle also leads to a new way of introducing finite-basis relativistic 
calculations. 

1. Introduction 

The first relativistic mean-field theory, referred to as Dirac-Fock ( DF) theory, has been 
introduced in 1935 (Swirles 1935) in the context of atomic physics as a mere transposi- 
tion of the Hartree-Fock (HF)  theory. The H F  equations can be deduced from the 
non-relativistic Hamiltonian theory for N-particle systems through the minimisation 
of energy in the space of the Slater determinants IqHF) of N one-particle wavefunctions: 

E H F =  Min(qHFlx ( T o  + a u +  v o b ) l q H F )  (1.1) 

where Tu and a, are the kinetic and potential energies for the a th  electron and V,, 
is the interaction between the a t h  and bth electrons. In the relativistic context, the DF 

equations are usually written as a stationarity equation: 

a E D F =  ~ ( P D F I C  (AD, +a, + v , ~ ) I P D F ) = o  (1.2) 

where IqDF) is an N-electron Slater determinant of normalised one-electron bispinor 
wavefunctions and hD, = a . p ,  + p m  is the free Dirac Hamiltonian for the a th  electron. 

Relativistic effects in atoms and molecules have stimulated much interest during 
the past 20 years, and the DF equations have been developed into a powerful tool for 
the calculation and analysis of ionic, atomic and molecular relativistic structures (Kim 
1967, Grant 1970, Lindgren and Rosen 1974). The improvements of numerical tech- 
niques and computer capabilities have made possible a complete numerical treatment 
of the DF equations, involving for instance their discretisation on a spatial lattice 
(Desclaux 1973), or the use of a finite-basis approximation where the one-electron 
wavefunctions are imposed to belong to a given finite-dimensional space (Quiney et 
al 1987). Very accurate calculations are now currently performed, which take into 
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account not only the Coulomb repulsion between the electrons but also more sophisti- 
cated effective interactions derived from perturbative quantum electrodynamics (QED) 
(Gorceix er al 1987, Indelicato er al 1987). 

Despite this success, the D F  theory conveys shortcomings arising from the fact that 
the free Dirac Hamiltonian h ,  = a s p  + p m  is not bounded below. These deficiencies 
raise questions about the meaning and the foundations of the DF theory. First, a 
normalised DF state Cannot approximate a bound state of the Hamiltonian C( h,, + R, + 
Vah),  since one knows that this Hamiltonian has no normalisable bound states. This 
‘phenomenon’ is known as continuum dissolution (Brown and Ravenhall 1951, Sucher 
1985). Secondly, the DF theory fails when the external potential becomes so strong 
that one or  more bound states lie very deep in the mass gap or dive in the negative 
energy continuum of the D F  Hamiltonian, as might happen for instance in ‘over-critical’ 
atoms (Reinhard er al 1971). Finally, since the expectation value EDF of the N-particle 
Hamiltonian C ( h D ,  +fig + Vah)  has no minimum, the ground state of an atom cannot 
be viewed as (or approximated by) a state minimising EDF. The DF equations are only 
stationarity equations, and this implies a new difficulty in their implementation via the 
finite-basis method: the finite-basis DF energy does not necessarily converge from above 
to the exact DF solution, if it converges at  all, and  its accuracy cannot be improved 
by a mere minimisation. Unless specific precautions are taken, e.g. constraints on the 
basis sets, this feature leads to ‘variational collapse’ and to the emergence of ‘spurious 
states’ (‘finite-basis disease’) (Wallmeier and Kutzelnigg 1981, Schwarz and Wallmeier 
1982, Stanton and  Havriliak 1984). A careful analysis of the finite-basis treatment of 
the DF equations (Grant 1986) made it possible to overcome these difficulties, and 
finite-basis DF calculations are now currently performed with the same very high 
accuracy as that achieved by finite-difference methods (Quiney er a1 1989). 

However, fundamental difficulties of interpretation related to ‘negative energy states’ 
remain. Since QED is believed to be the ‘true fundamental theory’ for electrons, it 
should be used to establish the D F  theory on firm grounds, and therefore should provide 
the solutions to the above-mentioned problems. Variational collapse, spurious states 
and  continuum dissolution result from the unboundedness of the Dirac Hamiltonian 
cusp + pm, a feature that disappears from QED through Dirac’s reinterpretation of the 
vacuum. QED involves no negative kinetic energy states, and its Hamiltonian is bounded 
below (at least it is supposed to be so, for the interaction may affect this boundedness). 
Therefore, an  energy minimisation procedure dealing with the QED Hamiltonian is 
legitimate, while an  energy minimisation procedure with the Dirac Hamiltonian is not. 
However, an  additional complexity arises from the fact that Q E D  is a many-body theory: 
its Hamiltonian commutes with electric charge but does not conserve the number of 
particles. This raises the following general question. On the one hand, Q E D  is a 
relativistic quantum-field theory, and deals with Fock states and particle-number 
non-conserving Hamiltonians; on the other hand, DF theory is a mean-field theory, 
and  deals with wavefunctions for a given number of particles and  configuration-space 
Hamiltonians. How can we then deduce the DF theory from QED? 

There is at  present no  complete answer to that question. An approach that has 
been considered (Brown and  Ravenhall 1951, Sucher 1980,1985) consists of splitting 
the Hamiltonian into a particle-number conserving part and a particle-number non- 
conserving part. The latter has to be treated via perturbation theory, while the former 
is treated variationally with Slater determinants of positive energy states. This prescrip- 
tion introduces positive energy projection operators A+ and leads to a projected 
configuration-space Hamiltonian of the following form (repeated indices are summed 
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over) 

Indeed, this approach is based on QED, and therefore does not suffer from the troubles 
plaguing usual DF calculations. However, it does not bridge the gap between Q E D  and 
the successful standard D F  calculations, which do  not make use of projection operators. 
Attempts have been made to show that one can ‘optimise’ the projection operators 
A+,  and that this optimisation leads to replacing them by self-consistent projection 
operators upon eigenstates of hpro, itself. Actually, this corresponds to the standard 
implicit prescription consisting of filling the ‘physically meaningful’ states only (i.e. 
the states with a positive eigenvalue). Although one can argue for this procedure 
(Mittleman 1981), it is not free from ambiguities. 

We present an alternative approach to cover the distance between QED and DF 

theory and, more generally, between a quantum-field theory and its mean-field approxi- 
mations, whatever the interaction. This approach allows one to treat variationally the 
whole Q E D  Hamiltonian, including its particle-number non-conserving terms, and to 
recover the usual DF procedures either as restrictions or as approximations. This last 
feature is very important since standard DF calculations give very good results in a 
large range of situations. Moreover, this approach also gives a new insight into the 
‘finite-basis disease’, and allows one to build safe finite-basis approximations. Further- 
more, besides setting the standard DF method on solid grounds, our approach leads 
to a mean-field theory that has a broader domain of validity than the standard DF 

theory. For instance, it may be appropriate for the study of QED in strong external 
fields, or more generally for the study of non-perturbative effects in QED. 

In contrast with the ‘positive energy projected theory’, we look for minima of the 
energy among variational Fock states that have definite charges but may contain virtual 
electron-positron pairs. Although these Fock states do not have definite numbers of 
particles, the Ritz minimisation procedure will lead to a mean-field theory. 

The tool of key importance that we use is the ‘Bogoliubov transformation’. This 
transformation has been introduced in (non-relativistic) statistical, condensed matter 
and nuclear physics, since it is appropriate to the study of superconductivity or 
superfluidity phenomena (Bogoliubov 1958, Bardeen et a1 1957, Decharge and Gogny 
1980, Ring and Schuck 1980, Abrikosov et a1 1963). Although our perspective is quite 
different, the Bogoliubov transformation is still suitable because it can be shown to 
be the unitary transformation that diagonalises exactly one-body potentials in a rela- 
tivistic fermion Fock space. As an illustration one can consider for instance an academic 
model in which the interaction has the form of a mass shift Sm. The Bogoliubov 
transformation allows one to diagonalise straightforwardly the total Hamiltonian in 
Fock space, and dresses the particles with particle-antiparticle pairs, leading to ‘dressed 
particles’ with a mass shifted by Sm (that is to say that the spectrum of the dressed 
particles labelled by the momentum k becomes [ k 2  + ( m  + 8m)*]’/’ instead of wk = 
( k 2 +  m2)’l2) .  In a more general situation, the relativistic Bogoliubov transformation 
will lead to a ‘dynamical dressing’ of the physical particles. It must be stressed that 
the interpretation assigned here to the Bogoliubov transformation is different from 
that given within the theories of superconductivity or superfluidity, where the 
Bogoliubov transformation is introduced to express the production of Cooper pairs 
and the mean-field contributions of attractive channels in the two-body interaction. 

The paper is organised as follows. Bare electrons and positrons are defined in the 
standard way ( 5  2 ) ,  and used to build the Fock space of Q E D  in the Schrodinger picture. 
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Then, we introduce the Bogoliubov transformation in Fock space, and  the correspond- 
ing quasiparticles, which are referred to as Bogoliubov or dressed particles (§  3). The 
definition of the dressed particles leads to the introduction of the corresponding 
Bogoliubov or dressed vacuum, which can be interpreted as a polarised vacuum. Then 
an  atom, o r  any system of electrons and positrons, is described by an independent- 
particle Bogoliubov state with definite numbers of dressed electrons and dressed 
positrons. These Bogoliubov states form a variational space in which we minimise the 
energy functional or  look for its stationary points (§  4). Exactly like in non-relativistic 
Hartree-Fock theory, this procedure leads to mean-field equations that we denote 
‘Bogoliubov-Dirac-Fock’ (BDF) equations. The BDF energy and  the BDF mean field 
contain new vacuum polarisation terms that do  not exist in the standard DF theory. 
It is crucial to note that, although they are negligible in the usual domain of use of 
DF theory, the vacuum contributions are unavoidable if one wants to deal with a 
bounded-below energy functional and if one wants to remain within a minimisation 
procedure. Therefore, it will be necessary to take the vacuum contributions into account 
for the study of collapse problems and of physical situations where standard DF theory 
breaks down. Next, we show ( 5  5) how a mere restriction of the BDF variational space 
leads to recovering configuration-space Hamiltonians with explicit positive energy 
projection operators A+, and how usual DF equations are recovered by neglecting the 
vacuum polarisation terms in the B D F  equations. Finally, we discuss in § 6 the finite- 
basis approximation. We show how this approximation can naturally be introduced 
in the Fock space, before deriving the stationarity equations, a procedure that differs 
from the usual one. 

2. Fock space for electrons and positrons 

One of the main features of relativistic atomic physics is that the kinetic energy of the 
electrons is described by the free Dirac Hamiltonian hD= c y ’ p  + p m ,  which is not 
bounded below. This unboundedness renders Dirac’s reinterpretation necessary. The 
consequence is that one cannot be content with one-electron Dirac theory, and one 
must rely upon QED, even for building a mean-field (one-body) theory. Since QED is 
a many-body theory in which the number of particles is not conserved, one ought to 
work in Fock space in order to build properly the state vectors, the Hamiltonian and  
the energy functional to be minimised. To begin with and to fix the notation, we briefly 
summarise the standard Dirac and Fock descriptions of electrons and  positrons in 
QED (Bjorken and  Drell 1965, Itzykson and  Zuber 1980). 

2.1. Bare electron/positron Fock states 

Let us consider a basis of bispinor eigenfunctions of the Dirac Hamiltonian A D =  
cu.p + pm. Each function of this basis is characterised by a set ‘k’ of quantum numbers 
corresponding to operators that commute with hD (for instance momentum and polari- 
sation, o r  radial and angular momenta). For each value of the quantum numbers k, 
h ,  has a positive eigenvalue wk and a negative eigenvalue - w k ,  with the corresponding 
eigenfunctions uYh = u ~ ( x )  and v y k  = u h ( x ) :  
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The bispinor operator-valued electron-positron field W.y = W(x) can be expanded on 
the eigenbasis, with operator components b and d’: 

( 2 . 2 )  

This expansion can be considered as a particular rotation in Fock space, and  we 
therefore introduce the following shorthand matrix notations. The field and the 
eigenfunctions uk and vk are bispinors, which may be written as four-component 
columns: 

U=(u lO)  v= ( O / V )  R z  U +  V = ( u i v ) .  (2.3) 
The orthogonality and completeness of the eigenbasis are expressed by R’R = 1 and  
RR+ = 1 respectively, and  ( 2 . 2 )  becomes 

where indices and  summations are understood. Because of the unitarity of R, the 
canonical anticommutation rules for v’ can be written in terms of b and d as 

{bk ,  b:}={dh,  d:)=akq ( 2 . 5 )  
and all other anticommutators vanish. As usual the b’s and d’s  are interpreted as bare 
electron and  bare positron destruction operators, respectively, and their Hermitian 
conjugates as bare electron and bare positron creation operators. We denote IO) and 
call the bare vacuum the Fock state characterised by 

bk 10) = dh 10) = 0 for every k. 
The Fock space is then spanned by IO) and by the excitations resulting from the 

action of the b”s and d+’s on IO). Fock states can be characterised by the expectation 
values of operators like for instance the electron and positron numbers N e  and N”, 
the charge Q, or  the kinetic energy (or free Hamiltonian) H,, defined as 

Q =  e ( N p -  N e )  (2.8) 

k 

respectively. Because of the commutation relations ( 2 . 5 ) ,  one has 

[ Q, b:] = -eb; 
[H,,  b:] = wkb: 

[Q,  d l ]  = +edi-  

[ H ,  d: ]  = w k d ;  

(2.10) 

(2.11) 
and  one says that b: creates a charge -e  and an  energy wk, and that d :  creates a 
charge +e and an  energy wk. It is of interest for the following discussion to note that, 
in this framework, the distinction between electrons and positrons is based on the sign 
of their charge and not on the sign of their energy: the one-particle Dirac theory has 
been ‘reinterpreted’ in ( 2 . 2 )  by considering the components d +  of upon negative 
eigenvalue eigenstates v as creation operators, while the components b upon positive 
eigenvalue eigenstates U are considered as destruction operators. Positrons as well as 
electrons have a positive kinetic energy, and  the bare vacuum IO) is the Fock state with 
minimum HD expectation value. 
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2.2. Vacuum subtraction and normal ordering 

It is manifest from equations (2.6) to (2.9) that the operators N e ,  NP, Q and HD have 
vanishing expectation values in the bare vacuum IO): electric charge and kinetic energy 
are measured relative to the bare vacuum. Subtracting from a one-body operator, its 
vacuum expectation value is equivalent to setting it into normal order, that is to 
permuting the bare creation and destruction operators as if they anticommuted, until 
all the creation operators have moved towards the left-hand side. This ordering 
operation, denoted &[. . .], is defined relative to the bare vacuum and particles, and 
we refer to it as the bare normal ordering. One has for instance 

Q = - e (  I dx(W:. Tx) -(Ol dx (Y:. Tx)lO) I ] (2.12) 

H D  = dx (Vr:h,Vr,) -(Ol dx (VThDVy)/O) = N [  1 dx (Vr:h,T.)] (2.13) I I 
where it is again manifest that the bare vacuum has zero charge and zero kinetic energy. 
Since (2.12) allows us to consider Q(x)  = - e N [ T : .  V r x ]  as the local charge density 
operator, a Hamiltonian for electrons in a local external potential a ( x )  reads 

H,+ i dx R(x)Q(x)  = N [  V:(hD-ei2(x))Vr,]. (2.14) 

It is normally ordered and therefore has a vanishing expectation value in the bare 
vacuum: the energy is still measured relative to the bare vacuum. Of course this does 
not mean that the bare vacuum remains the Fock state of minimum energy: the Fock 
state describing the true vacuum can be different from the bare vacuum state IO). 

3. Bogoliubov transformation with charge conservation 

We now proceed with building a variational ansatz in Fock space. Since the Hamil- 
tonian of QED conserves electric charge but does not conserve particle number, we 
consider an ansatz of definite electric charge without imposing a definite number of 
particles. We build the ansatz as a Slater determinant of quasiparticles of definite 
charge: the dressed particles. These dressed particles have the same electric charges 
as the bare particles, and the distinction between dressed electrons and dressed positrons 
is made non-ambiguously according to their charge, not according to their energy. It 
is worth mentioning that in contrast with one-particle Dirac theory, there is no negative 
energy continuum in QED. 

3.1. Dressed particles and dressed vacuum 

To build quasiparticles, we need to introduce a new set of operators 6 and c? that 
satisfy the same canonical anticommutation relations (2.5) as those for b and d, and 
that bear the same respective charges: 
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This can be achieved using a linear transformation which mixes the b's with the d+'s 
(and the b+'s with the d ' s ) :  

where the summation over k is understood and where the transformation T is unitary: 

T + T = I  77-+=1. (3.4) 

Although the transformation (3.3) is not the more general way to fulfil (3.1) and (3.2), 
we adopt it because it allows one to recover the standard DF theory as an approximation 
and offers interesting new features to be discussed below. 

Because of (3.1), one can again interpret the new operators 6" and d" as destruction 
operators. We shall call dressed electrons and dressed positrons the corresponding 
particles, and denote 16) the corresponding dressed vacuum. The charge of this vacuum 
is zero since the transformation (3.3) conserves electric charge, but in general its energy 
is different from that of _the bare vacuum IO). One can analyse the content of 16) in 
terms of bare particles: 10) is a linear combination of the bare vacuum with one-pair 
states b+d+l6), two-pair states, etc. The expectation values of the numbers of electrons 
and positrons in 16) are equal: 

(6iNP16)=(61Ne16)=Tr(ss+) = T r ( a u + ) .  (3.5) 

One can now express the electron-positron field in terms of the transformed creation- 
destruction operators. Using (2.4) and (3.3) one gets 

(v', = d (  ;) 
with 

d = RT'. (3.7) 

U = (C/O)  (O/ 'V")  d = fi+ p= (U'jG) (3.8) 

Like in (2.3), one can write 
I 

where the 6's and C's correspond to the dressed electrons 6" and dressed positrons d', 
respectively. The unitarity of d expresses that the vectors C and G form a new 
orthonormal basis in the space of bispinor wavefunctions. Note that d contains the 
same information as does the transformation T itself physical quantities may be 
expressed in terms of T or d,  depending on convenience. 

3.2. Bogoliubov transformation 

Electrons and positrons do not appear in a symmetrical manner in the expansions 
(2.4) or (3.6). In order to make explicit the electron-positron symmetry and to obtain 
a more manageable formulation, it is useful, though not necessary, to double these 
equations. We write the expansions of v' and 9+, and we gather under the same 
notation B the destruction operators b and d. B+ creates a bare particle, electron or 
positron, and l? creates a dressed particle. We then have in matrix notation 

(3.9) 
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and, in the same way, (3.3) becomes 

/ c  0 1 0  s \  

(3.10) 

The transformations (3.9) and (3.10) are formally of the same kind as the Bogoliubov 
transformations used in statistical and nuclear physics, where they are useful to describe 
superconductivity or superfluidity. We shall therefore refer to them as (charge- 
conserving) Bogoliubov transformations. Although the dynamics and interpretations 
may be different in the various fields of physics-for instance the first equality in (3.9) 
expresses the reinterpretation of Dirac theory rather than pairing phenomena-we now 
have at our disposal the machinery of Bogoliubov theory. 

3.3. General Bogoliubov ansatz for an atom 

We can now build on 16) a charged state 16) having a definite number of dressed 
particles: 

(3.11) 
n 

I&) is an independent dressed particle state characterised by the set of quantum numbers 
n appearing in (3.11), or equivalently by the occupation number matrix 

(3.12) 

In the study of an atom, the dressed particles will be electrons and the index n will 
denote the atomic levels. The matrix r is diagonal and made up with ones and zeros: 
it may be split into a dressed electron part ~:,,,,=(&1&6~16) and a dressed positron 
part 75, = (6lz:>,,l&), and expressed as 

0) 
0 r p  

We also introduce the following matrix f for later convenience: 

(3.13) 

(3.14) 

Here, T~ describes the occupation of dressed positron states in the system under study. 
The minimisation of energy in an atom will automatically lead to r p  = 0 because of 
the repulsive potential felt by the positrons. This is in contrast with the usual arbitrary 
practice consisting of leaving empty the positron-like states of DF theory. 

3.4. Charge-violating Bogoliubov transformation 

Instead of T (3.3), one might have considered a more general linear transformation 
mixing all the b, b', d and d' operators. For such a general charge-violating transfor- 
mation, the double notation (3.9) is necessary, and the matrix in (3.10) is no longer 
half-full of zeros. This more general transformation leads to a charged vacuum, to 
particles of indefinite charge and finally to an ansatz of indefinite charge. Then one 
should constrain the electric charge of the variational ansatz in expectation value only, 
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via a Lagrange multiplier. Such a procedure may be useful for instance to describe 
electron-electron pairing phenomena in a relativistic theory of superconductivity, which 
is outside the scope of this paper. To close this remark, we stress that, in our formalism, 
the charge is manifestly invariant under the Bogoliubov transformation, and the 
variational states are eigenstates of the charge operator. 

3.5. Densities and reordering relations 

One-particle operators are generally expressed in terms of normally ordered products 
of fields. It is therefore useful to introduce the density operator, defined as the normally 
ordered tensor product A'[W'OW]. If we gather under the same notations i, j ,  k, 1, 
the position (or the momentum) and the component indices running from 1 to 4, the 
expectation value D of the density operator in a given Fock state I@) is 

D,, = (@~<N[W:v/]~@). (3.15) 

In particular, the bare vacuum density vanishes, and with (3.9) 

~((bl. t"[W:'u,]lb)=(b~W:w,Ib)-(Ol'u~W,lO)=( *'- VV+),,. (3.16) 

The dressed vacuum density p" is the difference between two projection operators fi+ 
and VV'. The operator W', which projects upon the negative eigenvalue eigenstates 
U of the free Dirac Hamiltonian h D  = a . p  + pm, characterises the Dirac sea of 'negative 
energy states'. projects upon the C's, and  characterises the 'dressed Dirac sea'. 

characterises the difference between the bare vacuum IO) and the dressed Bogoliubov 
vacuum I@, and we refer to 6 as the vacuum polarisation densify. The expectation value 
of any one-body operator in the Bogoliubov vacuum 16) may be written in terms of 6. 
For instance, the local electric charge density of the Bogoliubov vacuum at point x is 
- e  times the vacuum density p' taken at point x and traced over the component indices. 

Since the Bogoliubov ansatz (3.11) is given in terms of the dressed vacuum 16) and  
of the dressed particle operators i, it is useful to introduce the normal ordering 
corresponding to IC), where we bring now the E's to the right-hand side and the i t ' s  
to the left-hand side. Then, one has the reordering relations 

h ^ [ W y , ]  = Jt;.[W:W,]+p,,  (3.17) 

,Ir[ 7 9  v', ] = U'?[ 9 Tv; / v' A ] + ,w?[ 9 :v' / ] 

+ 6/,oi-[W :TA 1 - d/i"'[q;vA 1 - 6 k / q [ 9 T q / 1  + 6 k , 6 / /  - ;,,PA,. (3.18) 

As can be seen, reordering a one-body operator introduces a c-number (the vacuum 
polarisation b) ,  and reordering a two-body operator introduces both a c-number and  
a one-body operator. The reordering relation (3.17) and  the expansion (3.9) allow us 
to write the density matrix of the Bogoliubov ansatz (3.11) in terms of the occupation 
matrix ; (3.14): 

E,, = (qJtp[W:v,]16) = i;ii +b. (3.19) 

The first term of the right-hand side of (3.19) describes the occupied dressed particle 
states of the system, for instance the dressed electron states in an  atom. One notes 
that the dressed electron and positron densities appear with a relative minus sign in 
f (3.14) corresponding to charge conjugation. The second term is the non-trivial 
contribution 5 of the dressed vacuum. 
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4. Minimisation equations 

Now, we search for the ground state of a given Hamiltonian in a sector of the Fock 
space characterised by a given electric charge. In  the specific case of atomic physics, 
the electric charge is -e times the considered atomic number, and  the Hamiltonian is 
built from Coulomb-gauge QED in the complete Fock space of nuclear, electronic and  
electromagnetic degrees of freedom. From a variational point of view, one restricts 
the variational space to tensor products of a nuclear, a photon and  an  electron-positron 
state. In practice the nuclear state is frozen, and  the photons are excluded. This leads 
to an  electron-positron Hamiltonian, which is the sum of a kinetic energy term, an  
external potential generated by the nucleus and  the two-body Coulomb interaction. 

Note that there are other ways of selecting an electron-positron sector in the Fock 
space of QED. For instance, one may begin by performing a suitable unitary transforma- 
tion in the Fock space in order to uncouple the photons from the electrons and positrons 
u p  to a given order in the coupling constant (Cohen-Tannoudji et a1 1987-88, Schwinger 
1948). Then one may exclude the photons of the variational space. Although the 
elimination of photons generally results in a many-body electron-positron Hamiltonian, 
and although the formalism developed below is still relevant to such cases, we shall 
restrict ourselves to one-body and two-body interactions. Two different problems of 
relativistic atomic physics overlap here. The first one is the building of a Fock-space 
Hamiltonian for electrons and  positrons, for instance via the Schwinger transformation; 
and  the second one is the building of the corresponding mean-field approximation. 
Of course in this paper we focus on the second point. 

The minimisation method amounts to approximating the ground state of a system 
by the state of minimum energy (i.e. Hamiltonian expectation value) in a given 
variational space. The approximate ground-state energy necessarily lies higher than 
the exact one, and the larger the variational space, the lower the minimum energy and 
the better the approximation. Here, the variational Fock state 16) is characterised by 
the Bogoliubov transformation T (3.3) and  the set of occupation numbers T (3.12). 
We first choose a given 7, thus fixing the respective numbers of dressed electrons and 
dressed positrons that we want to consider. Then, we introduce the Bogoliubou- Dirac- 
Fock (BDF) variational space, that is the set of 16)'s (3.11), for the Bogoliubov 
transformation T taking all its possible values under the constraint of unitarity. Since 
we only consider charge-conserving Bogoliubov transformations, all the 16) states in 
this BDF variational space have the same electric charge. Next one minimises the 
energy in the BDF variational space. Following the usual procedure, we search for 
stationary points of the energy, among which the minimum must be determined. 

4.1. The Bogoliubov energy and the uacuum polarisation 

In the following we consider a Hamiltonian of the general form 

H 3 J$"[ h , , q ; q /  + ~ , l ~ , ~ ~ q ~ q / q ! , ]  (4.1) 

where the summation over repeated indices is understood, h is the one-body Hamil- 
tonian and  "1' is an  antisymmetric two-body interaction 

v~k, = %!tj = - y',,,h. (4.2) 

Because of the normal ordering, the energy of the bare vacuum is equal to zero, thus 
offering a reference for all other energies. With the help of the reordering relations 
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(3.17) and (3.18), it is straightforward to reorderthe Hamiltonian (4.1) on the variational 
dressed vacuum 16). One finds 

(4.3 1 

(4.4) 

(4.5) 
It is important to note that the reordering yields a c-number shift Eo and a one-body 

potential f'. The c-number, one-body and two-body terms in (4.3) depend on the 
Bogoliubov rotation (3.3): different Bogoliubov rotations lead to different normal 
orderings J?, and therefore to different splittings of the same Hamiltonian into c-number, 
one-body and two-body contributions. Although the functional form V of the two-body 
interaction remains unchanged (it would have been changed if we had taken into 
account three-body interactions), the residual two-body interaction in Fock space 
V1,kl.,?['PT'P,+'Pl'Pk] has definitely been modified since the normal ordering "7 is 
different from N. For a given Bogoliubov rotation, one could discard the vacuum 
energy Eo on the usual ground that it is a c-number. This is what one does when, 
instead of using (2.1) and (2 .2) ,  one decides to develop the electron-positron field 9 
upon an eigenbasis of a given reference Hamiltonian h ,  + Ore,-, which is Furry's bound 
interaction picture (Furry 1951, Jauch and Rohrlich 1976). However, if one wants to 
compare the effects of different Bogoliubov transformations, one must keep &. Despite 
the fact that one cannot measure the vacuum energy in an absolute manner, one can 
compare the energies of different dressed vacuum states 16), the reference energy being 
the energy of the bare vacuum IO). Moreover, the dressed vacuum energy will contribute 
to the total energy of a system in the state 16) (3.11), and in principle it will be necessary 
to take it into account to compare the energies of different Bogoliubov states, especially 
in a variational procedure. 

The expectation values in the Bogoliubov state 16) (3.11) of normally ordered 
products of fields are 

H = Eo+ ( h  + F ) r , ~ F [ ' P : ' P , ]  + V,,k/*T['PT'PT'P/'Pk] 

Fl, = 4 ~ / ~ ~ , b ~ ~  E vacuum polarisation potential 

E,,= (blHi6) = Tr( h +if'); = dressed vacuum energy. 

where we have introduced the following notations and definitions: 

and 

(6lJ~['P~'P,]16)=(61~~[( Q*E+ f i*ET) , (  f iE+ QE'),]l6)= (d?k+), ,  

(6l"?[Y :'Pp/'Pk]l&) = (&E +) /, (E&+)  k ,  - (&E -)k, ( E a ? + )  ,, . 

(4.6) 

(4.7) 

(4.8) 

and in a similar manner 

The expectation value of H in the state 16) is then readily obtained from (4.3) as 

= &+ Tr( h + F+ I ' ) ( I ?F l?+ )  
where we introduced the screening potential 

I', = 4V/,k,(I??Er)k/ (4.9) 
interpreted as the mean potential that is felt by one dressed particle under the influence 
of the others. The energy of the Bogoliubov state is the sum of two contributions: the 
dressed vacuum energy Eo and the second term of (4.8), which corresponds to the 
dressed particle cloud characterised by @?I?+. The vacuum polarisation results not 
only in an energy Eo but also in an extra one-body potential F that appears here as a 
correction to the external potential Cl already present in h, and to the usual screening 
potential I'. 
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4.2. The Bogoliubov-Dirac-Fock (BDF) equations 

The stationarity equations cannot be derived in the same way as in usual non-relativistic 
H F  theory, since we deal here with densities (3.19) that d o  not satisfy any idempotence 
relation (i.e. b2# b). However, the stationarity of the Bogoliubov energy (4.8) as a 
functional of the unitary transformation r? leads to 

[ 6, &I?+ + E+] = 0 6= h + T + r .  (4.10) 

We will refer to (4.10) as the BDF equations, and to 6 as the BDF (mean-field) 
Hamiltonian. These equations look very much like the standard H F  or  D F  equations 
(Ring and  Schuck 1980, Kim 1967). However, the BDF equations have essential new 
features. First, the dressed electrons and  the dressed positrons appear via the matrix 
7" (3.14) with opposite signs, which corresponds to their opposite electric charges. 
Secondly, besides the usual screening term r, the BDF Hamiltonian 6 contains the 
vacuum polarisation term originating from the non-perturbative modification of the 
vacuum as due  to the external field and to the other charged particles. Finally the 
polarised vacuum contributes the amount Eo (4.5) to the total BDF energy. We will 
consider in more detail the relationship between the BDF and  the standard DF theories 
in the following section. However, it is now and  henceforth clear that the BDF equations 
reduce to the DF equations if the following three conditions are fulfilled: ( i )  the system 
under study contains no dressed positrons, ( i i )  one neglects the effects of the vacuum 
polarisation potential on the electrons of the system, and  (iii) finally one neglects the 
energy of the polarised vacuum. 

The BDF equations (4.10) have a structure similar to that of the usual H F  or DF 

equations. Therefore, at least in principle, they may be solved by the same numerical 
methods, involving calculations in position space leading to a system of coupled 
integro-differential equations, or simultaneous diagonalisation of the BDF Hamiltonian 
and the density, both approximated in a finite-dimensional space. However, some 
practical differences are expected. The main one lies in the calculation of the self- 
consistent Hamiltonian, which involves the vacuum density (3.16). For instance, in 
an  iterative diagonalisation procedure one should proceed through the following steps. 
Begin with a given first iteration bispinor basis ( 6 ,  6) corresponding to a first iteration 
matrix R, and build the matrix l??R+S E+; then build the BDF Hamiltonian 

diagonalise it and  build the second iteration basis ( 6 ,  6) with its eigenvectors; and  
iterate the procedure until convergence is achieved. 

Like in H F  theory, solving the stationarity B D F  equation (4.10) is not sufficient to 
determine completely the minimum energy state. In H F calculations, the occupation 
matrix is filled in a way that minimises the H F  energy for a given number of occupied 
levels. Although the total H F  energy is not the sum of the energies of the occupied 
levels, this usually leads to filling the lowest H F  levels. Here in BDF theory, the 
occupation numbers must be chosen in a way that minimises the total BDF energy for 
a given total charge. This prescription offers the possibility of adding a dressed pair 
to the system, in accordance with the arbitrariness of the splitting of the eigenstates 
of the BDF Hamiltonian into the electron-like 6's on the one hand and the positron-like 
6's on the other. Another difference with H F  theory is that the B D F  one-particle states 
are built upon a polarised vacuum, the energy of which must in principle be taken 
into account. 
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4.3. BDF Hamiltonian for the Dirac-Coulomb problem 

As an example, here we make the notations explicit for the problem of electrons in a 
local potential n ( x ) ,  with a scalar two-body interaction. The corresponding Hamil- 
tonian is of the form 

.=A’”[{ dx9:(hD+S1)qV,+ d x d y ’ V ( x - y ) ( q ; . q x ) ( 9 : . Y v )  . (4.11) 

This is a particular case of (4.1), where each of the indices i ,  j ,  k, 1 stands for a position 
x, y, z, t and a component index CY, P, g, 6. The Dirac Hamiltonian and the external 
potential are 

I 1 

where m is the electron-positron mass, (+ the Pauli matrices and p the momentum 
operator. The antisymmetrical two-body interaction is 

(4.13) 

The resulting screening potential r (4.9) is the sum of a local direct term T” and a 
non-local exchange term rE (summation over repeated indices is assumed): 

and 

(4.14) 

(4.15) 

The density appearing in TD is taken at a single point z, and traced over y ;  it is the 
dressed particle charge density at point z (note that dressed electrons and dressed 
positrons appear with a relative minus sign in F). In the same way the vacuum 
polarisation potential (4.4) is the sum of a direct term f ”  and an exchange term PE: 

(4.16) 

(4.17) 

The density p’ in F” is taken at point z and traced over the component index y :  it is 
the local charge density of the Bogoliubov vacuum. Since we only considered charge- 
conserving Bogoliubov transformations (3.3), the total charge of the vacuum (i.e. p’ 
traced over y and z )  vanishes. However the charge density at a given point z in general 
does not vanish, and contributes to the total mean field. Finally, (4.16) and (4.17) are 
new terms arising from the BDF derivation of the relativistic mean-field theory. Note 
that, unlike perturbative corrections accounting for vacuum or radiative effects in 
standard DF calculations, these terms are to be included in the iteration procedure 
since they appear in the self-consistent equations of mean-field theory. 
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5. Connection with the usual Dirac-Fock theory 

The standard DF theory is generally derived without any reference to Fock space (Kim 
1967): a system of N electrons is described by an N-electron wavefunction, and the 
Hamiltonian acts in the space of N-electron wavefunctions (configuration space). The 
DF variational space is the space of N-particle bispinor wavefunctions of the form 

4 ( x , ,  . * . , X N )  = a 4 l ( x l ) .  . . 4 N ( X N )  (5.1) 

where d means antisymmetrisation. This standard procedure ignores the reinterpreta- 
tion of the negative eigenvalue eigenstates of the Dirac Hamiltonian. However, it can 
still be expressed in the language of second quantisation, as follows. One considers 
negative energy electrons rather than positrons, and all the operators appearing in the 
expansion (2 .2)  of the Dirac field are considered as destruction operators: 

with 

P L +  = b k  P k -  = d ,  (5 .26)  

where the index * refers to the sign of the corresponding Dirac eigenvalue. The 
vacuum corresponding to the expansion (5 .2) ,  defined by Pk+l V) = P h - /  V) = 0, is the 
vacuum of the local operator Fy. The standard DF rotation mixes the P k =  operators 
to build one-particle operators p, corresponding to the one-particle wavefunctions 4r 
appearing in (5 .1) .  Also, the variational space of the N-particle wavzfunctions 4 (5.1) 
is equivalent to the variational space of the Fock states I Q D F ) =  P : .  . . V). The 
stationarity equations are derived in exactly the same formal way as in non-relativistic 
H F  theory, thus leading to the D F  equations. These are only stationarity equations, 
and  one does not look for a minimum of the D F  ‘energy’ functional since it is not 
bounded below. Instead one has to consider that ‘negative energy states are of no 
physical interest’ (Kim 1967) for the study of bound electron states, and therefore 
should not be considered in the occupation-number matrix. 

The relationship between this point of view on the one hand, and the HDF point 
of view on the other, is as follows. Because of (5 .2b) ,  the DF rotation mixing the P* ’s  
is identical to the Bogoliubov transformation (3.3) mixing the b’s and the d+’s. 
Therefore, the D F  and B D F  variational spaces are in one-to-one correspondence. 
However, according to Dirac’s reinterpretation, the bare vacuum IO) of Q E D  is the sea 
of ‘negative energy states’, i.e. 10) = (rIP:)l V), or equivalently I V) = (17d7)10). Since 
10) is the reference for the calculation of energies (normal ordering), the energy 
E,=(VIHIV) of the DF vacuum IV) is infinite. The Bogoliubov rotation among the 
destruction operators P, or  equivalently between the b’s and d+’s does not chfnge the 
vacuum I V), whereas it does change the vacuum 10) into a dressed vacuum IO). Now 
the Fock state describing the physical vacuum is 16) rather than I V), and  the Fock state 
describing the atom is loBDF) = 6:. . . rather than I&,,,) = f i ;  . . . fi’;i V). The DF 

vacuum I V) contributes the infinite energy E,  = (V /HI  V) to the energy of the DF Fock 
state it is common practice to remove this infinite energy in order to recover 
the standard D F  energy. However, doing so is rather arbitrary and leaves aside the 
polarisation terms arising from the dressed vacuum 16). These contributions can be 
viewed as resulting from the quasi-cancellation of infinite energies corresponding to 
the successive emptying of the bare Dirac sea, and  filling of the dressed Dirac sea. 
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Indeed, the dressed vacuum 16) is the Bogoliubov transform of IO} = (I'Id)l V ) ,  where 
I V )  is invariant under the Bogoliubov transformation. It may therefore be written 

16) = I'Id'i V )  = (IId')(IId')lO) = (I'I/?')(IIp-)lO). 
The main difference between the DF and  B D F  methods is that the respective 

variational Fock states are not built upon the same vacua. The vacuum IV) of D F  

theory lies in the middle of the spectrum with an energy E,, and this is why the D F  

state is only a stationary point of the DF energy, not a minimum. Furthermore, within 
the standard DF point of view, one does not know a priori which D F  states must be 
considered as electrons or positrons, except in the non-relativistic limit. In  this case, 
the energy gap  around the vacuum is large, and  one can clearly distinguish between 
electron-like (positive eigenvalue) states /?+ and positron-like (negative eigenvalue) 
states b-.  It is precisely in this limit that the BDF vacuum effects are small, and  that 
the BDF equations (4.10) reduce to the usual DF equations. However, even in this case, 
the standard point of view does not indicate why one should not fill the DF 'negative 
energy states' for the minimisation of the total energy. There is no such ambiguity in 
the BDF point of view. Since in an  atom the central potential is attractive for electrons 
and  repulsive for positrons, it will be energetically unfavourable to add  dressed 
positrons to the system. Dressed positrons will not appear in the density matrix, not 
because of a supplementary condition, but as a natural result of the minimisation of 
the BDF energy. 

5.1. The 'no-pair' approximation 

Previous attempts to build the D F  theory upon Q E D  have led to DF-like theories with 
modified mean-field Hamiltonians, for instance 'positive energy projected Hamil- 
tonians' resulting from the 'no-pair' theory of Sucher (Reinhard et a1 1971) that we 
discuss below. The electron-positron field, appearing in the Fock-space Hamiltonian 
(4.1) and  expanded over the free Dirac waves in ( 2 . 2 ) ,  can be separated into an  electron 
destruction term \ve and a positron creation term Vi: 

\v = We + T; (5.3) 
with 

We = 1 ukbA 9; E vkd; 
h h 

The Fock-space Hamiltonian (4.1) can therefore be split into a sum of terms involving 
We and W,. One can gather under the name Hpalr the terms that involve pair operators 
of the form TzWi or  TeW,;  the remaining terms are pure scattering terms involving 
no pair operators and  can be gathered under the name Hno.pa,r. Then 

H = H n o - p a i r +  H p d i r .  (5.4) 
The idea underlying the no-pair theory is to employ a variational procedure to treat 
Hno.pd,rr and  a perturbative procedure to take H,,,, into account (Sucher 1983). Since 
H,, P d , r  conserves the respective numbers of electrons and  positrons, it is possible to 
consider variational Fock states with no positrons and with a definite number N of 
electrons. As a result, the positron part of the no-pair Hamiltonian does not contribute 
to the energy, and  one can keep the electron part H~n.PdlT only: 

H z o - p a i r =  J v [ h , / ~ ~ r ~ e /  + ~ i / h , * : , ~ : / T e / ' e A l  

= (U;,h,u,,)b,tbk + (U:,.;, Sf~lnIu/,u,,)b:b,'b,b, (5.5) 
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where the indices i, j ,  1 and m stand for the position and the bispinor component 
index, and where k, p ,  q, r stand for the quantum numbers characterising the free 
Dirac waves. Then, the energy for a Slater determinant characterised by the electronic 
no-pair density p&.pdlr 

(5.6) 

(b+b)  is (indices and summations are understood) 

E:O-PdIr = ( U + h  )Peno.pdlr + 2( U +  U +  ~~U)Peno-pdlrPe,o.pdlr 

and the corresponding mean-field Hamiltonian is 

henO-pdlrE a E ~ O - p d , , l a P ~ O  pall‘ 

= ( u + h u )  + 4( u + u i  C ~ T U U ) ~ ~ ~ . ~ ~ ~ ~ .  (5.7) 

The same mean-field Hamiltonian (5.7) may be derived from the stationarity 
equations in the space of N-electron wavefunctions of the form (5.1), if one uses the 
positive energy projected configuration-space Hamiltonian 

hproJ = h:(hLlu tn,)h:+A~h~(%T,,)R~n;l (5.8) 

where the indices a and b numbering the electrons are summed over, and where A, 
stands for the projection operator 

Y a )  = c U k ( x u ) U ; ( Y u ) .  (5.9) 

As long as it excludes the positron states from the variational space, such a ‘positive 
energy projected’ theory suffers neither from variational collapse nor from continuum 
dissolution. However, it does not lead to the same results as the standard DF theory 
since the projection operators A+ alter the mean-field Hamiltonian. The effects of the 
projection may be compensated by the corrections due to HPdIr, which must be supposed 
to be small in order to be evaluated via a perturbative expansion. 

Now we show how the no-pair theory can be considered as a restriction of the BDF 

theory. In the BDF theory, the pair effects result from the mixing (3.3) of electron 
destruction operators b with positron creation operators d’. This mixing is charac- 
terised by the off-diagonal blocks s and U of the Bogoliubov transformation T (3.3). 
If we restrict ourselves to s = U = 0, then we get a smaller variational space, for which 
16) = IO), p” = 0 and I‘ = 0. With this restriction, we do not take into account vacuum 
polarisation, and the particles are not dressed: one may call this approximation the 
‘bare’ approximation. In  the restricted variational space under consideration, the 
variational state (3.11) reduces to 

(5.10) 

where the diagonal blocks c and K of the Bogoliubov transformation (3.3) are both 
unitary. The energy (4.8) then becomes 

(5.11) 

cannot be varied as before because now we impose supplementary conditions on 
E?: the functions U’ are linear combinations of the U ’ S  but not of the U ’ S ,  and vice versa. 
However, with (3.7) and (2.3), one can rewrite the densities as 

I @) ZE n( c*  6 +)n( ~d +) 10) 

E = h,, ( d;E? + ),, + 2 7 f , , k ,  ( kFE? ) k, ( kFE? f),i. 

&E+ = ( U +  V ) (  T+FT)( U +  V ) +  (5.12) 

where TtFT has the form 

cTrUc 0 
O - K + T ’ K  

T’FT = (5.13) 
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Because of this block-diagonal structure expressing the non-appearance of pairs, the 
density can be split into an electron part and a positron part: 

&E+= u(T+?T)u++ v(T+?T)v+. 

The matrices U and U' appearing in the first term pick up only the electron density 
p',  and the matrices V and V +  appearing in the second one pick up only the positron 
density p p .  In the same way, the energy E (5.11) can be split into an electron energy 
Be, a positron energy Bp and a crossed energy gep, with 

E = g e +  EP+ fjw 

g e ~  hll (  UT+?TU+),, + 22$,,,( UT+?TU+)kr( UT+iTU'),, 
(5.14) 

E'= h,( VT'?TV+),, +2V,,,,( VT+iTV+)k / (  VT+?TV+),, 

E e p  = 4 ~ / ~ , ,  ( U T + ~ T U  VT+;TV+),, . 
In  the trivial case, where the external potential .R and the two-body interaction V 

are switched off, one can see that the positrons as well as the electrons give a positive 
contribution to E since, by construction, U f h D U  is positive and V + h n V  is negative. 
Now, with R # 0 and V# 0, pe = C+T'C and pp = K + T ~ K  are density matrices in the usual 
sense of H F  theory, and the stationarity equations for under the normalisation 
constraints pepe  = p e  and pppp = p p  are derived in the standard way, leading to 

[p', PI = 0 and [pP, P] = 0 (5.15) 

with the electron and positron mean-field Hamiltonians 

P= (u 'hu )  + 4 ( u + u + V u u ) p ' - 4 ( u + u + V v u ) p ~  

L P  = - ( ut hv ) + 4( U + v+ V v v )  pp - 4( u + U+ "t'uv)p e 

(5.16) 

(5.17) 

respectively. If one considers a system involving no positrons, for instance when 
calculating the structure of an atom within the bare approximation, p p  vanishes and 
the electron mean-field Hamiltonian (5.16) reduces to hzo.pai, given by (5.7). The 
no-pair approximation can therefore be considered as a restriction of the variational 
BDF approximation. This different manner of considering the no-pair approximation, 
that is its derivation from Q E D  via a minimisation principle, leads to a different way 
of improving it: if the no-pair approximation is viewed as resulting from a truncation 
of the Fock-space Hamiltonian, the effects of the truncated part Ifpair will be evaluated 
via perturbation methods, but on the other hand if it is viewed as resulting from a 
narrowing of the variational space, it appears as a restriction of the more general BDF 

variational theory that should be able to describe pair effects even in non-perturbative 
situations. 

5.2. 7'he no-pair approximation in Furry's picture 

In the framework of no-pair theory, there is some arbitrariness in splitting the Hamil- 
tonian into pair and no-pair components. The splitting (5.3) relies on the expansion 
( 2 . 2 )  over the free Dirac waves, and is therefore related to the free Dirac Hamiltonian 
h,. The no-pair Hamiltonian conserves the number of bare particles, and this leads 
to the appearance in the configuration-space Hamiltonian of projection operators A+ 
over the eigenstates of the free Dirac Hamiltonian h D .  However, following Furry 
(1951), one may expand the electron-positron field 9 over the eigenstates of a reference 
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Hamiltonian h F  = h,+ flF,  flF being a given one-body potential. If 52, is not too large, 
there is still a gap between the positive and negative eigenvalues of h,. Then, one can 
split W into a positive eigenvalue part WeF and a negative eigenvalue part 'PiF as follows: 

W = W , , + W &  (5.18) 

We,  ~ r t F h , l F  

yr+.=C PF VnFd;F  

with 

n 

n 

and 

h F U n F =  & n U n F  E,  > 0 

h F u n  F = q n u n  F rln < 0. 

Neglecting the problem of ordering, one may then split the Fock-space Hamiltonian 
into the pair and no-pair Hamiltonians corresponding to the definitions of WeF and 
W p F  (Sucher 1983): 

(5.19) 

The splittings (5.3) and (5.4) described in the previous subsection are recovered for 
C l ,  = 0, but one can also choose CIF equal to the external potential, or any flF supposed 
to be suitable for the problem at hand, as long as it allows a clear distinction between 
the corresponding electron-like and positron-like states. Different choices for the 
reference potential f lF  lead to different splittings of the Fock-space Hamiltonian, to 
different mean-field Hamiltonians and to different configuration-space Hamiltonians. 
A will be replaced in (5.8) and (5.9) by the operator projecting upon the positive 
eigenvalue eigenstates of the reference Hamiltonian h,. 

This procedure can also be recovered via BDF theory, although with an important 
new feature: because of the two-body interaction, the one-body potential is modified 
in Furry's picture. Indeed, in the BDF approach we started from the Fock-space 
Hamiltonian (4.1) ordered on the bare vacuum IO). The electron and positron operators 
bnF and dnF defined in Furry's picture differ from the bare electron and positron 
operators b, and dL, and therefore their vacuum IO,) differs from the bare vacuum IO). 
IO,) and 10) are related by the Bogoliubov transformation, which diagonalises the 
reference Hamiltonian h,. The Fock-space Hamiltonian (4.1) is independent of the 
representation, but it may be reordered on Furry's vacuum: 

H = z ~ + ( ~ + ~ F ? , , " ~ ~ [ ~ ~ ~ , ] +  ~ , , / , ( ~ 4 " F [ ~ ~ 9 ~ ~ , ~ / , ] ,  (5.20) 

This procedure introduces the energy zF of Furry's vacuum IOF), as well as a polarisation 
potential FF arising from the two-body interaction. As long as the reference potential 
nF determining Furry's representation is given once and for all, the fixed c-number 
E, can be ignored since it corresponds to a mere shift of the zero of energies. This is 
not the case for the polarisation potential pF, which modifies the one-body interaction. 
Therefore the Furry representation introduces an extra one-body potential F,, which 
should be taken into account in the no-pair Hamiltonian H:o.pa,r deduced from (5.20). 
The interpretation of this term is straightforward: by construction, the no-pair theory 

F H = HOFO-pdir + H p d i r .  
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in the Furry representation does not take into account the effects of Furry’s electron- 
positron pairs b:d:lO,). However, the electron operators bF, the positron operators 
d ,  and the vacuum IO,) are dressed by bare electron-positron pairs as indicated in 8 3, 
and t, arises as the consequence of these bare electron-positron pairs. 

Furthermore, one may note that the total one-body potential depends upon the 
reference Hamiltonian h,  because of the two-body interaction. Here, we have a 
two-body interaction because we started from QED in Coulomb gauge (the gauge 
invariance has been lost because of the elimination of the photons from the variational 
space), and the situation is different if one considers the covariantly quantised version 
of QED: then there is no two-body interaction and Furry’s picture can be used without 
modifying the one-body potentials. 

5.3. The ‘optimised’ Furry picture 

In the previous subsection we have adopted a reference Hamiltonian once and for all, 
and set apart the corresponding no-pair term of the Hamiltonian of QED (Sucher 1980). 
One can also consider an optimisation of this procedure. Mittleman (1981) has carried 
out the minimisation of the energy as a functional of the reference potential IR,, and 
concluded that the optimum IR, is the Dirac-Fock potential. This leads to replacing 
the projection operators A+ appearing in the configuration-space Hamiltonian (5.8) 
by self-consistent projection operators upon the positive eigenvalue eigenstates of the 
mean-field Hamiltonian itself. The practical consequence is that it is useless to write 
these projection operators explicitly, thus recovering the standard DF procedure. 
However, the derivation of this result leaves aside the vacuum contributions to the 
energy. Changing IR, implies altering the energy E ,  of the Furry vacuum. EF is a 
c-number, and is of no importance if the vacuum is defined once and for all. However, 
gF should be taken into account if one wants to vary it. Of course this is what the 
Bogoliubov transformation is designed for. The BDF method is a natural way to render 
stationary the energy, taking self-consistently into account what is called electron, 
positron and vacuum. 

5.4. The D F  equations as an ‘unpolarised vacuum’ approximation 

The polarisation terms occurring in the BDF equations arise from the modifications of 
the vacuum under the influence of the external potential and of the dressed electron- 
positron density. These terms are certainly small in a great number of physical 
situations, especially if the external potential is small. Then, at least as a first step, 
one may neglect these vacuum polarisation terms. In this approximation the BDF 

Hamiltonian (4.10) reduces to the D F  Hamiltonian: 

L - h i r .  (5.21) 

If there is no positron in the system under study, one has to diagonalise 6 and fill 
only the electron part 7‘ of the occupation-number matrix 7 (3.12); this is equivalent 
to the standard DF procedure. It is worth noting that, since this ‘r - 0’ approximation 
is not a narrowing of the variational space but a truncation of the mean-field Hamil- 
tonian, the DF theory is not rigorously variational. Because of this breakdown of the 
minimisation procedure, the standard DF method may not be applied in situations 
where non-perturbative vacuum polarisation effects take place. 



3810 P Chaix and D Iracane 

6. Finite-basis approximation from the BDF point of view 

In the non-relativistic H F  theory, the variational state is a Slater determinant of 
normalised one-particle wavefunctions. A method often used for solving the H F  

equations is the finite-basis approximation. In this approximation one imposes that 
the one-particle wavefunctions belong to a given finite-dimensional vector space, with 
the consequence that the H F  problem reduces to a non-linear matrix problem. Further- 
more, the considered finite-dimensional linear space may depend on one or  several 
‘non-linear’ parameters. Since the non-relativistic Schrodinger kinetic energy -A/2m 
is positive, with the consequence that the H F  Hamiltonian is bounded below, the H F  

energy approaches the ground-state energy from above, and  one can improve the 
approximation by minimising the H F  energy as a function of these non-linear para- 
meters. 

This procedure has been transposed to treat the standard DF equations (Kim 1967, 
Stanton and  Havriliak 1984, Quiney et al 1987). Then the variational N-electron 
wavefunctions are Slater determinants of N normalised one-particle bispinor wavefunc- 
tions taken within a given finite-dimensional space. For instance, the most common 
procedure consists of expanding the ‘large’ and  ‘small’ components of the wavefunc- 
tions on a two Pauli-spinor basis. However, in the relativistic context specific difficulties 
arise because the spectrum of the Dirac operator h ,  = a. p + p m  describing the kinetic 
energy has a negative continuum. Indeed, though the Fock-space Hamiltonian H (4.1) 
and  the energy functional (4.8) are bounded below, the mean-field Hamiltonian 

= h ,  + I- + ? occurring in the stationarity equations (4.10) is not bounded below. As 
a consequence, the eigenvalues of a finite-basis approximation of the B D F  Hamiltonian 
are not necessarily upper bounds of the exact eigenvalues of the BDF Hamiltonian, 
and  they d o  not necessarily converge towards these exact eigenvalues as the size of 
the basis is increased. Some eigenvalues can decrease indefinitely when one tries to 
optimise the finite-basis parameters (variational collapse), and unphysical eigenvalues 
(spurious states) can appear among sensible eigenvalues (Gazdy and  Ladanyi 1984). 
Moreover, the spurious states cannot merely be ignored, even when they are unequivo- 
cally identified, since they may spoil the wavefunctions corresponding to the correctly 
approximated part of the spectrum. In fact, one can overcome these difficulties, and 
avoid the ‘finite-basis disease’ (Kutzelnigg 1984, Grant 1986, Goldman and Dalgarno 
1986, Quiney et a1 1987, Johnson et a1 1988). With these methods, one still deals with 
the standard DF equations and Hamiltonian, but one looks for stationary points of the 
DF energy, not for minima. Provided that ad hoc conditions are imposed on the basis 
sets (correct non-relativistic limit and correct boundary conditions), the finite-basis 
method allows one to solve the DF equations with a high degree of accuracy (Wilson 
1989). 

Just like the DF Hamiltonian, the BDF Hamiltonian is not bounded below, and the 
same treatment should be prescribed. However, we propose an  alternative point of 
view on the finite-basis method, focusing on its physical meaning rather than on  
numerical efficiency. Remaining within the minimisation process in Fock space as 
described in the previous sections, one can work with the bounded-below Fock-space 
Hamiltonian, and  make the finite-basis approximation at the Fock-space level. We then 
consider the BDF mean-field approximation of a ‘finite-basis quantum-field theory’, 
rather than the finite-basis approximation of a mean-field theory. 

In this section we are mainly interested in the finite-basis aspects, which are present 
even if there is no two-body interaction (V=O). Therefore, and  for the sake of 
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simplicity, we consider a one-body Hamiltonian only: H = ~ y [ V + h * ] .  Starting from 
the U ’ S  and U’S described in $ 2 ,  one can build a basis of the space of bispinor 
wavefunctions with the following successive rotations (R’R = R R +  = -SfS = SS+ = 1, 
and c’,+sf, = 1): 

The corresponding creation-destruction operators are 

(6 . lb )  

and the corresponding expansions of Y are 

= c (Ukbk + vhd l )  = c ( unbn + vnd:) = c ( 4 n P n  + t n a i ) *  (6.2) 
k n n 

The first rotation (characterised by R and S )  does not change the vacuum since 
b,lO) = d,10) = 0, but the second one (characterised by c and s)  does. We denote IO‘) 
and call basis vacuum the Fock state characterised by PJO’) = 6,IO’) = 0, for every n. 
The rotations (6.1) are particular Bogoliubov transformations, and one can reorder 
the Hamiltonian: 

(6.3) 

where N’ is the normal ordering corresponding to IO’), and where E &  is the energy of 
IO’). We refer to E &  as the basis energy. It is a c-number depending on the basis 

H = N [ Y + h Y ]  = E b + K ’ [ Y + h Y ]  

Eb = 1 [s;( UT: hu, - V ~ h v ~ , ) - ~ , , ~ , , (  v:hu, + u:hv,,)]. (6.4) 
n 

The Hamiltonian is now expressed in terms of 4, and 5,. One can introduce a 
finite-basis approximation in the following way. The Fock space is spanned by IO’) 
and the excitations created by the actions of the Pi's and the 6:’s. Let us consider a 
finite set B of indices, and let us call SB the finite-dimensional subspace of Fock space 
spanned by IO’) and the excitations created by the P :  and 8: for n E B. The restriction 
of VI to .FE is 

If, in a variational procedure, the variational states are restricted to SE, the expectation 
values of H (6.3) are 

( H )  = E h + ( X ’ [ Y ’ h Y ] )  = E h + ( N ’ [ Y i h Y B ] ) ,  (6.6) 

The problem then reduces to the treatment of the restricted Hamiltonian H B =  
X’[VIihUr,], and to the calculation of the basis energy Eh. The restricted Hamiltonian 
H E ,  which still has the standard normally ordered form (4.1), can be treated by the 
BDF method described in § 4. In the absence of two-body interaction, this reduces to 
the diagonalisation of the matrix of h in the finite basis (4,, tn)nsB: 

The basis energy E &  (6.4) is the sum of terms labelled by n E B, and of terms labelled 
by n B corresponding to the part of the basis that is not used to describe the system. 
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The optimisation of the basis leads, in particular, to minimising these ‘off-restricted- 
basis’ terms. If the external potential is negligible out of the region covered by the 
restricted basis, the vacuum will be significantly polarised only in this region, and  it 
will be a good approximation to choose s, = 0 for n .@ B. The basis energy then reduces 
to a finite sum 

Eh= C [S?,(UThU,, - U~hv,)-s , ,c , , (v~hu,  + u : ~ u , ) ] .  ( 6 . 8 )  
nci3 

One must note that the one-particle energies will not be the mere eigenvalues of 
h,. In the relativistic case, important new features appear. The calculation of the 
one-particle energies will involve ( i )  the basis energy Eh (6.8) originating from the 
choice of the basis, (ii) a BDF vacuum energy io originating from the dynamical 
polarisation of the vacuum in the finite basis (it is here a finite trace over n E B )  and 
( i i i )  the eigenvalues of the BDF Hamiltonian (6 .7 )  (counted positively or negatively, 
since the BDF density involves a matrix i with eigenvalues i l ) .  Note that this procedure 
allows an  optimisation of the basis by minimisation of energy, according to the 
Rayleigh-Ritz principle. There is no such optimisation possible in DF calculations. 

In the usual finite-basis methods, the upper and lower components of the bispinor 
wavefunctions are expanded separately on an  upper-component basis and a lower- 
component basis. This amounts to considering bispinor basis functions with either a 
vanishing small component or a vanishing large component. Although it can be used 
for an  efficient numerical expansion of the solutions of the DF equations, such a basis 
does not have a clear physical status. Indeed, such a basis can be obtained by a 
rotation from the free bispinor waves U and U, but this leads to an infinite basis energy 
EA. More physically sensible basis sets may be built using (6.1), leading to a finite or 
vanishing basis energy. Since the calculations involved in this procedure are more 
complicated than the standard finite-basis calculations, due to the vacuum contribution 
and  to the form of the considered basis functions, they should not be used for solving 
problems for which the standard DF approach is successful. However, these calculations 
are manageable and worthwhile, if not necessary, for special situations out of the 
domain of validity of the standard DF theory (systems in very strong external fields). 

7. Conclusions 

In this work we have shown how Q E D  can provide stable foundations for a relativistic 
mean-field theory of electrons and positrons in an  external field. Despite the fact that 
the Dirac Hamiltonian a. p + /3m is unbounded below, a minimisation method can be 
elaborated like in the non-relativistic theory by consistently taking into account the 
normal ordering of the Fock operators, and  the Dirac interpretation of negative spectra. 
This leads to modifications of the well known Dirac-Fock equations. The relativistic 
character of the underlying theory-namely QED-appears in a natural way via a 
vacuum energy and vacuum polarisation terms. These terms d o  not arise from Q E D  

via perturbation theory, but are determined in a self-consistent manner during the 
minimisation procedure. 

Since it incorporates from the beginning the ideas of Dirac reinterpretation, this 
formalism allows a sensible interpretation of the mean-field equations (for instance 
negative eigenvalues of the self-consistent Hamiltonian correspond to positive energies, 
as expected). The minimisation of the energy functional can be carried out without 
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any ambiguity, even when bound electronic states lie very deep in the mass gap. This 
is not the case when dealing with the usual DF theory, since this theory does not take 
positron states into account. 

The approach developed in this paper leads to vacuum polarisation terms, which 
are necessary for the internal consistency of the relativistic mean-field theory, and  
which should therefore be taken into account in proper self-consistent calculations, 
independently of the magnitude of the physical effects. These new variational vacuum 
polarisation terms are expected to be numerically small in usual situations, and may 
then be neglected or used to derive perturbative corrections similar to those commonly 
taken into account. However, in the very relativistic regime, for instance in the vicinity 
of very high-Z nuclei, they may become larger, and then one expects results different 
from those of perturbative calculations. We think that in such extreme cases, vacuum 
polarisation effects will have to be taken self-consistently into account for the theory 
to be meaningful. The non-perturbative vacuum polarisation may therefore play a role 
in the understanding of Q E D  in very strong external fields. 

The standard DF equations as well as the different kinds of projected DF equations 
appeared as particular restrictions or  approximations of the formalism. 

As an  illustration we have considered electrons in an  external potential, the two-body 
interaction being swiched off ( a  = 0). We obtained a new insight into the ‘finite-basis 
methods’ and  we described a different manner to introduce finite-basis relativistic 
calculations. 

The main assumption underlying this work is that the electron-positron Hamiltonian 
is bounded below in Fock space. However, although the kinetic energy operator in 
Fock space is positive due  to Dirac reinterpretation, the existence of a ground state 
for the total electron-positron Hamiltonian depends on the interactions. The influence 
of the two-body interaction on the variational stability will be considered in the 
following paper. 
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