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Abstract

We study the mean-field approximation of quantum electrodynamics (QED) by

means of a thermodynamic limit. The QED Hamiltonian is written in Coulomb

gauge and does not contain any normal ordering or choice of bare electron/posi-

tron subspaces. Neglecting photons, we properly define this Hamiltonian in a

finite box [−L/2; L/2)3, with periodic boundary conditions and an ultraviolet

cutoff �. We then study the limit of the ground state (i.e., the vacuum) energy

and of the minimizers as L goes to infinity, in the Hartree-Fock approximation.

In the case with no external field, we prove that the energy per volume con-

verges and obtain in the limit a translation-invariant projector describing the free

Hartree-Fock vacuum. We also define the energy per unit volume of translation-

invariant states and prove that the free vacuum is the unique minimizer of this

energy.

In the presence of an external field, we prove that the difference between

the minimum energy and the energy of the free vacuum converges as L goes to

infinity. We obtain in the limit the so-called Bogoliubov-Dirac-Fock functional.

The Hartree-Fock (polarized) vacuum is a Hilbert-Schmidt perturbation of the

free vacuum and it minimizes the Bogoliubov-Dirac-Fock energy.

c© 2006 Wiley Periodicals, Inc.

1 Introduction

In Coulomb gauge and when photons are neglected, the Hamiltonian of quan-

tum electrodynamics (QED) reads formally [7, 31, 32, 48, 53]

(1.1) H
ϕ =

∫
�∗(x)D0�(x) dx −

∫
ϕ(x)ρ(x)dx +

α

2

∫∫
ρ(x)ρ(y)

|x − y|
dx dy
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where �(x) is the second-quantized field operator satisfying the usual anticommu-

tation relations, and ρ(x) is the density operator

(1.2) ρ(x) =
tr[�∗(x),�(x)]

2
=

∑4
σ=1 {�∗(x)σ�(x)σ − �(x)σ�∗(x)σ }

2
,

where σ is the spin variable. In (1.1), D0 = −iα · ∇ + m0β is the usual free Dirac

operator [55] (m0 > 0 is the bare mass of the electron), α is the bare Sommerfeld

fine structure constant, and ϕ is the external potential. We have chosen a system of

units such that h̄ = c = 1.

In QED, one main issue is the minimization of the Hamiltonian (1.1). For the

study of systems like atoms or molecules, one usually uses the Born-Oppenheimer

approximation and treats the nuclei as fixed and time-independent external sources,

justifying the introduction of the external field ϕ. A global minimizer of H
ϕ would

then be interpreted as the free vacuum if ϕ = 0, or the polarized vacuum when

ϕ �= 0. On the other hand, a minimizer in the N th charge sector (in a sense to be

made more precise) would describe a bound state with particles.

However, none of these minimization problems make sense a priori, since H
ϕ

cannot be bounded from below. This old problem [16, 15] is due to the fact that the

free Dirac operator D0 has a negative essential spectrum: σ(D0) = (−∞; −m0] ∪
[m0; ∞). Our goal in this paper will be to use a thermodynamic limit in order to

give a precise mathematical meaning to the minimization of H
ϕ in the mean-field

approximation, that is to say when it is restricted to Hartree-Fock (HF) states. We

shall in particular be able to define properly the Hartree-Fock global minimizer

(i.e., the vacuum), with or without an external field ϕ.

We have neglected photons in (1.1). This approximation is physically justified

when studying the free vacuum (i.e., when ϕ = 0). In full QED, the expectation

value of the photon field 〈 �A(x)〉 vanishes for the (non-Hartree-Fock) free vacuum;

see, e.g., [44, 49, 50]. But photons should be included for a complete treatment of

the external field case.

We emphasize that (1.1) does not contain any normal ordering or notion of

(bare) electrons and positrons: �(x) can annihilate electrons of negative kinetic

energy. Indeed, the distinction between electrons and positrons should be a result

of the theory and not an input. The commutator used in the formula (1.2) of ρ(x)

is a kind of renormalization, independent of any reference. It is due to Heisen-

berg [31] (see also [43, eq. (96)] and [17, eq. (38)]), and has been widely used by

Schwinger (see [48, eq. (1.14)], [49, eq. (1.69)] and [50, eq. (2.3)]) as a necessity

for a covariant formulation of QED. More precisely, the Hamiltonian H
ϕ possesses

the interesting property of being invariant under charge conjugation since the fol-

lowing relations hold formally:

C ρ(x)C −1 = −ρ(x), C H
ϕ
C

−1 = H
−ϕ,

where C is the charge conjugation operator acting on the Fock space (details will

be given later on). Notice that the use of a commutator in the same way as (1.2) for
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the kinetic energy term would have no effect since the Dirac matrices are traceless:

1

2

∫
tr[�∗(x), D0�(x)]dx =

∫
�∗(x)D0�(x)dx .

In the mean-field approximation, one restricts the QED Hamiltonian (1.1) to

Hartree-Fock states in the underlying Fock space. These states |�〉 have the prop-

erty of being totally described, up to a phase, by the two-point function P(x, y) =
〈�|�∗(x)�(y)|�〉, also called the density matrix of |�〉. In the usual Hartree-Fock

theory, the energy depends only on the orthogonal projector P . This is also true

in QED but, due to the specific definition of the density operator ρ(x) in (1.2), the

energy will be more easily expressed in terms of the renormalized density matrix

(1.3) γ :=
P − P⊥

2
= P −

1

2

where we have introduced P⊥ = 1 − P , or equivalently

γ (x, y) :=

〈
�

∣∣∣∣ ( [�∗(x),�(y)]

2

) ∣∣∣∣�〉.
The operator γ and the associated projector P = γ + 1

2
will be the main objects of

concern in this paper. Notice that γ is closely related to the Feynman propagator

SF taken at equal times [7], a widely used object in QED (for the true non-HF QED

vacuum):

γ (x, y) = −i SF(x, y; tx = ty)β.

In order to give a precise mathematical meaning to the minimization of H
ϕ in

the Hartree-Fock class, we proceed as follows: we first define properly H
ϕ in a

finite box in space CL = [−L/2; L/2)3 and with an ultraviolet cutoff � in the

Fourier domain. For the sake of simplicity, we also use periodic boundary con-

ditions on CL ; i.e., we work on the torus TL := R
3/(LZ

3). Since the problem

becomes finite dimensional, the minimization of this well-defined Hamiltonian re-

stricted to Hartree-Fock states makes sense. Let us denote by EL(ϕ) the minimum

energy in the presence of the external field ϕ. The main goal of this paper will be to

study the thermodynamic limit L → ∞, i.e., the behavior of both the minimizers

and the minimum energy EL(ϕ) when the size of the box grows.

Our states will always be represented by their density matrix P or their renor-

malized density matrix γ = P − 1
2
, defined in (1.3). We shall prove that, as L goes

to infinity, the sequence of global minimizers indeed converges to a state defined

on the whole space, which will be interpreted as the Hartree-Fock global minimizer

of the QED Hamiltonian.

Moreover, our method will also allow us to define the energy of these states.

We have to study separately the free case ϕ = 0 and the external field case ϕ �= 0.

In the free case, we shall define properly the energy per unit volume of translation-

invariant states; the HF free vacuum will be the unique minimizer of this energy.

In the external field case, we will obtain at the limit the Bogoliubov-Dirac-Fock
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(BDF) energy [12], which is the energy of the state measured with respect to

the energy of the free vacuum. The HF polarized vacuum will be a minimizer

of this energy. Therefore, the BDF theory is the appropriate model for the study of

Hartree-Fock states in QED in the presence of an external potential.

These limits are studied for a fixed ultraviolet cutoff �. Our objects will be log-

arithmically divergent in �. The elimination of this last divergence would require

a renormalization, which we do not address in detail here.

Let us now describe the results of this paper in more detail.

We start with the free case ϕ = 0. First, we prove the existence, for each L ,

of a unique global minimizer of EL(0), γ 0
L = P0

L − 1
2
, which is moreover invariant

under translation. We then study the energy per unit volume and prove that

(1.4) lim
L→∞

EL(0)

L3
= min

γ= f (−i∇)

− 1
2 ≤γ≤ 1

2

T( f ).

The energy T is a natural functional defined for translation-invariant operators only,

γ = f (−i∇), by

T( f ) =
1

(2π)3

∫
B(0,�)

trC4[D0(p) f (p)]dp

−
α

(2π)5

∫∫
B(0,�)2

trC4[ f (p) f (q)]

|p − q|2
dp dq,

(1.5)

where we recall that � is the ultraviolet cutoff. The functional T indeed can be

interpreted as the energy per unit volume of translation-invariant states.

We prove that, when L → ∞, the sequence (γ 0
L ) converges in some sense to

the unique translation-invariant minimizer of the right-hand side of (1.4), denoted

by γ 0 = P0
− − 1

2
, where P0

− is an orthogonal projector. This state is interpreted

as the HF free vacuum. Writing the Euler-Lagrange equation satisfied by γ 0, we

obtain the self-consistent equation

(1.6)


γ 0 = −

sgn(D0)

2

D0 = D0 − α
γ 0(x, y)

|x − y|
.

Written in terms of P0
− = γ 0 + 1

2
, this equation reads

(1.7) P0
− = χ(−∞;0)(D

0),

which corresponds to the usual Dirac picture that the density matrix of the free

vacuum should be the projector associated with the negative part of the spectrum

of a translation-invariant Dirac operator.
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Let us emphasize that in many works, the free vacuum is assumed to be repre-

sented by the free Dirac projector

P0
− := χ(−∞;0)(D0),

following thereby ideas of Dirac [16, 15] (see, e.g., [5, 12, 13, 25, 26, 36, 37]). The

true Hartree-Fock vacuum P0
− obtained in this paper is different from P0

− except

when α = 0. The interpretation is that, contrary to P0
−, the self-consistent inter-

actions between the virtual particles of the vacuum are taken into account via the

term αγ 0(x − y)|x − y|−1 in (1.6).

The self-consistent operator D0 defined in (1.6) has an interesting special form.

Using the usual notation p = −i∇, it can be written

D0(p) = α · p
g1(|p|)

|p|
+ βg0(|p|),

which means that, due to (1.6),

(1.8) γ 0(p) = −
g1(|p|)

2|p|
√

g1(|p|)2 + g0(|p|)2
α · p −

g0(|p|)

2
√

g1(|p|)2 + g0(|p|)2
β.

In QED, the Feynman propagator SF is often expressed using the Källén-Lehmann

representation [7, 35, 38], based on relativistic invariances. Although our model

is not fully relativistically invariant (we discard photons and use an ultraviolet cut-

off �) and is only defined in the mean-field approximation, our solution (1.8) has

exactly the form that may be derived from the Källén-Lehmann representation for

the equal-time propagator. In four-dimensional full QED, a self-consistent equa-

tion similar to (1.6) is well-known and used. These so-called Schwinger-Dyson

equations [18, 51] have been approximately solved for the free vacuum case first

by Landau et al. in [1, 2], and then by many authors (see, e.g., [3, 23, 34]).

In [41], Lieb and Siedentop arrived at the same equation (1.6) with totally dif-

ferent arguments from ours. In particular, they did not derive equation (1.6) as

the Euler-Lagrange equation associated with a minimization problem, but rather

looked for a self-consistent normal ordering in a free Hamiltonian. They proved

the existence of a solution of (1.6) by means of a fixed-point method, valid under

a restrictive condition of the form α log � < C where � is the ultraviolet cutoff.

Our proof is completely different since it proceeds by minimizing the functional T.

This enables us to prove the existence of a solution to (1.6) without any constraint

linking α and �.

Let us remark that since γ 0 is translation invariant, the associated density of

charge, formally defined by ργ 0(x) = trC4 γ 0(x, x), is indeed a constant. A conse-

quence of the special form (1.8) of γ 0 is that ργ 0(x) ≡ 0, the Dirac matrices being

traceless. Therefore, in this formalism and thanks to (1.2), the free vacuum has no

local density of charge, which is physically comforting.

We know that γ 0 is a minimizer of the energy T among other translation-

invariant operators. Since, however, γ 0
L is for any L a global minimizer, we will
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also prove (in a sense to be made more precise later) that the limiting γ 0 is also

a minimizer of H
0 under local Hilbert-Schmidt perturbations. Our study therefore

shows that although one cannot give a meaning to the energy of the free HF vac-

uum, one can give a sense of being a minimizer of the Hartree-Fock energy, either

among translation-invariant operators or under Hilbert-Schmidt perturbations.

We then study the external field case ϕ �= 0. We prove that the energy measured

with respect to the free energy has a limit:

(1.9) lim
L→∞

{EL(ϕ) − EL(0)} = min
γ−γ 0∈S2

− 1
2 ≤γ≤ 1

2

E
ϕ
BDF(γ − γ 0).

Here E
ϕ
BDF is the so-called Bogoliubov-Dirac-Fock (BDF) energy [5, 11, 12, 25, 26]

associated with the free vacuum γ 0. It measures the energy of an HF state |�〉
with renormalized density matrix γ , relative to the energy of the free vacuum |�0〉
whose renormalized density matrix γ 0 has been defined previously, i.e.,

(1.10) E
ϕ
BDF(γ − γ 0) = “〈�|Hϕ|�〉 − 〈�0|H

0|�0〉”.

The BDF energy reads formally as

E
ϕ
BDF(Q) = tr[D0(P0

+QP0
+ + P0

−QP0
−)] −

∫
ϕ(x)ρQ(x)dx

+
α

2

∫∫
ρQ(x)ρQ(y)

|x − y|
dx dy −

α

2

∫∫
|Q(x, y)|2

|x − y|
dx dy,

(1.11)

where ρQ(x) = trC4(Q(x, x)) is the charge density, a well-defined object when

Q ∈ S2, thanks to the ultraviolet cutoff � [25].

For any L , we prove the existence of a Hartree-Fock global minimizer for

EL(ϕ), γL = PL − 1
2
. Then we show that γL − γ 0

L = PL − P0
L converges, in

some sense, to a global minimizer Q̄ = γ̄ − γ 0 of the BDF energy (1.11). Hence,

the solution γ̄ = γ 0 + Q̄ of the right-hand side of (1.9) is a Hilbert-Schmidt per-

turbation of the free γ 0 and solves the self-consistent equation

(1.12) γ̄ = −
sgn(D̄)

2

with

D̄ = D0 − ϕ + αρ(γ̄−γ 0) ∗
1

| · |
− α

(γ̄ − γ 0)(x, y)

|x − y|

= D0 − ϕ + αργ̄ ∗
1

| · |
− α

γ̄ (x, y)

|x − y|
,(1.13)

where we have used the definition of D0 in (1.6) and ργ 0 ≡ 0. Written in terms of

the projector P̄− = γ̄ + 1
2
, (1.12) can be written

(1.14) P̄− = χ(−∞;0)(D̄),
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which one more time corresponds to Dirac’s interpretation that the density matrix

of the vacuum should be the projector associated with the negative spectrum of

an effective Dirac operator. We emphasize that, due to (1.13), the self-consistent

equation (1.12) does not depend on the reference γ 0 used for the definition of the

BDF energy.

Self-consistent equations for relativistic Hartree-Fock states are well-known in

QED. We refer the reader, for instance, to [46, eq. (4)], which is exactly equivalent

to (1.14) and to [14, 20, 22, 30, 45] for related studies. In [19, 20], similar equations

are obtained in the relativistic density functional theory.

Notice that the BDF energy (1.11) can also be used in the free case ϕ = 0.

Similarly to [5, 13, 25], we shall prove in this case that its minimizer is zero,

which precisely means that the free vacuum γ 0 is a minimizer of H
0 under Hilbert-

Schmidt perturbations.

The Bogoliubov-Dirac-Fock energy was first introduced by Chaix and Iracane

in [11, 12]. They also studied a mean-field approximation of QED, but started

with a different Hamiltonian: taking the free Dirac projector P0
− as a definition of

the free vacuum, they used a Hamiltonian normal-ordered with respect to P0
−. In

[13], Chaix, Iracane, and Lions proved that their free vacuum P0
− is stable when no

external field is present. Our BDF energy (1.11) is similar to the one of Chaix and

Iracane, but P0
− and D0 have been replaced by P0

− and D0.

The BDF model of Chaix and Iracane has been studied by Bach, Barbaroux,

Helffer, and Siedentop in [5], in which a mathematical setting without any ultra-

violet cutoff is provided when ϕ = 0 to prove the stability of the free vacuum P0
−

under trace class perturbations. The case of an external field is studied as well, but

the vacuum polarization is neglected, leading to a totally different model.

A rigorous framework for the study of the external field case has recently been

provided by Hainzl, Lewin, and Séré in [25, 26]. There, an ultraviolet cutoff is

introduced and the energy is defined on a set of Hilbert-Schmidt operators that are

not necessarily trace class. Starting from the Hamiltonian of Chaix and Iracane,

it is proved that the corresponding BDF energy is bounded from below and that

it possesses a minimizer. It satisfies an equation similar to (1.14) but which still

explicitly depends on the chosen reference P0
− [25, eq. (6)]. We shall rely heav-

ily on [25, 26]. In particular, we shall generalize the results of [26] to the new

BDF energy (1.11) and obtain the existence of a minimizer satisfying our equation

(1.14). For a time-dependent study of the BDF model of Chaix and Iracane, we

refer to [28].

Summarizing our results, we have been able to give a meaning to the Hartree-

Fock approximation in no-photon QED by means of a thermodynamic limit. The

free vacuum has a renormalized density matrix γ 0 = P0
−− 1

2
, which is a translation-

invariant operator solution of (1.6). It is a minimizer among other translation-

invariant operators of the energy per unit volume T defined in (1.5) and as well

a minimizer of H
0 under Hilbert-Schmidt perturbations. In the presence of an
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external potential, the HF polarized vacuum is a Hilbert-Schmidt perturbation γ̄ =
γ 0 + Q̄ of the free γ 0. The operator Q̄ minimizes the BDF functional (1.11) and

γ̄ solves (1.12).

This work shows that the BDF functional (1.11) is the appropriate tool for the

study of Hartree-Fock states in QED in the presence of an external potential. Al-

though the present paper only addresses the case of the vacuum, our method should

be applicable to the case of atoms and molecules. In that case, one would have to

minimize the BDF energy in a sector of fixed charge N .

As mentioned above, the theory is still divergent in the cutoff �. This phe-

nomenon is also encountered in full QED, where the concepts of mass and charge

renormalization [7, 18] are used to get finite physical quantities. Mass and charge

renormalization will usually not remove the divergences in the propagator SF or

in the equal-time propagator γ . This is not surprising since γ as defined in (1.3)

does not represent a physical quantity; it is not the propagator of a physical parti-

cle. The physical electron (at rest) is represented by the lowest energy state in the

charge 1 sector (the positron corresponds to the charge −1 sector). In particular,

the rest mass of the physical particle is the lowest energy in the charge 1 sector.

The physical electron is not just the bare particle; it also includes a cloud of vir-

tual particles. The relation between the bare propagator SF and the propagator for

the physical particle is often expressed in the physics literature by what is called

a wave function renormalization. We will discuss the concept of renormalization

in Section 2.5. As we will explain, wave function renormalization is conceptually

different from charge and mass renormalization. A completely different notion of

wave function renormalization, which also leads to a different notion of physical

mass, was introduced in [41].

Of course, this study only applies to the Hartree-Fock approximation, the gen-

eral case being much more difficult in our point of view. In particular, we do not

know if the use of a normal-ordered Hamiltonian with respect to the free elec-

tron/positron spaces defined by P0
− as proposed in [41] is physically relevant. By

definition, the normal-ordering procedure takes a projector (i.e., a Hartree-Fock

state) as a reference, whereas the true vacuum is known to be a non-Hartree-Fock

state. The study of a thermodynamic limit for the full QED model could be a better

approach in the quest of a nonperturbative formulation of QED.

The paper is organized as follows: In the next section, we define the models and

state our main theorems. We start by giving a meaning to the QED Hamiltonian

in the box CL and formulate the thermodynamic problem mathematically. Then

we define the models on the whole space that will be obtained as thermodynamic

limits: the energy T of translation-invariant projectors and its minimizer γ 0 =
P0

− − 1
2
, and the associated Bogoliubov-Dirac-Fock model. Finally, we state our

main results concerning the thermodynamic limit. For the sake of clarity, we have

brought all the proofs together at the end of the paper, in Section 3. Section 2.5 is

devoted to the discussion of the renormalization problem.
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2 Model and Main Results

In this section, we present the models and state our results. The proofs are given

separately in the next section.

2.1 QED Energy on the Torus in the Hartree-Fock Approximation

Let us start by defining the no-photon QED Hamiltonian in the cube CL =
[−L/2; L/2)3. As mentioned in the introduction, we add periodic boundary con-

ditions and therefore work in the torus TL := R
3/(LZ

3).

Notation

A function ψ in L2(TL , C
4) = L2

per(CL, C
4) can be written as

ψ(x) =
(2π)3/2

L3

∑
k∈2πZ3/L

ψ̂(k)eik·x =

(
2π

L

)3/2 ∑
k∈2πZ3/L

ψ̂(k)ek(x),

where ek(x) = eik·x/L3/2 and ψ̂(k) ∈ C
4. We now add a cutoff in Fourier space

and define the following finite-dimensional subspace of L2(TL , C
4):

(2.1)
H

L
� := span

{
ekεσ | k ∈ �L

�, σ ∈ {1, . . . , 4}
}
,

�L
� := 2πZ

3/L ∩ B(0,�),

(εσ )σ=1,...,4 being the canonical orthonormal basis of C
4. Note that any operator γ

acting on HL
� has a kernel of the form

γ (x, y) =
∑

k,l∈�L
�

γ̂ (k, l)ek(x)el(y)

where γ̂ (k, l) is a C
4 ×C

4 matrix such that γ [εσ ek] =
∑

σ ′

∑
l∈�L

�
γ̂ (l, k)σ ′,σ elεσ ′ .

Its density is defined as

ργ (x) = trC4(γ (x, x)) = L−3
∑

k,l∈�L
�

trC4 (γ̂ (k, l)) eix ·(k−l).

A translation-invariant operator T acting on HL
� satisfies T̂ (k, l) = g(k)δkl where

g(k) is, for any k ∈ �L
�, a C

4 × C
4 matrix. Denoting now

ǧ(x) =

(
2π

L

)3/2 ∑
k∈�L

�

g(k)ek(x),

we easily see that

T (x, y) = (2π)−3/2ǧ(x − y).

The density of a translation-invariant operator is a constant:

ρT (x) := trC4 T (x, x) = (2π)−3/2 trC4 ǧ(0) =
1

L3

∑
k∈�L

�

trC4 g(k).
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The identity on HL
� is I L

� whose kernel is

(2.2) I L
�(x, y) =

1

L3

∑
k∈�L

�

I4 eik·(x−y)

and whose density is ρI L
�

= 4|�L
�|/L3. In the following, we shall denote

(2.3) ρL
� =

ρI L
�

2
=

2|�L
�|

L3
.

Dirac Operator, Coulomb Potential, and External Field on TL

Recall that the free Dirac operator is defined as

D0 = −iα · ∇ + m0β

where m0 > 0 is the bare mass of the electron and α = (α1, α2, α3), β are the Dirac

matrices [55]. On the torus, we use the same notation and simply define D0 as the

multiplication operator in the Fourier domain by (α ·k+m0β)k∈�L
�

. The same abuse

of notation will be done for the operator −i∇ acting as a multiplication operator in

the Fourier domain by (k)k∈�L
�

.

We shall use a Coulomb potential similar to the choices made in [8, 9, 10, 42].

We define WL as being the unique solution of

(2.4)


−�WL = 4π

(∑
x∈Z3

δLx −
1

L3

)
min
CL

WL = 0.

This means that there exists a constant µ > 0 such that

WL(x) =
1

L3

( ∑
k∈(2π)Z3/L

k �=0

4π

|k|2
eik·x + µL2

)
.

Notice that in [8, 9, 10, 42], µ is replaced by 0 (i.e., the integral of the Coulomb po-

tential is assumed to vanish). Indeed, most of our results are valid if µ is replaced

by any nonnegative real number. However, the nonnegativity of the Coulomb po-

tential, which seems physically relevant to us, is usually needed in the study of

Hartree-Fock minimizers. Moreover, our choice better mimics the behavior of

1/|k|2 at 0.

In the following, we shall also consider an external potential of the form

ϕ = αn ∗
1

| · |
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in the whole space, created by external sources such as nuclei. We will assume that

n ∈ C where C is the so-called Coulomb space [26]

(2.5) C =

{
f

∣∣∣∣ ∫
R3

| f̂ (k)|2

|k|2
dk < ∞

}
.

We do not necessarily assume in this paper that n is an L1 nonnegative function,

but the reader should think of
∫

R3 n = Z as being the total number of protons in

the nuclei.

Remark 2.1. Notice that, since we will add an ultraviolet cutoff, definition (2.5)

also contains the usual Coulomb potential since the (regularized) Dirac measure

δ� defined by

(2.6) δ̂� = (2π)−3/2
1B(0,�)

belongs to the space C .

For the sake of simplicity, we shall also assume that the restriction to the ball

B(0,�) of the Fourier transform n̂ is a continuous function. This allows us to

define the external potential on the torus by

(2.7) nL(x) =
(2π)3/2

L3

∑
k∈�L

�

n̂(k)eik·x .

In the whole space, the Dirac operator with external potential will be denoted by

Dϕ = D0 − ϕ = D0 − αn ∗ 1/| · |, whereas we use the notation

(2.8) D
ϕ

L = D0 − ϕL , ϕL(x) := αnL ∗ WL(x) = α

∫
CL

nL(y)WL(x − y)dy,

for the corresponding operator acting on HL
�.

No-Photon QED Hamiltonian on TL

We are now able to define and compute the no-photon QED energy in TL . The

Fock space associated with HL
� is

FL
� := C ⊕

⊕
m≥1

( m∧
i=1

HL
�

)
(this is indeed a finite-dimensional space). On FL

�, the creation operator �∗
k,σ is

defined as usual, for k ∈ �L
� and σ ∈ {1, 2, 3, 4}, by

�∗
k,σ (ψ1 ∧ · · · ∧ ψp) = (ekεσ ) ∧ ψ1 ∧ · · · ∧ ψp.
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It satisfies the anticommutation relation

(2.9) {�k,σ , �∗
l,σ ′ } = δk,lδσ,σ ′ .

In the following, we shall use the common notation �(x)σ =
∑

k∈�L
�

ek(x)�k,σ for

the second-quantized field operator. We shall also need to use, for some f ∈ HL
�,

the notation

(2.10) �( f )σ =

(
2π

L

)3/2 ∑
k∈�L

�

f̂ (k)σ�k,σ

when f = (2π/L)3/2
∑

k∈�L
�

f̂ (k)ek .

The no-photon QED Hamiltonian is the well-defined operator acting on the

finite-dimensional space FL
�,

(2.11) H
ϕ

L =

∫
TL

�∗(x)D0�(x)dx −

∫
TL

ϕL(x)ρ(x)dx

+
α

2

∫∫
(TL )2

ρ(x)ρ(y)WL(x − y)dx dy

where α is the bare fine structure constant and

ρ(x) =
1

2
tr[�∗, �](x)

=
1

2

∑
σ

(
�∗(x)σ�(x)σ − �(x)σ�∗(x)σ

)
=

1

2

∑
σ

∑
k,l∈�L

�

(�∗
k,σ�l,σ − �l,σ�∗

k,σ )ek(x)el(x).(2.12)

The charge conjugation operator C is the uniquely defined (up to a phase) unitary

operator acting on the Fock space FL
� (see, e.g., [47, prop. 2.1]) such that, for any

f ∈ HL
�,

C �( f )C −1 = �(C f )∗ and C �( f )∗
C

−1 = �(C f ),

where C is the charge conjugation operator acting on HL
�, defined by C f := iβα2 f ,

and �( f ) has been introduced in (2.10). It is then easy to see that the following

relations hold:

C ρ(x)C −1 = −ρ(x), C H
ϕ

LC
−1 = H

−ϕ

L .
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Using the CAR (2.9) and the formula (2.12), we obtain

(2.13) ρ(x) = �∗(x)�(x) − ρL
�,

where ρL
� is defined in (2.3). Inserting (2.13), we obtain for the last term of (2.11)

α

2

∫∫
(TL )2

ρ(x)ρ(y)WL(x − y)dx dy

=
α

2

∫∫
(TL )2

�∗(x)�(x)�∗(y)�(y)WL(x − y)dx dy

− αρL
�

∫∫
(TL )2

�∗(x)�(x)WL(x − y)dx dy

+
α(ρL

�)2

2

∫∫
(TL )2

WL(x − y)dx dy

= α
∑

1≤i< j

WL(xi − xj ) +
α

2

∫∫
(TL )2

I L
�(x, y)�∗(x)�(y)WL(x − y)dx dy(2.14)

− αρL
�

∫∫
(TL )2

�∗(x)�(x)WL(x − y)dx dy

+
α(ρL

�)2

2

∫∫
(TL )2

WL(x − y)dx dy,

where we recall that I�(x, y) is defined in (2.2). Therefore, computing the energy

of a Hartree-Fock state with density matrix P(x, y) (an orthonormal projector on

HL
�), we obtain from (2.11) and (2.14)

E
QED
L ,ϕ (P) = tr(D0 P) −

∫
TL

ϕL(x)(ρP(x) − ρL
�)dx(2.15)

+
α

2

∫∫
(TL )2

ρP(x)ρP(y)WL(x − y)dx dy

−
α

2

∫∫
(TL )2

|P(x, y)|2WL(x − y)dx dy

+
α

2

∫
(TL )2

trC4

(
I L
�(x, y)P(x, y)

)
WL(x − y)dx dy



THE MEAN-FIELD APPROXIMATION IN QED 559

− αρL
�

∫∫
(TL )2

ρP(x)WL(x − y)dx dy

+
α(ρL

�)2

2

∫∫
(TL )2

WL(x − y)dx dy.

Using ρI L
�/2(x) = ρL

� and tr(D0 I L
�) = 0, we infer

(2.16) E
QED
L ,ϕ (P) = E

ϕ

L

(
P −

I L
�

2

)
+

α

8

∫∫
(TL )2

|I L
�(x, y)|2WL(x − y)dx dy

where E
ϕ

L is the usual Dirac-Fock energy on the torus

(2.17) E
ϕ

L(γ ) = tr(D
ϕ

Lγ ) +
α

2
DL(ργ , ργ ) −

α

2

∫∫
(TL )2

|γ (x, y)|2WL(x − y)dx dy

defined for any self-adjoint operator γ acting on HL
�, and with

DL( f, f ) =

∫∫
(TL )2

f (x) f (y)WL(x − y)dx dy

=
1

L3

∑
k∈(2πZ3)/L

| f̂ (k)|2ŴL(k) ≥ 0,

ργ (x) = trC4 γ (x, x).

The last term of (2.16) is a constant that behaves like

(2.18)
α

8

∫∫
(TL )2

|I L
�(x, y)|2WL(x − y)dx dy ∼L→∞

αL3

2

∫
R3

|δ�(x)|2

|x |
dx

where δ� ∈ L2(R3) ∩ L∞(R3) is the Fourier inverse of (2π)−3/2
1B(0,�) already

defined in (2.6). Because of (2.18), this term shifts the limit of the energy per unit

volume by a constant and disappears when looking at differences. Hence, it will

not play any role for the study of our thermodynamic limit, and we discard it for

the rest of the paper. We therefore study the minimization problem

(2.19) EL(ϕ) := inf

{
E

ϕ

L(γ ), γ ∈ L(HL
�), γ ∗ = γ, −

I L
�

2
≤ γ ≤

I L
�

2

}
(L(HL

�) denotes the space of all linear operators acting on HL
�). Notice that we

have extended the set {P − I L
�/2, P an orthogonal projector} to its convex hull

GL
� =

{
γ ∈ L(HL

�), γ ∗ = γ, −
I L
�

2
≤ γ ≤

I L
�

2

}
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as this is usually done in Hartree-Fock-type theories [39]. It will be proved that

this does not change the minimizer. With this change of variable, our goal will be

to prove

• without external field (ϕ = 0):

(1) the existence of a unique minimizer γ 0
L = P0

L − I L
�/2 for EL(0) when

L is large enough;

(2) the energy per unit volume EL(0)/L3 has a limit as L → ∞;

(3) γ 0
L converge in a certain sense to a translation-invariant limit γ 0 =

P0
− − 1

2
, which will be the HF free vacuum (P0

− is a projector);

(4) the limiting γ 0 is the unique minimizer of the energy per unit volume,

a functional defined only for translation-invariant operators acting on

the whole space;

• in the presence of an external field (ϕ �= 0):

(5) the existence of a minimizer γL = PL − I L
�/2 for EL(ϕ);

(6) the energy difference EL(ϕ) − EL(0) has a limit as L → ∞;

(7) γL converges in a certain sense to an operator γ̄ = P̄− − 1
2

that will

be interpreted as the HF polarized vacuum (P̄− is a projector);

(8) γ̄ − γ 0 is a minimizer of the Bogoliubov-Dirac-Fock energy, which

measures the energy with respect to the (infinite) energy of the free

vacuum γ 0.

These questions are rather common in the mathematical study of thermody-

namic limits [8, 9, 40, 42]. Before we answer them, we have to define properly the

variational problems obtained in the whole space. In the next section, we define

the energy per unit volume of translation-invariant operators acting on the whole

space when no external field is present; its minimizer will be the free vacuum γ 0.

In Section 2.3, we define the associated Bogoliubov-Dirac-Fock model properly

and prove the existence of the polarized vacuum γ̄ in the presence of an external

field; this will be an easy extension of the work already done by Hainzl, Lewin,

and Séré in [25, 26]. Finally, we answer questions (1)–(8) in Section 2.4.

2.2 Definition of the Free Vacuum P
0
−

Let us now define the models in the whole space. The cutoff is implemented in

the Fourier domain by considering the following Hilbert space:

(2.20) H� := {ψ ∈ L2(R3, C
4) | supp ψ̂ ⊂ B(0,�)}.

In this subsection, we consider the case where no external field is present, n = 0.

We want to define the energy per unit volume of a translation-invariant operator γ

acting on H� and such that

−
I�

2
≤ γ ≤

I�

2
,
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I� being the identity on H�. Such an operator acts as a multiplication operator

in the Fourier domain and can therefore be written γ = f (−i∇) or, formally,

γ (x, y) = (2π)−3/2 f̌ (x − y), with f belonging to

A� =

{
f ∈ L∞(B(0,�), S4(C)), −

IC4

2
≤ f ≤

IC4

2

}
.

Here S4(C) is the set of 4×4 self-adjoint complex matrices. Notice that its density

of charge is a well-defined constant,

ργ (x) = trC4 γ (x, x) = (2π)−3/2 trC4 f̌ (0) = (2π)−3

∫
B(0,�)

trC4( f (p))dp.

The energy per unit volume of such a translation-invariant operator γ = f (−i∇)

is then defined in terms of f ∈ A� by

(2.21)

T( f ) =
1

(2π)3

∫
B(0,�)

trC4[D0(p) f (p)]dp

−
α

(2π)5

∫∫
B(0,�)2

trC4[ f (p) f (q)]

|p − q|2
dp dq.

To give a hint why we consider the energy T, let us fix some operator γ =
f (−i∇) where f ∈ A�. To simplify the discussion, we also assume trC4( f (k)) =
0 for any k ∈ B(0,�). To avoid any confusion, we denote by γ L the opera-

tor acting on HL
� associated with γ , which is just the multiplication operator by

( f (k))k∈�L
�

in the Fourier domain. Its energy is given by (2.17) and can be ex-

pressed as

E0
L(γ L) =

∑
k∈�L

�

trC4(D0(k) f (k)) − L3 α

2(2π)3

∫
TL

| f̌L(x)|2WL(x)dx

where f̌L(x) := (2π/L)3/2
∑

k∈�L
�

f (k)ek(x). Notice that we have used

ργ L = L−3
∑
k∈�L

�

trC4 f (k) = 0

since by assumption trC4 f (k) = 0 for any k ∈ B(0,�). It is easy to see that

lim
L→∞

E0
L(γ L)

L3
= T( f ).

It is therefore natural to define the free vacuum as a minimizer of T and we intro-

duce

ET := inf {T( f ) | f ∈ A�} .
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THEOREM 2.2 (Definition of the Free Vacuum) Assume that 0 ≤ α < 4/π , � > 0,

and m0 > 0. Then T possesses a unique global minimizer f̄ on A�, and any mini-

mizing sequence ( fn) ⊂ A� of T converges strongly to f̄ in L2(B(0,�), S4(C)).

The associated renormalized density matrix γ 0 := f̄ (−i∇) is a translation-

invariant operator satisfying the self-consistent equation

(2.22)


γ 0 = −

sgn(D0)

2

D0 = D0 − α
γ 0(x, y)

|x − y|

or, written in terms of the translation-invariant projector P0
− = γ 0 + I�/2,

(2.23) P0
− = χ(−∞;0)(D

0).

Moreover, D0 takes the special form, in the Fourier domain,

(2.24) D0(p) = α · ωpg1(|p|) + g0(|p|)β

where ωp = p/|p| and g0, g1 ∈ L∞([0; �], R) are such that

g1(x) ≥ x and g0(x) ≥ m0,(2.25)

m0g1(x) ≤ g0(x)x,(2.26)

for any x ∈ [0; �), and therefore

(2.27) m2
0 + |p|2 ≤ |D0(p)|2 ≤

g0(|p|)

m0

(m2
0 + |p|2).

Finally, D0(p) ∈
⋂

m≥1 H m(B(0,�)) ⊂ C∞(B(0,�)).

The proof of Theorem 2.2 is given in Section 3.2.

This result is a generalization of a work by Lieb and Siedentop. In [41], equa-

tion (2.22) is solved by means of a fixed-point method, valid only under a condition

of the form α log � ≤ C . Thanks to the variational interpretation using the func-

tion T, we have been able to prove the existence of a solution of (2.22) without

any constraint linking α and �, and by means of a completely different proof. Our

solution coincides with [41] when α log � ≤ C , and the properties of D0 stated in

Theorem 2.2 are exactly the ones that have been proved in [41]. The interpretation

of (2.22) given in [41], however, does not seem to be the same as ours.

We notice that a self-consistent equation similar to (2.22) (written in terms

of the four-dimensional Green function of the electron) has been approximately

solved first by Landau et al. in [1, 2] and then by many authors (see, e.g., [3,

23, 34]). They use an ansatz analogous to (2.24) (see, e.g., [1, eq. (1)] and [2,

eq. (4.1)]).

Note that the density of the vacuum γ 0 = f̄ (−i∇) also vanishes, since (2.22)

and (2.24) mean

f̄ (p) = −
g1(|p|)

2
√

g1(|p|)2 + g0(|p|)2
α · ωp −

g0(|p|)

2
√

g1(|p|)2 + g0(|p|)2
β
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and therefore

ργ 0 = (2π)−3

∫
B(0,�)

trC4 f̄ (p) dp = 0,

the Dirac matrices αi and β being traceless.

Remark 2.3. Adapting the proof given in Section 3.2, it can be shown that when

m0 = 0, the functional T has a unique minimizer f̄ (p) = −D0(p)/(2|D0(p)|),
with D0(p) = α · ωpg1(|p|), g1 being given by [41, eq. (26)].

Remark 2.4. The energy T satisfies a nice scaling invariance property (already used

in [13]). Namely, one has, with an obvious notation,

Tm0,α,�( f ) = λ−4Tλm0,α,λ�

(
f

(
·

λ

))
which implies that

ET(m0, α,�) = λ−4 ET(λm0, α, λ�)

and

(P0
−)λm0,α,λ�(p) = (P0

−)m0,α,�

(
p

λ

)
.

2.3 The Bogoliubov-Dirac-Fock Theory Based on P
0
−

In the previous section, we have defined the HF free vacuum whose renor-

malized density matrix is γ 0 = P0
− − I�/2. We now assume that n �= 0 (re-

call that ϕ = αn ∗ 1/| · |) and define the Bogoliubov-Dirac-Fock (BDF) model

[5, 11, 12, 13, 25, 26] on the basis of this new reference. Our goal will be to show

that the results by Hainzl, Lewin, and Séré [25, 26] can be extended to this case.

We refer the reader to [11, 12, 25, 26] for a detailed presentation of the BDF model.

The BDF energy reads [25, 26]

(2.28)

E
ϕ
BDF(Q) := tr

P
0
−
(D0 Q) +

α

2
D(ρQ, ρQ) − αD(ρQ, n)

−
α

2

∫∫
R6

|Q(x, y)|2

|x − y|
dx dy

where

Q ∈ Q� :=
{

Q ∈ S
P

0
−

1 (H�), −P0
− ≤ Q ≤ P0

+, ρQ ∈ C
}
,(2.29)

C = { f | D( f, f ) < ∞} ,

and

D( f, g) = 4π

∫
f̂ (k)ĝ(k)

|k|2
dk.
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The space S
P

0
−

1 (H�) is introduced in [25, sec. 2.1]. It contains all the Hilbert-

Schmidt operators Q ∈ S2(H�) which are such that Q++ = P0
+QP0

+ and Q−− =

P0
−QP0

− are trace class (∈ S1(H�)). The P0
−-trace of Q is then defined by

tr
P

0
−

Q := tr(Q++ + Q−−).

Finally, ρQ(x) = trC4 Q(x, x) is the charge density associated with Q, a well-

defined object in Fourier space thanks to the ultraviolet cutoff [25]:

ρ̂Q(k) = (2π)−3/2

∫
B(0,�)

trC4

(
Q̂

(
p +

k

2
, p −

k

2

))
dp.

Notice that compared to [5, 11, 12, 13, 25, 26], we have not only replaced P0
− by

P0
−, but also D0 by D0 in the definition (2.28) of the BDF energy.

The interpretation of (2.28) is that E
ϕ
BDF(γ −γ 0) is the energy of the HF state γ

measured relatively to the energy of the free vacuum γ 0. This statement will be

made more precise in the next section, in which we prove that EL(ϕ) − EL(0)

converges to the minimum of the BDF energy. Notice when γ satisfies −I�/2 ≤
γ ≤ I�/2, then one has −P0

− ≤ γ − γ 0 ≤ P0
+, justifying the constraint imposed

on Q in the definition of Q� in (2.29).

We may now state a result similar to [25, theorem 1]:

THEOREM 2.5 (BDF Energy Bounded Below) Assume that 0 ≤ α ≤ 4/π , � > 0,

m0 > 0, and n ∈ C .

(i) One has

∀Q ∈ Q� E
ϕ
BDF(Q) +

α

2
D(n, n) ≥ 0,

and therefore E is bounded from below on Q�.

(ii) If, moreover, n = 0, then E0
BDF is nonnegative on Q�, 0 being its unique

minimizer.

PROOF: The proof is the same as in [5, 13, 25], using Kato’s inequality

1

|x |
≤

π

2
|D0| ≤

π

2
|D0|,

due to (2.27). �

The interpretation of the second part of Theorem 2.5 is that γ 0 is not only

a minimizer among translation-invariant projectors (Section 2.2), but also among

Hilbert-Schmidt perturbations.

Let us now define the BDF ground state energy in the presence of an external

field:

(2.30) EBDF(ϕ) = inf
Q�

E
ϕ
BDF.

The existence of a minimizer is obtained by a result analogous to [26, theorem 1]:
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THEOREM 2.6 (Definition of Polarized Vacuum) Assume that 0 ≤ α < 4/π ,

� > 0, m0 > 0, and that n ∈ C . Then E
ϕ
BDF possesses a minimizer Q̄ on Q� such

that γ̄ = Q̄ + γ 0 satisfies the self-consistent equation

(2.31)


γ̄ = −

sgn(D̄)

2

D̄ := D0 + α
(
ργ̄ − n

)
∗

1

| · |
− α

γ̄ (x, y)

|x − y|

or, written in terms of the projector P̄− := γ̄ + I�/2 = Q̄ + P0
−,

(2.32) P̄− = χ(−∞;0)

(
D̄
)
.

Additionally, if α and n satisfy

(2.33) 0 ≤ α
π

4

{
1 − α

(
π

2

√
α/2

1 − απ/4
+ π1/6211/6

)
‖n‖C

}−1

≤ 1,

then this global minimizer Q̄ is unique and the associated polarized vacuum is

neutral: tr
P

0
−
(Q̄) = 0.

PROOF: The proof works analogously to [26, proof of theorem 1]. The only

modification is [26, lemma 1]: one proves that ‖[ξR, |D0|]‖S∞(H�) = O(1/R)

using the regularity of D0(p) stated in Theorem 2.2. �

2.4 Thermodynamic Limits

Let us first state a result for the thermodynamic limit when n = 0 and which

answers the questions (1) through (4) of Section 2.1. We recall that ET , T, f̄ , γ 0,

and P0
− are defined in Section 2.2.

THEOREM 2.7 (Thermodynamic Limit with No External Field) Assume that 0 ≤
α < 4/π , � > 0, and m0 > 0. Then for L large enough, E0

L possesses a unique

minimizer γ 0
L = P0

L − I L
�/2 on GL

�, where P0
L is an orthogonal projector. It is

translation invariant, γ 0
L = f 0

L (−i∇). One has

(2.34) lim
L→∞

EL(0)

L3
= ET = min {T( f ) | f ∈ A�}

and

lim
L→∞

∥∥γ 0
L − γ 0

∥∥
S∞(TL )

= lim
L→∞

sup
k∈�L

�

| f 0
L (k) − f̄ (k)| = 0,(2.35)

lim
L→∞

∥∥P0
L − P0

−

∥∥
S∞(TL )

= lim
L→∞

sup
k∈�L

�

|P0
L(k) − P0

−(k)| = 0.(2.36)

The proof of this result is given in Section 3.3.
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It is interesting to see how this result changes if another choice is made for the

definition of the no-photon QED Hamiltonian on the torus, like

H̃
1
L :=

∫
TL

�∗(x)D0�(x)dx +
α

2

∫∫
(TL )2

�∗(x)�(x)�∗(y)�(y)WL(x − y)dx dy

or

H̃
2
L :=

∑
i≥1

(D0)xi
+
∑

1≤i< j

WL(xi − xj )

=

∫
TL

�∗(x)D
ϕ

L�(x)dx +
α

2

∫∫
(TL )2

�∗(x)�∗(y)�(y)�(x)WL(x − y)dx dy.

In both cases, the thermodynamic limit is dramatically changed since we can prove

the following result:

THEOREM 2.8 (Thermodynamic Limit for Other Hamiltonians) Assume that H
0
L

is replaced by H̃
1
L or H̃

2
L in the previous study, and that α > 0, � > 0, m0 > 0,

and n = 0. Let us denote by 0 ≤ �L ≤ I L
� a self-adjoint operator acting on HL

�

that is the one-body density matrix of a minimizer of the QED Hamiltonian when

it is restricted to translation-invariant Hartree-Fock states. Then

(2.37) lim
L→∞

ρ�L
= lim

L→∞
L−3

∑
k∈�L

�

trC4(�L(k)) = 0.

Therefore, writing �L(x, y) = (2π)−3/2ξL(x − y),

(2.38) lim
L→∞

‖ξL‖L∞(R3) = 0.

In other words, when the Hamiltonian H̃
1
L or H̃

2
L is chosen instead of H

0
L , the

thermodynamic limit as L → ∞ is trivial. This phenomenon is due to the term

DL(ρ, ρ), which behaves like L5 and not like L3 and which plays the role of a pe-

nalization: the limit necessarily has a vanishing density. This shows the usefulness

of the commutator in the definition of ρ(x) in (2.12) or (1.2). In that case, one

obtains

lim
L→∞

ργ 0
L

= lim
L→∞

ρ(P0
L−I L

�/2) = lim
L→∞

(
ρ

P
0
L
−

ρL
�

2

)
= 0

and ργ 0 = ρ(P0
−−P

0
+)/2 = 0.

We now state a result for the thermodynamic limit when n �= 0; this answers

questions (5)–(8) of Section 2.1.

THEOREM 2.9 (Thermodynamic Limit with External Field) Assume that 0 ≤ α <

4/π , � > 0, m0 > 0, n ∈ C, and n̂ is continuous on B(0,�). Then for any L, E
ϕ

L

possesses a minimizer γL = PL − I L
�/2 on GL

� where PL is an orthogonal projector,

and one has

(2.39) lim
L→∞

{EL(ϕ) − EL(0)} = EBDF(ϕ) = min{E
ϕ
BDF(Q), Q ∈ Q�}.
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Moreover, up to a subsequence, QL(x, y) := (γL − γ 0
L )(x, y) = (PL − P0

L)(x, y)

converges uniformly on compact subsets of R
6 to Q̄(x, y), a minimizer of E

ϕ
BDF

on Q�.

This result justifies the Bogoliubov-Dirac-Fock theory for the study of the po-

larized vacuum in no-photon QED restricted to Hartree-Fock states. The proof is

given in Section 3.5.

The study of the thermodynamic limit for atoms and molecules (i.e., when the

minimization is restricted to a specific charge sector) is clearly beyond the scope of

this paper. Let us, however, indicate briefly what should be obtained in that case.

We fix some integer N and define the minimization problems in charge sectors:

E N
L (ϕ) := inf{E

ϕ

L(γ ), γ ∈ GL
�, tr(γ ) = N },(2.40)

E N
BDF(ϕ) := inf{E

ϕ
BDF(Q) | Q ∈ Q�, tr

P
0
−
(Q) = N }.(2.41)

A minimizer Q̃ = γ̃ − γ 0 of (2.41), if it exists, is a solution of a self-consistent

equation of the form [27]

(2.42)


γ̃ = −

sgn(Dγ̃ − µ)

2

Dγ̃ := D0 + α
(
ργ̃ − n

)
∗

1

| · |
− α

γ̃ (x, y)

|x − y|
,

µ being an Euler-Lagrange multiplier due to the charge constraint, interpreted as a

chemical potential. Written in terms of P̃− = γ̃ + I�/2, (2.42) reads

(2.43) P̃− = χ(−∞;0)(Dγ̃ − µ) = χ(−∞;µ)(Dγ̃ ).

We refer the reader to [12] and [25, remark 6] for comments in connection with the

Dirac-Fock equations [21].

We now conjecture that

(2.44) lim
L→∞

{E N
L (ϕ) − EL(0)} = E N

BDF(ϕ),

which would also justify the Bogoliubov-Dirac-Fock approach for the minimiza-

tion in charge sectors.

2.5 The Renormalization Problem

Throughout this paper, the cutoff � has been considered as a fixed parameter.

However, most of the objects that we have obtained, such as the density matrix γ ,

are divergent in �. This phenomenon is also encountered in full QED.

To give an example of this, let us consider g0(0), where g0 has been defined in

Theorem 2.2. Writing the self-consistent equation (2.31), it can be seen that [41,

eq. (20)]

g0(0) = m0 +
α

4π2

∫
B(0,�)

1

|q|2
g0(|q|)√

g1(|q|)2 + g0(|q|)2
dq.
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Therefore, using (2.27), one obtains

g0(0) ≥ m0 +
α

4π2

∫
B(0,�)

1

|q|2
m0g0(|q|)

g0(|q|)
√

|q|2 + m2
0

dq

= m0

(
1 +

α

4π2

∫
B(0,�)

1

|q|2
1√

|q|2 + m2
0

dq

)

= m0

(
1 +

α

π
arcsinh

(
�

m0

))
,(2.45)

which shows that g0(0) is divergent as � → ∞.

In regular QED, the divergences of the (appropriately defined) physically mea-

surable quantities are usually eliminated by means of a mass and a charge renor-

malization. The main idea is to assume that the parameters α and m0 appearing

in the theory are indeed bare parameters that are not physically observable. The

physical parameters are assumed to be functions of α, m0, and the cutoff �,

αph = αph(α, m0,�), mph = mph(α, m0,�)

and equal the physical values obtained in experiment. These functions should be

inverted in order to express the unknown bare quantities in term of the physical

quantities

(2.46) α = α(αph, mph,�), m0 = m0(αph, mph,�).

Using these functions, one expects to remove (in some sense that needs to be made

precise) all divergences from physically measurable quantities.

Mass and charge renormalization, however, does not remove all divergences in

the theory. Certain quantities, e.g., the bare Feynman propagator SF (either at equal

times or at general space-time points), are still divergent. The expectation is that

all these divergences cancel in physically measurable quantities and are therefore

of no real relevance in formulating the theory.

Although there is no real need to do this, it is often convenient to introduce a

renormalization of the bare Feynman propagator SF . This is referred to as a wave

function renormalization. In full QED [18] it is claimed that the divergence in the

Feynman propagator may be removed by a multiplicative renormalization and that

the renormalized propagator has the same pole near mass shell in four-momentum

space as a free propagator corresponding to a particle with the correct physical

mass.

Note that in practice, this theoretical renormalization procedure is always used

to justify the dropping of the divergent terms obtained at each order of the perturba-

tion theory [18]. For this fact to be true, it is particularly important that renormal-

ization be expressed by means of multiplicative parameters in front of the different

propagators [18].

In Hartree-Fock QED, it is not clear at all if the usual renormalization program

of QED can be applied (especially when photons are not included). In [26], a
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renormalization of the charge is proposed, but it seems to be valid only if the ex-

change term is neglected. In [46, pp. 194–195], it is argued that mass and charge

renormalization alone are not enough to completely remove the divergences of the

HF theory by means of multiplicative parameters.

In [41], it is proposed, among other possibilities, that the operator of Theo-

rem 2.2 be written as

D0(p) =
g1(|p|)

|p|

(
α · p +

|p|g0(|p|)

g1(|p|)
β

)
and to interpret g0(0)/g′

1(0) as being the physical mass mph and g′
1(0) as being the

wave function renormalization constant. This proposal does not at all correspond

to the procedure described above. Indeed, multiplying D0 by a constant does not

change the equal time Feynman propagator γ 0, since γ 0 = −sgn(D0)/2.

We believe that the correct solution is rather to define the quantities αph and mph

for a free Hartree-Fock electron (strictly speaking, photons should be included).

Namely, we define the physical mass as the minimum energy of a free electron,

which means, using (2.41),

(2.47) mph := E1
BDF(0).

Since an electron never sees its own field but interacts with the Dirac sea, we be-

lieve that E1
BDF(0) possesses a minimizer Q̃ = γ̃ −γ 0, i.e., that an electron can bind

alone when interacting with the Dirac sea (this was first proposed by Éric Séré).

According to (2.42), the operator γ̃ would then be a solution of the self-consistent

equation

(2.48)


γ̃ = −

sgn(Dγ̃ − µ)

2

Dγ̃ := D0 + αργ̃ ∗
1

| · |
− α

γ̃ (x, y)

|x − y|
,

where µ is a chemical potential chosen such that tr
P

0
−
(γ̃ − γ 0) = 1. Formally, we

could then define αph by

(2.49) αph := α lim
x→∞

|x |(ργ̃ ∗ | · |−1)(x).

If ρ̂γ̃ is smooth enough, for instance ρ̂γ̃ ∈ W 1,∞(B(0,�)), this is equivalent to

αph := (2π)−3/2αρ̂γ̃ (0).

If γ̃ − γ 0 were trace class, one would have (2π)−3/2ρ̂γ̃ (0) = tr(γ̃ − γ 0) =∫
R3 ργ̃−γ 0 = 1 and αph = α. But in the present case, it is known that when γ̃

is a solution of the self-consistent equation (2.48) such that ργ̃ �= 0, then γ̃ − γ 0

is never trace class [25, 29, 36]. Expanding (2.48) to first order in the bare α, this

should lead to a formula of the form [26]

αph(α, m0,�) =
α

1 + 2α
3π

log(�/m0)
+ o(α),
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the usual formula in QED [33, eq. (7.18)].

Both (2.47) and (2.49) would define mph and αph as extremely complicated,

nonlinear functions of α, m0, and �. A challenging task is to study the finiteness

of measurable quantities such as the energy of an electron in the presence of an

external field E1
BDF(ϕ) when αph and mph are fixed to be the observed physical

quantities.

3 Proofs

3.1 Preliminaries

We shall need the following lemma, which summarizes the properties of WL ,

defined in (2.4):

LEMMA 3.1 The potential WL satisfies the following properties:

(i) There exists a constant C such that [42]

(3.1)

∥∥∥∥WL(x) −
1

|x |

∥∥∥∥
L∞(CL )

≤
C

L
.

(ii) (Kato-Type Inequality) For any m0 > 0 and L large enough, there exists a

constant C L
�(m0) such that, on HL

�,

(3.2) WL ≤ C L
�(m0)|D

0|, lim
L→∞

C L
�(m0) = C�(m0),

where C�(m0) ≤ π/2 is the optimal constant for the inequality

1

|x |
≤ C�(m0)|D

0|

on H�.

PROOF: We know from [42, eq. (112)] that C := ‖W1 − 1/| · |‖L∞(C1)
< ∞.

On the other hand, we have the scaling property

WL(x) =
1

L
W1

( x

L

)
,

which implies that ∥∥∥∥WL −
1

| · |

∥∥∥∥
L∞(CL )

≤
C

L
.

For a fixed bare mass m0 > 0, let us define (we do not mention m0 for simplic-

ity)

C L
� := sup

ψ∈HL
�

〈|D0|ψ,ψ〉≤1

∫
CL

WL(x)|ψ(x)|2 dx < ∞,

C� := sup
ψ∈H�

〈|D0|ψ,ψ〉≤1

∫
R3

|ψ(x)|2

|x |
dx < ∞.
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A proof that C L
� is finite can be found in [10].

Let us consider a function ψ ∈ H� such that ψ̂ is continuous on the ball

B(0,�) and

∣∣∣∣ ∫
R3

|ψ(x)|2

|x |
dx − C�

∣∣∣∣ ≤ ε, 〈|D0|ψ,ψ〉 < 1.

We now approximate ψ by a sequence of functions in HL
� by defining

ψL(x) =
(2π)3/2

L3

∑
k∈�L

�

ψ̂(k)eik·x .

We have

‖ψL‖L∞(CL ) ≤
(2π)3/2|�L

�|

L3
‖ψ̂‖L∞(B(0,�)),

‖∇ψL‖L∞(CL ) ≤
�(2π)3/2|�L

�|

L3
‖ψ̂‖L∞(B(0,�)).

Therefore (ψL)L is bounded in W 1,∞(R3) and ψL → ψ uniformly on compact

subsets of R
3. On the other hand,

‖ψL‖2
L2(CL )

≤
(2π)3|�L

�|

L3
‖ψ̂‖2

L∞(B(0,�)),

which is also uniformly bounded in L . Using now

∣∣∣∣∫
CL

|ψL(x)|2WL(x)dx −

∫
CL

|ψL(x)|2

|x |
dx

∣∣∣∣ ≤ ‖ψL‖2
L2(CL )

∥∥∥∥WL −
1

| · |

∥∥∥∥
L∞(CL )

≤
C

L
,

we easily deduce that

lim
L→∞

∫
CL

|ψL(x)|2WL(x)dx =

∫
R3

|ψ(x)|2

|x |
dx .
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On the other hand,

〈|D0|ψL , ψL〉 =

(
2π

L

)3 ∑
k∈�L

�

〈|D0(k)|ψ̂(k), ψ̂(k)〉C4,

which converges to 〈|D0|ψ,ψ〉 as L → ∞, and therefore 〈|D0|ψL, ψL〉 ≤ 1 for L

large enough. This shows that

lim inf
L→∞

C L
� ≥ C� + ε

for any ε > 0 and thus lim infL→∞ C L
� ≥ C�.

Since HL
� is finite dimensional, there exists for any L an optimal function fL ∈

HL
� satisfying 〈|D0| fL, fL〉 ≤ 1 and

∫
CL

WL(x)| fL(x)|2 dx = C L
�. Thanks to the

cutoff in Fourier space, ( fL)L is bounded, for instance, in H 1(CL) and therefore

fL → f ∈ H� in L2
loc(R

3), up to a subsequence. Passing to the limit as above, we

obtain

lim
L→∞

∫
CL

| fL(x)|2WL(x)dx =

∫
R3

| f (x)|2

|x |
dx

and 〈|D0| f, f 〉 ≤ 1. This shows that

lim
L→∞

C L
� ≤

∫
R3

| f (x)|2

|x |
dx ≤ C�.

As a conclusion, we have

lim
L→∞

C L
� = C� ≤

π

2
,

which ends the proof of Lemma 3.1. �

3.2 Proof of Theorem 2.2

The functional T can as well be written

T( f ) =
1

(2π)3

( ∫
B(0,�)

trC4[D0(p) f (p)]dp −
α

2

∫
R3

| f̌ (x)|2

|x |
dx

)
,

which easily shows that T is continuous for the weak topology of L2(B(0,�),

S4(C)). Since A� is bounded and closed in this topology, T possesses a minimizer

on A�. In order to show the uniqueness and the properties of the minimizer as

stated in Theorem 2.2, we shall now minimize T on a special subset of A�.

Step 1. Minimization of T on a restricted set. Let us introduce the following

subset of A�:

(3.3) B� :=
{

f ∈ A� | ∃( f0, f1) ∈ G, f (p) = α · ωp f1(|p|) + f0(|p|)β
}
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where ωp = p/|p| and G ⊂ L∞([0; �], R)2 is the set of pairs ( f0, f1) satisfying

the following properties:

f0 ≤ 0 and f1 ≤ 0,(3.4)

f 2
0 + f 2

1 ≤
1

4
,(3.5)

∀p ∈ B(0,�) |p|

∫
B(0,�)

f0(|q|)

|p − q|2
dq ≤ m0

∫
B(0,�)

ωp · ωq f1(|q|)

|p − q|2
dq.(3.6)

Note that G is a bounded convex set, closed in the weak topology of L2([0; �], R)2.

Therefore, B� is also a closed subset of A�. As a consequence, we deduce that T

possesses a minimizer f̄ on B�.

Let us now show that f̄ satisfies the same Euler-Lagrange equation as global

minimizers of T on A�. Indeed, considering perturbations of the form (1−t) f̄ +tg

for any g ∈ B�, t ∈ [0; 1], one easily shows that f̄ is a minimizer of the following

energy on B�:

(3.7) T f̄ (g) =

∫
B(0,�)

trC4(D0(p)g(p))dp,

i.e., T f̄ (g) ≥ T f̄ ( f̄ ) for any g ∈ B�. Here D0 is the mean-field operator associated

with f̄

D0(p) = D0(p) −
α

2π2

∫
B(0,�)

f̄ (q)

|p − q|2
dq

= α · ωp

(
|p| −

α

2π2

∫
B(0,�)

ωp · ωq f̄1(|q|)

|p − q|2
dq

)

+ β

(
m0 −

α

2π2

∫
B(0,�)

f̄0(|q|)

|p − q|2
dq

)
.

= α · ωpg1(|p|) + βg0(|p|),

(3.8)

with

g1(|p|) = |p| −
α

2π2

∫
B(0,�)

ωp · ωq f̄1(|q|)

|p − q|2
dq

= |p| −
α

π

∫ �

0

v

|p|
Q1

(
1

2

(
|p|

v
+

v

|p|

))
f̄1(v)dv,(3.9)
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and

g0(|p|) = m0 −
α

2π2

∫
B(0,�)

f̄0(|q|)

|p − q|2
dq

= m0 −
α

π

∫ �

0

v

|p|
Q0

(
1

2

(
|p|

v
+

v

|p|

))
f̄0(v)dv.(3.10)

Here Q0 and Q1 are positive functions on (1; ∞), defined in [41, eqs. (24), (25)],

arising from the integration of the angle as shown in [41].

Due to the assumptions of (3.4), we deduce that g1(|p|) ≥ |p| and g0(|p|) ≥
m0, which implies

|D0(p)| ≥
√

|p|2 + m2
0 ≥ m0 > 0.

Therefore D0(p) is always invertible. This now easily implies that the unique

global minimizer of T f̄ defined in (3.7), on A�, is

f̄ ′(p) = −
sgn(D0(p))

2
= −

D0(p)

2|D0(p)|
.

We now show that indeed f̄ ′ ∈ B�, which will imply f̄ ′ = f̄ . To this end, we just

have to prove that

f̄ ′
0(p) = −

g0(p)

2|D0(p)|
and f̄ ′

1(p) = −
g1(p)

2|D0(p)|

satisfy the additional properties (3.4) and (3.6). For (3.4), this is an immediate

consequence of the fact that Q0 and Q1 are nonnegative on (1; ∞), whereas (3.6)

is proved in [41, theorem 2].

In conclusion, we have found a minimizer of T on the restricted set B� that is

a solution to the self-consistent equation

f̄ (p) = −
sgn(D0(p))

2

where D0(p) is defined in (3.8). Notice that by construction, D0(p) satisfies the

properties (2.25), (2.26), and (2.27). Of course, γ 0 := f̄ (−i∇) and P0
− := γ 0 +

I�/2 are, respectively, solutions of the self-consistent equations (2.22) and (2.23).

Step 2. Minimizer f̄ of T on B� Is Its Unique Global Minimizer on A�. We

now show that not only have we solved the self-consistent equation (2.22), but that

f̄ is the unique global minimizer of T.

To this end, we compute, for some f ∈ A�,

T( f ) = T( f̄ ) +
1

(2π)3

( ∫
B(0,�)

trC4[D0(p)Q(p)]dp −
α

2

∫
R3

|Q̌(x)|2

|x |
dx

)
,



THE MEAN-FIELD APPROXIMATION IN QED 575

where Q(p) = f (p) − f̄ (p). Since −IC4/2 ≤ f (p) ≤ IC4/2 due to (3.5) and

f̄ (p) = (P0
−(p) − P0

+(p))/2, we see that

(3.11) ∀p ∈ B(0,�) − P0
−(p) ≤ Q(p) ≤ P0

+(p).

We now adapt arguments from [5, 25] in the translation-invariant case. Namely,

(3.11) implies

Q(p)2 ≤ P0
+(p)Q(p)P0

+(p) − P0
−(p)Q(p)P0

−(p)

and

0 ≤ trC4(|D0(p)|Q(p)2) ≤ trC4(D0(p)Q(p))

for any p ∈ B(0,�). Now, by Kato’s inequality,∫
R3

|Q̌(x)|2

|x |
dx ≤

π

2

∫
trC4(|p|Q(p)2)dp ≤

π

2

∫
trC4(|D0(p)|Q(p)2)dp

for

|p| ≤
√

|p|2 + m2
0 ≤ |D0(p)|

by (2.27), and therefore, when 0 ≤ α < 4/π ,

T( f ) ≥ T( f̄ ) +
1

(2π)3

(
1 −

απ

4

) ∫
B(0,�)

trC4[|D0(p)|( f − f̄ )2(p)]dp

≥ T( f̄ ) +
(1 − απ/4)m0

(2π)3
‖ f − f̄ ‖2

L2(B(0,�),S4(C))
.

This immediately implies that f̄ is the unique global minimizer of T and also shows

that any minimizing sequence ( fn) ⊂ A� necessarily satisfies fn → f̄ strongly in

L2(B(0,�), S4(C)).

Step 3. Regularity of D0(p). It remains to show that the self-consistent free

Dirac operator D0 is smooth in the Fourier domain. To this end, we notice that it

satisfies the equation

D0(p) = D0(p) −
α

4π2

∫
B(0,�)

D0(q)

|D0(q)| |p − q|2
dq

or, on B(0,�),

D0 = D0 −
α

4π2

D0

|D0|
∗

1

| · |2
.

Therefore

|∇|D0 = |∇|D0 −
α

2

D0

|D0|
,
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which shows that D0 ∈ H 1(B(0,�)). Applying now ∇ to this equation and using

an easy bootstrap argument, one obtains that

D0 ∈
⋂
m≥1

H m(B(0,�)) ⊂ C∞(B(0,�)),

which ends the proof of Theorem 2.2. �

3.3 Proof of Theorem 2.7

Our proof proceeds as follows: we first minimize E0
L on a restricted set of

translation-invariant operators and study the limit of the corresponding sequence

of minimizers as L → ∞. Using then the properties of the solution f̄ constructed

in Theorem 2.2, we show that, for each L large enough, the so obtained local

minimizer is indeed the unique global minimizer of E0
L .

Step 1. Definition of Restricted Minimization Procedure. Let us define the

following minimization problem:1

(3.12) ET

L := inf{E0
L(γ ) | γ = f (−i∇), f ∈ BL

�}

where BL
� is the set of functions f : �L

� �→ S4(C) that take the special form

(compare with B� defined in (3.3))

(3.13) ∀p ∈ �L
� f (p) = α · A(p) + βb(p)

where A : �L
� �→ R

3 and b : �L
� �→ R are such that

∀p ∈ �L
� b(p) ≤ 0,(3.14)

∀p ∈ �L
� |A(p)|2 + b(p)2 ≤

1

4
.(3.15)

The energy of such a state reads

E0
L(γ ) = tr(D0γ ) −

α

2

∫∫
(TL )2

|γ (x, y)|2WL(x − y)dx dy

=
∑
p∈�L

�

trC4(D0(p) f (p))(3.16)

−
α

2(2π)3
L3

∫
TL

| f̌ (x)|2WL(x)dx

1 Recall that we denote also by −i∇ the operator acting on HL
�, i.e., the multiplication oper-

ator in the Fourier domain by (k)
k∈�L

�
. Therefore f (−i∇) is just the multiplication operator by

( f (k))
k∈�L

�
, in the Fourier domain.



THE MEAN-FIELD APPROXIMATION IN QED 577

=
∑
p∈�L

�

trC4(D0(p) f (p))

−
α(2π)3/2

2L3

∑
p,q∈�L

�

trC4( f (p) f (q))ŴL(p − q),

where we have used that, due to the special form (3.13) of f , the density of γ

vanishes, ργ = L−3
∑

p∈�L
�

trC4 f (p) = 0.

Step 2. Upper Bound on the Energy per Unit Volume. Let us now show that

lim sup
L→∞

ET

L

L3
≤ ET = min{T( f ) | f ∈ A�}.

This is easily done by considering the minimizer f̄ of T as a test function. For the

sake of clarity, we denote by gL the restriction of f̄ to �L
� and by GL = gL(−i∇)

the associated operator acting on HL
�, which is the multiplication operator in the

Fourier domain by ( f̄ (k))k∈�L
�

. Notice that

(3.17) ǧL(x) =
(2π)3/2

L3

∑
k∈�L

�

f̄ (k)eik·x

and that gL = f̄|�L
�

belongs to BL
� for any L due to the properties of f̄ stated in

Theorem 2.2.

Using | f̄ (k)| ≤ 1
2

for any k ∈ B(0,�) and (3.17), one sees that

(3.18) ‖ǧL‖L∞(R3) ≤
(2π)3/2|�L

�|

2L3
, ‖∇ ǧL‖L∞(R3) ≤

�(2π)3/2|�L
�|

2L3
.

Therefore, (ǧL)L is bounded in W 1,∞(R3) and converges to ˇ̄f uniformly on com-

pact subsets of R
3. Finally, we have ρGL

≡ 0 since trC4 f̄ (k) = 0 for any

k ∈ B(0,�) and therefore, by (3.16),

E0
L(GL)

L3
=

1

L3

∑
k∈�L

�

trC4(D0(k) f̄ (k)) −
α

2(2π)3

∫
TL

|ǧL(x)|2WL(x)dx .

Arguing as in the proof of Lemma 3.1, one easily shows that

lim
L→∞

E0
L(GL)

L3
= T( f̄ ),

hence

lim sup
L→∞

ET

L

L3
≤ T( f̄ ) = ET.
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Step 3. Existence of a Minimizer for ET

L . In order to show the converse

inequality

(3.19) lim inf
L→∞

ET

L

L3
≥ ET,

we first prove the existence of a minimizer for (3.12).

Since HL
� is finite dimensional, there exists a solution γ 0

L = f 0
L (−i∇), f 0

L ∈
BL

�, of the minimization problem (3.12). We now argue as in the proof of Theo-

rem 2.2 (step 1) to show that γ 0
L satisfies the same equation as global minimizers

of E0
L on GL

�. Due to the fact that BL
� is convex, f 0

L also minimizes

(3.20) T f 0
L
( f ) =

∑
p∈�L

�

trC4(D0
L(p) f (p))

in BL
�, where D0

L is the mean-field operator associated with f 0
L = α · A0

L + βb0
L :

D0
L(p) = D0(p) −

α(2π)3/2

L3

∑
q∈�L

�

f 0
L (q)ŴL(q − p)

= α ·

(
p −

α(2π)3/2

L3

∑
q∈�L

�

A0
L(q)ŴL(q − p)

)

+ β

(
m0 −

α(2π)3/2

L3

∑
q∈�L

�

b0
L(q)ŴL(q − p)

)
.

Notice that

(3.21) m0 −
α(2π)3/2

L3

∑
q∈�L

�

b0
L(q)ŴL(p − q) ≥ m0,

which shows that D0
L(p) is invertible for all p. The unique global minimizer of T fL

on BL
� is −sgn(D0

L)/2, which is easily seen to belong to BL
�. We therefore obtain,

for k ∈ �L
�,

(3.22) f 0
L (k) = −

D0
L(k)

2|D0
L(k)|

.

In other words, γ 0
L := f 0

L (−i∇) satisfies the equation

γ 0
L = −

sgn(D0
L)

2
, D0

L := D0 − αγ 0
L (x, y)WL(x − y),

or, written in terms of the projector P0
L := γ 0

L + I L
�/2,

P0
L = χ(−∞;0)(D

0
L).
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Step 4. Lower Bound on the Energy per Unit Volume. We now prove (3.19)

by studying the weak limit of γ 0
L = f 0

L (−i∇) defined in the previous step. Using

the same type of estimate as (3.18), we obtain that ( f̌ 0
L ) is bounded in W 1,∞(R3),

and it therefore converges to some function f̌ , uniformly on compact subsets of

R
3, up to a subsequence. On the other hand, let us define the stepwise function

νL [ f 0
L ] by

(3.23) νL [ f 0
L ](p) =

∑
k∈�L

�

f 0
L (k)χk(p),

χk being the characteristic function of
∏3

i=1[ki ; ki +2π/L[∩B(0,�). Then νL [ f 0
L ]

is bounded in L∞(B(0,�), S4(C)) and thus νL [ f 0
L ] ⇀ h ∈ A�, up to a subse-

quence, for instance, for the weak topology of L2(B(0,�), S4(C)). To see that

h = f , we could note that

f̌ 0
L (x) −

ˇ︷ ︸︸ ︷
νL [ fL](x) = (2π)−3/2

∑
k∈�L

�

f 0
L (k)

∫
χk(p)(eik·x − eip·x)dp + O

(
1

L

)
,

where our O(1/L) is due to the k ∈ �L
�, which are close to the boundary of

B(0,�). Hence, for any compact subset K of R
3,

∥∥ f̌ 0
L −

ˇ︷ ︸︸ ︷
νL [ f 0

L ]
∥∥

L∞(K )

≤ C(2π)−3/2
∑
k∈�L

�

| f 0
L (k)|

∫
χk(p)|(k − p) · x |dp + O

(
1

L

)

≤
CK

L
|B(0,�)| + O

(
1

L

)

for some constants C and CK , which shows that
ˇ︷ ︸︸ ︷

νL [ f 0
L ] → f̌ on compact subsets

of R
3 and implies f = h ∈ A�.

The energy of γ 0
L reads

(3.24)

E0
L(γ 0

L )

L3
=

1

L3

∑
k∈�L

�

trC4(D0(k) f 0
L (k))

−
α

2(2π)3

∫
TL

| f̌ 0
L (x)|2WL(x)dx +

α

2
µL2(ργL

)2.

We have

lim
L→∞

∫
TL

| f̌ 0
L (x)|2WL(x)dx =

∫
R3

| f̌ (x)|2

|x |
dx
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due to the fact that ( f̌ 0
L )L converges locally to f and that

‖ f 0
L ‖L2(TL ) =

(
2π

L

)3 ∑
k∈�L

�

| f 0
L (k)|2 ≤

(2π)3|�L
�|

4L3

is uniformly bounded in L . On the other hand, using the notation (3.23),

1

L3

∑
k∈�L

�

trC4(D0(k) f 0
L (k))

= (2π)−3

∫
B(0,�)

trC4(νL [D0](p)νL [ f 0
L ](p))dp + O

(
1

L

)
.

Since νL [ f 0
L ] ⇀ f weakly and νL [D0] → D0 strongly in L2(B(0,�)), we deduce

that

lim
L→∞

1

L3

∑
k∈�L

�

trC4(D0(k) f 0
L (k)) = (2π)−3

∫
B(0,�)

trC4(D0(p) f (p))dp

and

lim
L→∞

(
1

L3

∑
k∈�L

�

trC4(D0(k) f 0
L (k)) −

α

2(2π)3

∫
TL

| f̌ 0
L (x)|2WL(x)dx

)
= T( f ).

Recall that µ > 0, which implies due to (3.24)

lim inf
L→∞

ET

L

L3
≥ T( f ) ≥ ET,

where we have used that f ∈ A�. This of course shows that

lim
L→∞

ET

L

L3
= ET,

and, as a matter of fact, T( f ) = ET . By Theorem 2.2, f̄ is the unique minimizer

of T on A�, and thus f = f̄ .

Step 5. Study of the Convergence of γ 0
L = f 0

L (−i∇). We know that f̌ 0
L → ˇ̄f

uniformly on compact subsets of R
3 and that νL [ f 0

L ] → f̄ weakly in L2(B(0,�)).

Notice that νL [ f 0
L ] ∈ A� for any L . Since we know from the proof of Theorem 2.2

that T is continuous on A� for the weak topology of L2(B(0,�)), we obtain

lim
L→∞

T(νL [ f 0
L ]) = T( f̄ ),

which means that (νL [ f 0
L ])L is a minimizing sequence of T. By Theorem 2.2 we

infer νL [ f 0
L ] → f̄ strongly in L2(B(0,�)). Recall now that

f 0
L (p) = α · A0

L(p) + βb0
L(p), f̄ (p) = α · ωp f̄1(|p|) + β f̄0(|p|),
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which easily implies that, more precisely,

νL [A0
L] → f̄0(| · |) and νL [b0

L] → ω· f̄1(| · |)

strongly in L2(B(0,�)).

Using equation (3.22) fulfilled by f 0
L , we are now able to prove a better conver-

gence:

LEMMA 3.2 One has

lim
L→∞

‖D0
L − D0‖S∞(TL ) = lim

L→∞
( sup

p∈�L
�

|D0
L(p) − D0(p)|) = 0,(3.25)

lim
L→∞

‖γ 0
L − γ 0‖S∞(TL ) = lim

L→∞
( sup

p∈�L
�

| f 0
L (p) − f̄ (p)|) = 0,(3.26)

lim
L→∞

‖P0
L − P0

S∞(TL )‖ = lim
L→∞

( sup
p∈�L

�

|P0
L(p) − P0(p)|) = 0.(3.27)

Hence, for L large enough,

(3.28) ∀p ∈ �L
� |D0

L(p)|2 ≥ |p|2 +
m2

0

4
.

PROOF: Since (3.25) easily implies (3.26), (3.27), and (3.28), we only have to

prove that

(3.29) sup
p∈�L

�

∣∣∣∣(2π)5/2π

L3

∑
q∈�L

�

A0
L(p − q)ŴL(q) −

∫
B(0,�)

ωp−q f̄1(|p − q|)

|q|2
dq

∣∣∣∣→ 0

and that

(3.30) sup
p∈�L

�

∣∣∣∣(2π)5/2π

L3

∑
q∈�L

�

b0
L(p − q)ŴL(q) −

∫
B(0,�)

f̄0(|p − q|)

|q|2
dq

∣∣∣∣→ 0

as L → ∞. We only treat (3.30); (3.29) is obtained by the same arguments. This

is easily done by noting that, for instance,∣∣∣∣(2π)5/2π

L3

∑
q∈�L

�
|q|≤η

b0
L(p − q)ŴL(q) −

∫
B(0,η)

f̄0(|p − q|)

|q|2
dq

∣∣∣∣
≤

1

2

(
2π2µ

L
+

(
2π

L

)3 ∑
q∈�L

�
q �=0, |q|≤η

1

|q|2
+

∫
B(0,η)

dq

|q|2

)
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due to |b0
L(p)| ≤ 1

2
and | f̄0(p)| ≤ 1

2
, and an easy estimate for the rest of the form∣∣∣∣(2π)5/2π

L3

∑
q∈�L

�
|q|>η

b0
L(p − q)ŴL(q) −

∫
B(0,�)\B(0,η)

f̄0(|p − q|)

|q|2
dq

∣∣∣∣
≤

∣∣∣∣ ∫
B(0,�)\B(0,η)

(
νL [b0

L ](p − q)νL

[
1

| · |2

]
(q) −

f̄0(|p − q|)

|q|2

)
dq

∣∣∣∣+ O

(
1

L

)

≤ C
∥∥νL [b0

L] − f̄0

∥∥
L2(B(0,�))

+ C ′

∥∥∥∥νL

[
1

| · |2

]
−

1

| · |2

∥∥∥∥
L2(B(0,�)\B(0,η))

+ O

(
1

L

)
,

which converges to 0 as L → ∞, due to the strong convergence of νL [b0
L ] to f̄0 in

L2(B(0,�)). �

Step 6. γ 0
L = f 0

L (−i∇) Is the Unique Global Minimizer of E0
L on GL

� for L

Large Enough. Using (3.28), we now show that γ 0
L = P0

L − I L
�/2 is the unique

global minimizer of E0
L . Indeed, again using ideas from [5, 25], we write for any

γ ∈ GL
�,

E0
L(γ ) = E0

L(γ 0
L ) + tr(D0

L Q) −
α

2

∫∫
(TL )2

|Q(x, y)|2WL(x − y)dx dy

+
α

2
DL(ρQ, ρQ)

where we have used that, by construction, ργ 0
L
(x) = 0 for any x ∈ R

3, and where

Q = γ − γ 0
L . Notice that Q satisfies the inequality

−P0
L ≤ Q ≤ 1 − P0

L ,

which now implies as in [5, 25]

0 ≤ tr(|D0
L |Q2) ≤ tr(D0

L Q).

By Lemma 3.1, we can estimate

α

2

∫∫
(TL )2

|Q(x, y)|2WL(x − y)dx dy ≤
α

2
C L

�

(
m0

2

)
tr

(√
−� +

m2
0

4
Q2

)

≤
α

2
C L

�

(
m0

2

)
tr(|D0

L |Q2)
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due to (3.28), and therefore

tr(D0
L Q) −

α

2

∫∫
(TL )2

|Q(x, y)|2WL(x − y)dx dy

≥

(
1 −

αC L
�(m0/2)

2

)
tr(|D0

L |Q2).

On the other hand, DL(ρQ, ρQ) ≥ 0 and therefore

(3.31) E0
L(γ ) ≥ E0

L(γ 0
L ) +

(
1 −

αC L
�(m0/2)

2

)
tr(|D0

L |(γ 0
L − γ )2).

For L large enough one has

1 −
αC L

�(m0/2)

2
> 0,

since 0 ≤ α < 4/π and limL→∞ C L
�(m0/2) = C�(m0/2) ≤ π/2 by Lemma 3.1.

Therefore, by Lemma 3.2 and (3.31),

E0
L(γ ) ≥ E0

L(γ 0
L ) +

m0(1 − αC L
�(m0/2)/2)

2
‖γ 0

L − γ ‖2

S2(H
L
�)

,

which implies that γ 0
L is the unique minimizer of E0

L on GL
� and ends the proof of

Theorem 2.7. �

3.4 Proof of Theorem 2.8

For the sake of simplicity, we treat only the case where

H̃
2
L =

∑
i≥1

(D0)xi
+
∑

1≤i< j

WL(xi − xj )

is chosen instead of H
0
L , the arguments being easy to extend to H̃

1
L .

The energy of a Hartree-Fock state of density matrix � (a self-adjoint operator

acting on HL
� such that 0 ≤ � ≤ I L

�) is now simply E0
L(�) instead of (2.16)

(recall that E0
L is defined in (2.17)). Therefore, restricting this energy to translation-

invariant operators, the minimization problem to be solved for a fixed L is

(3.32) ẼL := min
{
E0

L(�) | �∗ = �, 0 ≤ � ≤ I L
�, ∃ξ | � = ξ(−i∇)

}
.

Since HL
� is finite dimensional, there exists a minimizer of this energy �L(x, y) =

(2π)−3/2ξL(x − y), where

ξL(x) =

(
2π

L

)3/2 ∑
k∈�L

�

�L(k)ek(x).
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Computing the energy of �L , we obtain

E0
L(�L) =

∑
k∈�L

�

trC4(D0(k)�L(k)) − L3 α

2(2π)3

∫
TL

|ξL(x)|2WL(x)dx

+
α

2
µL5(ρ�L

)2.

(3.33)

Notice that ∣∣∣∣∑
k∈�L

�

trC4(D0(k)�L(k))

∣∣∣∣ ≤ 2

√
�2 + m2

0 |�L
�|

since 0 ≤ �L(k) ≤ IC4 for any k, and that∫
TL

|ξL(x)|2WL(x)dx ≤ C L
�(m0)〈|D

0|ξL , ξL〉

= C L
�(m0)

(2π)3

L3

∑
k∈�L

�

|D0(k)| trC4(�L(k)2)

≤ 4(2π)3C L
�(m0)

√
�2 + m2

0

|�L
�|

L3

by Lemma 3.1. This implies

L−3

∣∣∣∣∑
k∈�L

�

trC4(D0(k)�L(k)) − L3 α

2(2π)3

∫
TL

|ξL(x)|2WL(x)dx

∣∣∣∣ ≤ M

for some uniform constant M . Hence, using E0
L(�L) ≤ 0, we obtain from (3.33)

α

2
µL2(ρ�L

)2 ≤ M

and limL→∞ ρ�L
= 0. To end the proof of Theorem 2.8, we notice that

‖ξL‖L∞(CL ) = ‖ξL‖L∞(R3) ≤
(2π)3/2

L3

∑
k∈�L

�

|�L(k)|

≤
C(2π)3/2

L3

∑
k∈�L

�

trC4 �L(k)

≤ C(2π)3/2ρ�L

where we have used that �L ≥ 0 and that |M | = trC4(M∗M)1/2 ≤ C trC4(|M |) for

some constant C . This proves (2.38). �

Remark 3.3. When passing to the weak limit in the energy, it is also easy to prove

that limL→∞ ẼL/L3 = 0.
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3.5 Proof of Theorem 2.9

Step 1. Construction of a Minimizing Sequence of Finite Rank Operators

for E
ϕ
BDF. In order to prove an upper bound for the energy difference EL(ϕ) −

EL(0), we need to use a trial state. To simplify matters, we shall use a finite rank

operator.

LEMMA 3.4 Assume that 0 ≤ α < 4/π , � > 0, m0 > 0, and n ∈ C . Then

there exists a sequence (Qk) ⊂ Q� of finite rank operators such that Qk + P0
− is a

projector for any k, and

lim
k→∞

E
ϕ
BDF(Qk) = min

Q�

E
ϕ
BDF.

PROOF: We know from Theorem 2.6 that E
ϕ
BDF possesses a minimizer Q̄ =

P̄− − P0
− ∈ Q� such that P̄− is a solution of the self-consistent equation

P̄− = χ(−∞;0)(D
0 + ϕQ̄ − RQ̄)

where

ϕQ̄ := α(ρQ̄ − n) ∗
1

| · |
, RQ̄ := α

Q̄(x, y)

|x − y|
.

We know from [25, 26] that ∇ϕQ̄ ∈ L2(R3), ϕQ̄ ∈ L6(R3), and RQ̄ ∈ S2(H�).

Now, let (ϕk) and (Rk) be two sequences such that

(1) ϕk ∈ L1(R3) ∩ H 1(R3) for any k, ∇ϕk → ∇ϕQ̄ in L2, and ϕk → ϕQ̄ in

L6(R3) as k → ∞;

(2) Rk ∈ S1(H�) for any k and Rk → RQ̄ in S2(H�) as k → ∞.

We define P ′
k := χ(−∞;0)(D

0 + ϕk − Rk) and Q′
k := P ′

k − P0
−. For the sake of

simplicity, we assume that 0 is not in the spectrum of D0 +ϕQ̄ − RQ̄ , the following

arguments being easily adapted to the other case. Then 0 /∈ σ(D0 + ϕk − Rk) for

k large enough and we can use Cauchy’s formula as in [25, 29] to obtain

Q′
k = −

1

2π

∫ ∞

−∞

(
1

D0 + ϕk − Rk + iη
−

1

D0 + iη

)
dη

=
1

2π

∫ ∞

−∞

1

D0 + ϕk − Rk + iη
(ϕk − Rk)

1

D0 + iη
dη,(3.34)

which implies Q′
k ∈ S1(H�) for∥∥∥∥ 1

D0 + ϕk − Rk + iη
(ϕk − Rk)

1

D0 + iη

∥∥∥∥
S1(H�)

≤
1√

ε2 + η2

√
m2

0 + η2

‖ϕk − Rk‖S1(H�)
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since |D0 + ϕk − Rk | ≥ ε > 0 and thanks to (2.27). Notice that ϕk ∈ S1(H�)

since, denoting by 1� the characteristic function of the ball B(0,�),

‖ϕk‖S1(H�) = ‖1�(−i∇)ϕk1�(−i∇)‖S1(H�)

≤ ‖1�(−i∇)|ϕk |
1/2‖2

S2(H�)

≤ C ‖1�‖2
L2 ‖ϕk‖L1

by the Kato-Seiler-Simon inequality; see [52] and [54, theorem 4.1] or the appen-

dix of [24].

We now show that limk→∞ E
ϕ
BDF(Q′

k) = E
ϕ
BDF(Q̄). Due to the results of Klaus

and Scharf [36] or the estimates of [25], we already know that Q′
k → Q̄ in S2(H�).

Since E
ϕ
BDF is strongly continuous [25] for the norm

(3.35) ‖Q‖ :=
(
‖Q‖2

S2(H�) + ‖ρQ‖2
C

)1/2
,

it therefore remains to prove that ρQ′
k
→ ρQ̄ in C . Notice that due to the ultraviolet

cutoff, ρQ′
k

→ ρQ̄ strongly in L2 (see, e.g., [25, formula (9)]). Expanding (3.34),

we obtain

Q′
k = −

1

2π

5∑
J=1

∫ ∞

−∞

dη

( J∏
j=1

1

D0 + iη
(Rk − ϕk)

)
1

D0 + iη

−
1

2π

∫ ∞

−∞

dη

( 6∏
j=1

1

D0 + iη
(Rk − ϕk)

)
1

D0 + ϕk − Rk + iη
.

(3.36)

As proved in [25, section 4.3.3], the first sum of the right-hand side of (3.36) is

continuous for the norm (3.35) when ∇ϕk → ∇ϕQ̄ in L2(R3), ϕk → ϕQ̄ in L6(R3),

and Rk → RQ̄ in S2(H�) (notice that the proof of [25] has to be adapted to the

case where D0 is replaced by D0, which is an easy task).

It therefore remains to show that the density associated with the last term of

(3.36) is also continuous for the C -norm as k → ∞. The only nontrivial term is∫ ∞

−∞

dη

( 6∏
j=1

1

D0 + iη
ϕk

)
1

D0 + ϕk − Rk + iη
,

which indeed is continuous for the S1(H�)-topology by estimates of the type∥∥∥∥( 6∏
j=1

1

D0 + iη
ϕk

)
1

D0 + ϕk − Rk + iη

∥∥∥∥
S1(H�)

≤ C

∥∥∥∥ 1

D0(p) + iη

∥∥∥∥6

L6

‖ϕk‖
6
L6

1√
ε2 + η2
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≤ C

∥∥∥∥ 1

D0(p) + iη

∥∥∥∥6

L6

‖ϕk‖
6
L6

1√
ε2 + η2

= C(m2
0 + η2)−3/2(ε2 + η2)−1/2‖(1 + p2)−1/2‖6

L6 ‖ϕk‖
6
L6 .

This means that the associated density (ρk) converges in L1. Therefore the Fourier

transform (ρ̂k) converges in L∞ and has a compact support by assumption. Hence

(ρk) converges in C .

In conclusion, Q′
k → Q̄ as k → ∞ for the norm ‖Q‖ := (‖Q‖2

S2(H�) +

‖ρQ‖2
C
)1/2. It is proved in [26, sec. 5.1] that E

ϕ
BDF is strongly continuous for this

norm, which implies now limk→∞ E
ϕ
BDF(Q′

k) = E
ϕ
BDF(Q̄). Hence, we have con-

structed a minimizing sequence of trace class operators in Q�. As a last step, we

now approximate each Q′
k by a sequence of finite rank operators (since k is fixed,

we shall denote for simplicity Q′ = P ′ − P0
− instead of Q′

k).

This will be done by using the following decomposition proved in [27]:2

P ′ =

N∑
n=1

| fn〉〈 fn| +

∞∑
i=1

|ui + λivi 〉〈ui + λivi |

1 + λ2
i

,(3.37)

1 − P ′ =

M∑
m=1

|gm〉〈gm | +

∞∑
i=1

|vi − λi ui 〉〈vi − λi ui |

1 + λ2
i

.(3.38)

where ( fi )
N
i=1 ∪ (vi )i≥1 is an orthonormal basis of P0

+H�, (gi )
M
i=1 ∪ (ui )i≥1 is an

orthonormal basis of P0
−H�, and

∑
i≥1 λ2

i < ∞. Using (3.37) and (3.38), one sees

that

Q′ =

N∑
n=1

| fn〉〈 fn| −

M∑
m=1

|gm〉〈gm | +
∑
i≥1

λ2
i

1 + λ2
i

(|vi 〉〈vi | − |ui 〉〈ui |)

+
∑
i≥1

λi

1 + λ2
i

(|ui 〉〈vi | + |vi 〉〈ui |),

(3.39)

which easily implies that

σ(Q′) ∩ (0; 1) =
⋃
i≥1

{
±

λi√
1 + λ2

i

}
.

Recall that Q′ ∈ S1(H�), which implies (λi )i ∈ l1(R). Let us now define

PK :=

N∑
n=1

| fn〉〈 fn| +

K∑
i=1

|ui + λivi 〉〈ui + λivi |

1 + λ2
i

+

∞∑
i=K+1

|ui 〉〈ui |.

2 The reader should compare this decomposition with the classical formula that gives the BDF

state associated with the projector Pk in the Fock space built with P0
−; see, e.g., [55, formula (10.96)]

where A =
∑

i≥1 λi |ui 〉〈vi |.
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The operator

QK = PK − P0
−

=

N∑
n=1

| fn〉〈 fn| −

M∑
m=1

|gm〉〈gm | +

K∑
i=1

λ2
i

1 + λ2
i

(|vi 〉〈vi | − |ui 〉〈ui |)

+

K∑
i=1

λi

1 + λ2
i

(|ui 〉〈vi | + |vi 〉〈ui |)

(3.40)

is a finite rank operator in Q� such that QK → Q′ for the S1(H�)-topology as

K → ∞. Therefore limK→∞ E
ϕ
BDF(QK ) = E

ϕ
BDF(Q′). This ends the proof of

Lemma 3.4. �

Step 2. Upper Bound on Energy Difference EL(ϕ) − EL(0). Let ε > 0 and

Q = P − P0
− ∈ Q� be a finite rank operator of the form (3.40) for some K such

that

E
ϕ
BDF(Q) ≤ min

Q�

E
ϕ
BDF + ε.

We now define, for i = 1, . . . , K ,

uL
i (x) =

(2π)3/2

L3

∑
k∈�L

�

ûi (k)eik·x ,

and ( f L
n )N

n=1, (gL
m)M

m=1, and (vL
i )K

i=1 by similar formulas. We have, using the pro-

jector P0
L defined in Theorem 2.7,

〈
P0

LuL
i ,P0

LuL
j

〉
L2(TL )

=

(
2π

L

)3 ∑
k∈�L

�

〈
P0

L(k)ûi (k), û j (k)
〉
C4

and so

(3.41) lim
L→∞

〈
P0

LuL
i ,P0

LuL
j

〉
L2(TL )

=

∫
B(0,�)

〈
P0

−(k)ûi (k), û j (k)
〉
C4 dk = δi j .

On the other hand, we also have

(3.42) lim
L→∞

∥∥uL
i − P0

LuL
i

∥∥2

L2(TL )
=
〈
P0

+ui , ui

〉
H�

= 0.

Using the same type of behavior for ( f L
n )N

n=1, (gL
m)M

m=1, and (vL
i )K

i=1 and the Gram-

Schmidt orthonormalization procedure, we can find ( f̃ L
n )N

n=1∪(ṽL
i )K

i=1, an orthonor-

mal system of P0
LHL

�, and (g̃L
m)M

m=1∪(ũL
i )K

i=1, an orthonormal system of (1−P0
L)HL

�,

such that

(3.43) lim
L→∞

∥∥ũL
i − uL

i

∥∥
L2(TL )

= 0, lim
L→∞

∥∥ṽL
i − vL

i

∥∥
L2(TL )

= 0,



THE MEAN-FIELD APPROXIMATION IN QED 589

for all i = 1, . . . , K , and

(3.44) lim
L→∞

∥∥ f̃ L
n − f L

n

∥∥
L2(TL )

= 0, lim
L→∞

∥∥g̃L
m − gL

m

∥∥
L2(TL )

= 0.

for all n = 1, . . . , N and m = 1, . . . , M .

We now define our trial state by

Q̃L =

N∑
n=1

| f̃ L
n 〉〈 f̃ L

n | −

M∑
m=1

|g̃L
m〉〈g̃L

m | +

K∑
i=1

λ2
i

1 + λ2
i

(
|ṽL

i 〉〈ṽL
i | − |ũL

i 〉〈ũL
i |
)

+

K∑
i=1

λi

1 + λ2
i

(
|ũL

i 〉〈ṽL
i | + |ṽL

i 〉〈ũL
i |
)(3.45)

and γ̃L := γ 0
L + Q̃L , where we recall that γ 0

L = P0
L − I L

�/2 is the unique translation-

invariant minimizer of E0
L defined in Theorem 2.7. Notice that by construction, Q̃L

satisfies

−P0
L ≤ Q̃L ≤ 1 − P0

L

and therefore γ̃L ∈ GL
�.

Let us now compute

E
ϕ

L(γ̃L) − EL(0) = E
ϕ

L(γ̃L) − E0
L(γ 0

L )

= E
ϕ

L(γ 0
L + Q̃L) − E

ϕ

L(γ 0
L )

= tr(D0
L Q̃L) −

∫
TL

ϕL(x)ρQ̃L
(x)dx +

α

2
DL(ρQ̃L

, ρQ̃L
)(3.46)

−
α

2

∫∫
(TL )2

|Q̃L(x, y)|2WL(x − y)dx dy,

where we have used that ργ 0
L

≡ 0.

Passing to the limit in (3.46) and using (3.43) and (3.44), one easily obtains

lim
L→∞

(E
ϕ

L(γ̃L) − EL(0)) = E
ϕ
BDF(Q) ≤ min

Q�

E
ϕ
BDF + ε

and therefore

lim sup
L→∞

(EL(ϕ) − EL(0)) ≤ min
Q�

E
ϕ
BDF.

Step 3. Lower Bound on Energy Difference EL(ϕ) − EL(0). Since HL
� is

finite dimensional, there exists for any L a minimizer γ ′
L of E

ϕ

L on GL
�. Using

classical arguments already used in the Hartree-Fock theory [4, 6, 39] (see also

[26, lemma 2]) and the positivity of WL (except on a set of measure zero), one

easily shows that

γ̃ ′
L +

I L
�

2
= PL + λ|ϕ〉〈ϕ|
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where PL is an orthogonal projector, λ ∈ [0; 1], and ϕ ∈ ker(Dγ ′
L
) with

Dγ ′
L

= D0 + α(ργ ′
L
− nL) ∗ WL − αγ ′

L(x, y)WL(x − y).

Since then E
ϕ

L(PL − I L
�) = E

ϕ

L(γ ′
L), γL := PL − I L

�/2 is also a global minimizer

of E
ϕ

L on GL
�.

Let us now define QL := γL − γ 0
L = PL − P0

L . As in (3.46), we have

EL(ϕ) − EL(0) = E
ϕ

L(γL) − E
ϕ

L(γ 0
L )

= tr(D0
L QL) −

∫
TL

ϕL(x)ρQL
(x)dx +

α

2
DL(ρQL

, ρQL
)(3.47)

−
α

2

∫∫
(TL )2

|QL(x, y)|2WL(x − y)dx dy.

Therefore, arguing as in [5, 25, 26] and using (3.28) and (3.2), we infer

EL(ϕ) − EL(0) ≥

(
1 −

αC L
�(m0/2)

2

)
tr
(
|D0

L |(Q++
L − Q−−

L )
)

+
α

2
DL(ρQL

− nL , ρQL
− nL) −

α

2
DL(nL, nL)

≥

(
1 −

αC L
�(m0/2)

2

)
tr(|D0

L |Q2
L)(3.48)

+
α

2
DL(ρQL

− nL , ρQL
− nL) −

α

2
DL(nL, nL)

where Q++
L := (1 − P0

L)QL(1 − P0
L) ≥ 0 and Q−−

L := P0
L QLP0

L ≤ 0. Since

limL→∞ C L
�(m0/2) = C�(m0/2) ≤ π/2 and 0 ≤ α < 4/π by assumption, then

1 − αC L
�(m0/2)/2 > 0 for L sufficiently large. Using tr(|D0

L |Q2
L) ≥ m0/2 tr(Q2

L)

due to (3.28), we deduce from (3.48) that

(1) QL(x, y)1CL
(x)1CL

(y) is bounded in L2((R3)2) and thus ρQL
(x)1CL

(x)

is bounded in L2(R3);

(2) ρ|D0
L |1/2 Q++

L |D0
L |1/2(x)1CL

(x) and ρ−|D0
L |1/2 Q−−

L |D0
L |1/2(x)1CL

(x) are nonneg-

ative functions, uniformly bounded in L1(R3).

Thanks to the ultraviolet cutoff, we may therefore assume that

(1) QL(x, y)1CL
(x)1CL

(y) ⇀ Q̄(x, y) weakly in L2((R3)2) and uniformly

on compact subsets of R
6;

(2) ρQL
(x)1CL

(x) ⇀ ρQ̄(x) weakly in L2(R3) and uniformly on compact

subsets of R
3;

(3) ρ|D0
L |1/2 Q++

L |D0
L |1/2(x)1CL

(x) → ρ+(x) ∈ L1(R3) and ρ−|D0
L |1/2 Q−−

L |D0
L |1/2(x)

1CL
(x) → ρ−(x) ∈ L1(R3) uniformly on compact subsets of R

3.
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Let us first show that Q̄ ∈ Q�. Due to (3.27), one easily obtains, passing to the

weak limit,

−P0
− ≤ Q̄ ≤ P0

+.

Notice also that |D0
L |1/2 Q−−

L |D0
L |1/2(x, y) = |D0

L |1/2P0
L QLP0

L |D0
L |1/2(x, y) con-

verges uniformly on compact subsets of R
6 to |D0|1/2P0

− Q̄P0
−|D0|1/2(x, y), by

(3.25) and (3.27). Therefore, one obtains

ρ+ = ρ|D0|1/2 Q̄++|D0|1/2 ∈ L1(R3), ρ− = ρ−|D0|1/2 Q̄−−|D0|1/2 ∈ L1(R3),

where, this time, Q̄−− = P0
−QP0

− and Q̄++ = P0
+QP0

+, which shows that Q̄ is

P0
−-trace class, Q̄ ∈ S

P
0
−

1 (H�). Finally, (3.48) shows that DL(ρQL
−nL, ρQL

−nL)

is bounded. Passing to the limit, we obtain ρQ̄ − n ∈ C , which implies ρQ̄ ∈ C

and as a conclusion Q̄ ∈ Q�. Hence, it remains to show that

lim inf
L→∞

(EL(ϕ) − EL(0)) ≥ E
ϕ
BDF(Q̄).

This will imply the desired bound

lim inf
L→∞

(EL(ϕ) − EL(0)) ≥ min
Q�

E
ϕ
BDF

since Q̄ ∈ Q�.

By Fatou’s lemma, we have

lim inf
L→∞

DL(ρQL
− nL, ρQL

− nL) ≥ D(ρQ̄ − n, ρQ̄ − n),

and since obviously limL→∞ DL(nL , nL) = D(n, n) due to the approximation of

integrals by Riemann sums for the continuous function n̂, it only remains to prove

that

(3.49) lim inf
L→∞

(
tr
(
|D0

L |(Q++
L − Q−−

L )
)
−

α

2

∫∫
(TL )2

|QL(x, y)|2WL(x − y)dx dy

)

≥ tr
(
|D0|(Q̄++ − Q̄−−)

)
−

α

2

∫∫
R6

|Q̄(x, y)|2

|x − y|
dx dy.

This is shown by following exactly the method the authors of [26] used for the

proof of their theorem 1 (step 1), which we briefly outline now.

The idea of [26] is to use space cutoff functions ηR and ξR defined by ηR(x) =
η(|x |/R) and ξR(x) = ξ(|x |/R) where η, ξ ∈ C ∞([0; ∞); [0; 1]) are such that

η2 + ξ 2 = 1, η(t) = 1 if t ∈ [0; 1], and η(t) = 0 if t ≥ 2. Let us denote by ηL
R the

periodized cutoff function that is defined for L large enough by the same formula

as ηR on CL and by ξ L
R =

√
1 − (ηL

R)2.

Then, in order to reproduce the first step of the proof of [26, theorem 1], the

following analogue to [26, lemma 1] is needed:
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LEMMA 3.5 We have

lim
R→∞

lim sup
L→∞

∥∥[|D0
L |, ξ L

R

]∥∥
S∞(HL

�)
= 0.

PROOF: We have

(3.50)
∥∥[|D0

L |, ξ L
R

]∥∥
S∞(HL

�)
≤ 2
∥∥|D0

L | − |D0|
∥∥

S∞(HL
�)

+
∥∥[|D0|, ξ L

R

]∥∥
S∞(HL

�)
.

The first term on the right-hand side of (3.50) tends to 0 as L → ∞ due to Lemma

3.2. By the regularity of D0(p) proved in Theorem 2.2, there exists a constant C

such that ∣∣|D0(p)| − |D0(q)|
∣∣ ≤ C |p − q|

when p, q ∈ �L
�. This enables us to argue similarly to the proof of [26, lemma 1]

and obtain a bound of the form∥∥[|D0|, ξ L
R

]∥∥
S∞(HL

�)
≤

C

L3

∑
p∈(2πZ3)/L

∣∣pξ̂ L
R (p)

∣∣
and therefore

lim sup
L→∞

∥∥[|D0|, ξ L
R

]∥∥
S∞(HL

�)
≤ C ′

∫
R3

|r ξ̂R(r)|dr = O

(
1

R

)
,

which ends the proof of Lemma 3.5. �

One has

tr
(
|D0

L |(Q++
L − Q−−

L )
)

= tr
(
ηL

R|D0
L |(Q++

L − Q−−
L )ηL

R

)
+ tr

(
|D0

L |ξ L
R (Q++

L − Q−−
L )ξ L

R

)
+ tr

(
[ξ L

R , |D0
L |](Q++

L − Q−−
L )ξ L

R

)
,

On the other hand,∫∫
(CL )2

|QL(x, y)|2WL(x − y)dx dy

=

∫∫
C 2

L

η2
R(x)η2

3R(y)|QL(x, y)|2

|x − y|
dx dy

+

∫∫
C 2

L

(ξ L
R )2(x)|QL(x, y)|2WL(x − y)dx dy + O

(
1

L

)
+ O

(
1

R

)

where we have used (3.1). Now, multiplying −P0
L ≤ QL ≤ 1 − P0

L by ξ L
R on

both sides and using Kato’s inequality (3.2) for L large enough, we easily obtain,
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following [26], that

tr
(
|D0

L |ξ L
R (Q++

L − Q−−
L )ξ L

R

)
−

α

2

∫∫
C 2

L

(ξ L
R )2(x)|QL(x, y)|2WL(x − y)dx dy ≥ 0.

Hence,

tr
(
|D0

L |(Q++
L − Q−−

L )
)
−

α

2

∫∫
C 2

L

|QL(x, y)|2WL(x − y)dx dy

≥ tr
(
ηL

R|D0
L |(Q++

L − Q−−
L )ηL

R

)

−
α

2

∫∫
C 2

L

η2
R(x)η2

3R(y)|QL(x, y)|2

|x − y|
dx dy

+ tr
([

ξ L
R , |D0

L |
]
(Q++

L − Q−−
L )ξ L

R

)
+ O

(
1

L

)
+ O

(
1

R

)
.

(3.51)

Estimate (3.49) is then easily obtained by passing to the limit first as L → ∞ and

then as R → ∞ and using Lemma 3.5.

In conclusion, we have shown that

lim
L→∞

(EL(ϕ) − EL(0)) = min
Q�

E
ϕ
BDF.

Due to our estimates, we also conclude that the weak limit Q̄ of QL satisfies

E
ϕ
BDF(Q̄) = minQ�

E
ϕ
BDF. Therefore, Q̄ is a minimizer of EBDF. This ends the

proof of Theorem 2.9. �
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