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Discussion of the infinite distribution of electrons in the theory
of the positron. By Professor P. A. M. DIRAC, St John's College.

[Received 2 February, read 5 March 1934.]

1. Use of the density matrix.

The quantum theory of the electron allows states of negative
kinetic energy as well as the usual states of positive kinetic energy
and also allows transitions from one kind of state to the other.
Now particles in states of negative kinetic energy are never
observed in practice. We can get over this discrepancy between
theory and observation by assuming that, in the world as we know
it. nearly all the states of negative kinetic energy are occupied,
with one electron in each state in accordance with Pauli's exclusion
principle, and that the distribution of negative-energy electrons is
unobservable to us on account of its uniformity. Any unoccupied
negative-energy states would be observable to us, as holes in the
distribution of negative-energy electrons, but these holes would
appear as particles with positive kinetic energy and thus not as
things foreign to all our experience. It seems reasonable and in
agreement with all the facts known at present to identify these
holes with the recently discovered positrons and thus to obtain a
theory of the positron *.

We now have a picture of the world in which there are an
infinite number of negative-energy electrons (in fact an infinite
number per unit volume) having energies extending continuously
from — m<? to — oo. The problem we have to consider is the way
this infinity can be handled mathematically and the physical effects
it produces. In particular, we must set up some assumptions for
the production of electromagnetic field by the electron distribution,
which assumptions must be such that any finite change in the
distribution produces a change in the field in agreement with
Maxwell's equations, but such that the infinite field which would
be required by Maxwell's equations from an infinite density of
electrons is in some way cut out.

These problems are quite simple when we suppose each electron
to be moving in a space free of electromagnetic field. They are not
so simple when there is a field present, since the positive- and
negative-energy states then get mixed together so intimately that
one cannot in general distinguish accurately between them in a

* As thia theory was first put forward, Proc. Roy. Soc. A, 126, p. 360 (1930)
and Proc. Camo. Phil. Soc. 26, p. 361 (1930), the holes were assumed to be protons,
but thia assumption was afterwards seen to be untenable, since it was found that
the holes must correspond to particles with the same rest-mass as electrons. See
Proc. Roy. Soc. A, 133, p. 61 (1931).
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relativistically invariant way. A careful investigation is then
necessary, even for such an elementary problem as seeing that a
precise meaning can be given to a distribution such as occurs in
practice, in which nearly all the negative-energy states are occupied
and nearly all the positive-energy ones unoccupied.

To make an exact treatment of the matter would be very
complicated and in the present paper' only an approximate treat-
ment will be given, on the lines of Hartree's method of the
self-consistent field. We shall suppose that each electron has its
own individual wave function in space-time (instead of there being
one wave function in an enormous number of variables to describe
the whole distribution), and also we shall suppose that each electron
moves in a definite electromagnetic field, which is the same for all
the electrons. This field will consist of a part coming from external
causes and a part coming from the electron distribution itself, the
precise way in which the latter part depends on the electron
distribution being one of the problems we have to consider.

Let the normalized functions for the electrons at any time be
^ai®), where x stands for three positional coordinates x\, x%, x3 of
an electron and the suffix a takes on different values for the
different electrons. With electron spin taken into account, each
y{ra (x) must have four components, which may be specified by •^•ajc (x)
with k=l,2,3, 4. The whole distribution of electrons may now be
described by the density matrix p defined by

(*' IPI *")*•*• = 2 . +# (*') ?<,*•' (*"), (1)
in which the sum is taken over all the electrons. This is a matrix
in the spin variables k as well as in the positional variables x.
I t is, of course, a Hermitian matrix. Its properties have been
studied previously*, the chief ones being the equation

P2 = P, (2)
which expresses that the electron distribution satisfies the exclusion
principle, and the equation of motion

= HppH. (3)

Here H is the Hamiltonian for the motion of a single electron in
the field, thus

H = as(p, + eAJ-eAo+atm, (4)

the velocity of light being made equal to unity and a summation
being implied over the values s= 1, 2, 3.

* Dirac, Proc. Camb. Phil. Soc. 25, p. 62 (1929); 26, p. 376 (1930) and 27,
p. 240 (1931).
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An alternative way of regarding the sum on the right-hand
side of (1) is as a sum over all the occupied states*. It may then
conveniently be written 20c-<|rt.(a;')^jt"(*")- There will be a
corresponding sum over the unoccupied states, which may be written
^un V*"*' (*') ^t" (*")• If w e a°ld these two sums, we get the sum
over all states and this must give us the unit matrix, from the
transformation theory of qtfantum mechanics. Thus

to* +v (*') fc- (*") + 2un yfre (*') fy (*") = B(x'- x") h-k-
Put p = i(l+Pl), ' (5)

so that
(x' | Pl | x" )w = 2oe ** (*') fy (a;") _ 2un ̂  (a;') ̂ . , (a;").

We may now consider the electron distribution as specified by the
matrix pt instead of the matrix p. This has the advantage that it
makes a closer symmetry between the electrons and the positrons
and leads to neater mathematical • expressions. The equation of
motion (3) holds unchanged with pi instead of p and equation (2)
gets modified to

Pi2 = l. (6)

The density matrices that we have been discussing up to the
present are non-relativistic things, since their elements each refer
to two points in space x and x" but to only one time. To get a
relativistic theory, we must introduce two times, t' and t", and use
instead of p the relativistic density matrix R denned by

= 2oc^t.(x't')^k:(x"t"). (7)

Instead of pi we shall now have Ri, defined by

(x't'\R1\x"t")^l!.l
= 2OC fk. (x'S) fo» (x"t") - Slm yjrk.(x't'jfy.. (x"t"),

and instead of equation (5) we shall have

where {x't'\RF\x"t")k.k-

Rp, representing the full distribution with all possible states
occupied, is no longer simply the unit matrix, but all the same we
should expect it to play some fundamental part in the theory.

* The word ' all' used in this connection means each of a set of orthogonal
states which is made ae large as possible, and does not include states formed by
superposition of these orthogonal states.
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The new matrices R, Ri, RF are also Hermitian and their
equation of motion is

WR = 0, MfBi - 0, WRF = 0, (8)
where PS is the total operator that operates on the wave function
in the wave equation for one electron, i.e.

W being the operator iK times time-differentiation. Equations (2)
and (6) cannot be concisely expressed in terms of the R's.

To obtain the field produced by the distribution of electrons,
we must first get the electric density and current density. For
this purpose we must, according to the usual theory for finite
distributions, take a diagonal element of p in the positional
variables, or a diagonal element of R in the positional and time
variables, and form its diagonal sum over the spin variables. The
resulting expression, namely 1t(x\p\X)M or 2*{xt\ R\xt)ue would
then be the electric density (apart from the factor — e). The
corresponding current density would have for its sth component
^k(x\atp\x)a or TLle(xt\asR\xt)ia:. We can easily verify that this
electric density and current density satisfy the conservation law of
electricity. In equation (3) let us take diagonal elements in the
positional variables, but keep to the symbolic matrix notation for
the spin variables, so that a symbol like (x\p\x) denotes a matrix
with four row3 and columns, of the same nature as an a. This gives

+ (x | {a,p - pa,\ {p, + eA8}\x)+(x\a4p- pat \ x) m.
If we now take the diagonal sura with respect to the spin variables,
the last two terms will contribute nothing, from the rule that the
diagonal sum of the product of two matrices is independent of
their order, and we shall be left with

iH> -fa 2* 0" | PI *)«!=2«- a, a- (x \ p,p -pp, \ x)k.k

= — *'£ 2*f a.if g -̂ (x! p i x)v k <

i.e. ^ 2 t ( * | p | « ) t t = - ^ 2 t ( * | o J p | « ) t t , (9)

which is the required conservation law.
In our present theory the electric density and current density

given by these formulae would be infinite and some alteration of
the assumptions is therefore necessary. The problem now presents
itself of finding some natural way of removing the infinities from
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1k (xt | R | xt)k]c and 1k {xt \ asR \ xt)kk so as to leave finite remainders,
which we could then assume to be the electric and current densities.
This problem requires us to make a detailed investigation of the
singularities in the matrix elements {x't'\R\x" t")KK' near the
diagonal x/ = #„", t' = t".

2. Case of no field.

We shall begin our investigation by taking the case of no
electromagnetic field, when the Hamiltonian (4) reduces to

S=aKp,+aim = (a,jp)+aim. (10)
In this case we can calculate accurately the matrix elements
(x' t' \R\x"t")k'h" for the distribution of electrons in which all the
negative-energy states are occupied and all the- positive-energy
ones unoccupied, and see exactly how these matrix elements behave
near the diagonal.

If we try to work directly from the definition (7) we meet with
some awkward calculations in taking the spin variables into account
and summing over the two possible spin orientations. We can
avoid these calculations by using symbolic methods and first
obtaining p. The condition that a wave function tfr contains only
Fourier components belonging to negative-energy states may be
expressed symbolically by

where P denotes the length of the vector p and the positive square
root is understood. Similarly, the condition that the distribution
p contains electrons only in negative-energy states may be expressed

{H+J{P* + m2)}p = 0. (11)
The condition that in the distribution p every negative-energy
state is occupied, is just the condition that the distribution 1 — p
contains electrons only in positive-energy states and may thus be
expressed by

Adding this equation to (11) we get
[H + -AP2 + m2)} (2p - 1) = 0

(a, p)

Hence, from the transformation theory,

' - p") dp" e ~l (*"•p '>/*, (13)
where dp denotes the product dpidpzdp3.
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We can now easily see that

(x't'\R\x"t")

JJ _ [U ( , ) / N ( )/ do Fl _

x £ (p' - p " ) dp" e - f (x"> »">/* e - «"*/(*"+»')/* (14)

This is because the right-hand side of (14) is Hermitian and goes
over into the right-hand side of (13) when t' = t", and also it
satisfies the equation of motion (8), since the operator %£ operating
on the integrand in (14) is equivalent to the factor

- {(a, p') + aim+ V(P'2 + m2)}

multiplied into this integrand on the left and therefore gives the
result zero, from equation (11). Introducing the notation

•£« "" XS =a'8t t — t = t,

which we shall keep through the rest of the paper, we get from
(14)

«'«' | R | x"t") = ̂  p
(a,

where 5(«, t) = - ^ | e M^. ) /n^

To integrate this expression for S, let r denote the length of
the vector x and 8 the angle between it and the vector p. Then

S(x,t)= r3 ri»dP f Sm
n JO J - I T

_ ~ 1 _ [ " f J irP +1 sUP2 + m2)]/* _ J [ - rP +1 ^(P2 + m»)]/!h -p J p
2A2rJo l '

= 9 ^ - f"

~
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where

U(r,t) i j " ef

i f°°
= exp [i [r sinh % +1 cosh ̂ ] ra/^j d%,

** t J — 00

with P = m sinh %, V(-P2 + m 8) = m c o s n X •
This integral can be evaluated in terms of Bessel functions and the
result is

U (r, *) = Ho® [m (t2 - rrf/h] t > r

= Ho
{1) \im(r2-t*)i/ti] r>t>-r

= - jy0
(2) [m(t*-r^m -r>t.

If we went through the corresponding calculation for the distri-
bution of electrons m which all the negative-energy states are
unoccupied and all the positive-energy ones occupied, we sliould
get a result of the form(15), where S would be given by equation (16)
with — U(r, — t) substituted for U (r, t). Hence the full distribution
Rp, with all the positive and negative-energy states occupied, will
be given by

(*'t '\RF\w"t") = - \ifi|- iKa,}• + aim\ SF(x,t), (17)
L ot dxg J

8r{«,t) = ̂ \lu,(r,t), (18)

with UF(r,t)=U (r, t)-U (r, -1)

= 0 r>f>-rj. (19)
= -2J0{m(t2-r2)i/%} -r>t J

Similarly the distribution Rx will be given by

V\Rl\x"t")•• Iifi|- i%a,^ + aim\ &(x,t), (20)

with Ut (r, t) = U(r, t) + U(r, -1)
{(<2-r2)*/fe} t>r }

im (r2 - trf/H} r > t> - r j - . (22)
-r>t i
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It is clear from these equations that there will be singularities,
not only at the point xs = 0, t = 0, but also everywhere on the light-
cone t2 — r2 = 0. In order to determine these singularities, we may
expand the Bessel functions in power series of \J(t2 — r2) and retain
only the first few terms. If we retain only the first term in (19),
we get for Up the constant value zero outside the light-cone and
the constant values 2, — 2 in the two regions inside the light-cone
for which t > r and t < — r respectively. This Up substituted in (18)
gives

8,(«,t) = (i/2hr) {8(r-t)-8(r + t)}.
For t > 0, this may be written

8, (x, t) = (i/2hr) S(r-t) = (i/h) 8 (f - r2),
and when substituted in (17) gives

(x't'\Rp\x"t") = (l/-n-)(t + al,x,)8'(t2-r2), (23)
with neglect of a term involving 8(t2 — r2). This is the worst
singularity of RF. For t<0 the result is the same, except for
a change of sign. If we retained the second term in the expansion
of Jo in (19), we should get the next worst singularity of Rp, con-
taining S(t2 - r2). If we retained also the third term in Jo in (19),
we should get also the third worst kind of singularity in Rp, in-
volving a plain discontinuity on the light-cone. The fourth and
higher terms in Jo would not give rise to any singularity in Rp.
In this way we can determine completely all the singularities
in Rp.

Let us now examine the singularities in Ri. The important
terms in Ui, given by (22), are

(4»/w) log {m («2 - r2)*/fc} Jo {m(t2- r2)4/S} 111 > r, (24)
[2 + («/ir)log{tm(r2-<2)*/fy]Jo\im(r2-t2)^jfi) \t\<r. (25)
The remaining terms are a power series in t2 — r2, of the same form
inside and outside the light-cone, and therefore they do not give
rise to any singularity. Expression (25) may be simplified to

(4-il-rr) log {m (r2 - <2)fyfy Jo {im (r2 - «a)*/ft}. 11 \ < r.
Substituting this and (24) into (21) we get, if we take only the
first term of Jo into account,

i ^ - (26)
It is important to see that no 8 function occurs in Si (x, t). The

reason at the bottom of this is that, in differentiating the logarithm
that occurs in the Bessel functions Yo and Ho

a), we must use the
formula
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in which the term — i7rB(z) is required in order to make the
integral of the right-hand side of (27) between the limits a and — a
equal log — 1, the integral of 1/z between these limits being assumed
to be zero. The 8 function which arises in this way just cancels with
that arising from the fact that we have Ho

{1> instead of Fo in (22)
when r > t > — r. This cancellation is exact and still holds when (22)
is differentiated more than once with respect to any of the variables
t, r, xs.

On substituting (26) into (20), we find

(f't' I Ji, I v"i"\ — — * + a"X'yX I | Xli | X I ) — -^2 . 2 _ ^ T j j ,

neglecting a term involving l/(t2 — r2). This gives the worst
singularity of Ri. By taking into account the second and third
terms in the expansion of the Jo in (24) and (25), we can calculate
the other singularities in Rlt involving l/(t2 — r2) and log \t2 — r2\.

The main result of this investigation for the case of no field is
that there are two quite distinct kinds of singularity occurring in
the matrices Rf and Ri respectively. The singularities occurring
in RF are all associated with the S function and those in R^ with
the reciprocal function and logarithm. From the generality of this
result we may expect it to hold also when there is a field present.

3. Case of an arbitrary field.
Let us now examine the singularities in (x'tf \RF\x"t") and

(x't'\Ri\x"t") when there is a general field present. Our method
will be to suppose that the singularities are of the same form as
in the case of" no field, but have unknown coefficients. These co-
efficients must be functions of x,', tf, x8", t" which are free from
singularities and can be expanded as Taylor series for small values
of xa and t. We must try to choose them so that the equations of
motion (8) are satisfied.

The application of the method follows a parallel course for Rp
and JRI, and we need therefore treat in detail only Rlt which is the
density matrix we are mainly interested in. We put

where u, v and w are functions of x/, t', x,", t" or of xB, t, x", t",
which are free from singularities for small values of xa and t. To get
sufficient generality we must allow «, v and w to be matrices in
the spin variables and thus not necessarily to commute with the a'a.
We shall find, however, that we can satisfy all the conditions with
u diagonal in the spin variables and thus commuting with all the a'a.
For the sake of brevity in the algebraic work, we shall assume
already now that u is diagonal in the spin variables.
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We must now try to choose u, v and w so that the second of
equations (8) is satisfied. It is convenient to use the symbol ffl to
denote the differential operator

^t+a8^J+e(A0-aaA,)-aim, (30)

the function that it operates on being assumed to be expressed in
terms of the variables xs, t, x", t" and not to involve xt', t' ex-
plicitly. With this notation, we get from (8)

which reduces to

+ («%») log 112 - r* | + 2i% *-„--'*'v> = °- (31)

In order that this equation may hold when u, v and w are free from
singularity, the log term must vanish by itself and hence

%?w = 0 (32)
and

(J/Su) (t + a,x,) + (Wv) (t2 - r2) - 2i% (t - aex,) v
+ 2ith(t-asxs)w(t2-r2) = 0. (33)

Now from the commutability relations for the a's we find, after a
simple calculation,

(Mu) (t + a,x,) = —(t- atx,) Su
J J . J . \ (.t 3 . \)

+ 2 \t I t»=r + ê lo +«, tft •= eA. )> u,I \ ot ) \ dx, j)
where S' denotes the differential operator

(35)

If we substitute the right-hand side of (34) for the first term in (33),
we get an equation which may be written

2it (ih=-+eAo\ +x, (ih£- -eA,]\u + (t-a,x,)5 = 0, (36)

where B = (t + a,xt) fflv - 2itiv + 1i%w (f - r2) - Su. (37)

When a given (x't'\Ri\x"t") is expressed in the form (29), u
and v are not completely determined, since we can always add a
term of the form b (t — a,x,) to u and subtract b from v without
changing the right-hand side of (29), b being anything free from
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singularities. It can easily be shown that we may choose b so as to
make B = 0. With this extra condition, equation (36) can be solved
for u, the result being

u — k exp {ie f (Aadt — A,dx3)/K\, (38)

where k is an arbitrary coefficient and the integral is taken along
the straight line in space-time joining the point x3", t" to the point
xs', t'. We must take k equal to — i/ir2 so as to make the worst
singularity of the right-hand side of (29) equal to the right-hand
side of (28) for small values of xs, t. This determines u completely.

We must now deal with equation (37) with B — 0. It may be
written

(t + a,x,)f- 2i%v - £u = 0, (39)

where / = fflv + 2i% (t - aBx,) w. (40)

Equation (39) gives v in terms of/and allows us to eliminate v and
work with the unknown f instead. Eliminating v from (40), we get

- m {t -a,xa) w. (41)

Now by the same kind of calculation as led to (34) we find

a,x,)f=- (t - a,x,) £f

+x8(i%^-eA^f. (42)

If this expression is substituted for the first term in the right-hand
side of (41), we get the result

2 \t (i^^i + eA0) +x8 U%^ eA,\lf+ 2i%f

- a,x,) (4,%2w + £f). (43)
A way of solving this equation for/" is first to solve the corre-

sponding equation with the term containing the factor t — a,x,
omitted, i.e. the equation

2 it (ih^ + eA0) +x. U%^ -eA^jl/x + 2i%fx = MSu. (44)

Then f will be of the form

f=fi + (t-a,x,)g, (45)

where g is free from singularities. Substituting (45) in (43) and
using (44), we get, after cancelling the factor t — a,za,

2\t U% ̂  + e Ao J + x, U% r eAs H g + 4d%g

- a,xt) g.
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If we now use an equation like (42), with g instead o f /and the
signs of all the as changed, this reduces to

(t + a,xs) fflg = 4,T<?w + $fx. (46)

Equation (44) fixes fx completely, without any arbitrary
constant. One can see this by substituting for the various functions
in this equation their Taylor expansions in powers of x, and t, when
it will be found that the coefficients of fx of the nth degree are
completely determined in terms of those of lower degree and of the
coefficients of the A's.

We are thus left with the problem of solving equations (32)
and (46) for w and g. If we apply the operator ffl to equation (46),
the term involving w drops out by equation (32), leaving

%{t + a,xt) % = XSfx. (47)

This, considered as an equation in the unknown j%r, determines
fflg completely, as may also be verified by Taylor expansions.
From (46), w is now determined. In this way all our equations are
satisfied and all our unknowns are determined, with the exception
of g, which is not itself determined although ffl!g is. The final
result is

£h r*\, (48)
where u is given by (38), and/!, <% and w are determined by (44),
(47) and (46) respectively.

To do the corresponding work for RF we put, analogously
to (29),

(«* t'\RF\ x"t") = u(t + aBx,)8' (t2 - ra) + vS (f - r2) + wy (? - ra),
(49)

where y is the function
y(z) = 0 z<0

7 (z) = 1 z > 0,

and we again try to choose u, v and w to satisfy the equation of
motion (8). The equations that we now get for u, v and w are
exactly the same as before and thus their solution will be the same,
or else will differ from the previous solution by a numerical factor.
In order that the worst singularity of the right-hand side of (49),
i.e. the first term in it, may be the same as the right-hand side
of (23) for small values of x,, t, we must choose this numerical
factor equal to tV. Hence expression (49) with u, v and w equal
to i-rr times their values in (29) must give the matrix elements
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(x't'\R0\x"t") with t>0. The elements with t<0 are given by
(49) with u, v and w equal to — itr times their values in (29).

The indeterminacy which we have in g will not lead to any
indeterminacy in (x't'\ Rf\x"t"), since a variation in g causes v to
change by a term containing t2 — r2 as a factor and such a term
multiplied into 8 (t2 — r2) will vanish. Thus Rp is completely fixed.

4. Conclusion.

From the foregoing work we see that the following results
must hold, at least to the accuracy of the Hartree method of
approximation:

(i) One can give a precise meaning to the distribution of
electrons in which every state is occupied. This distribution may
be defined as that described by the density matrix RF given by
(49), this matrix being completely fixed for any given field.

(ii) One can give a precise meaning to a distribution of
electrons in which nearly all (i.e. all but a finite number, or all but
a finite number per unit volume) of the negative-energy states are
occupied and nearly all of the positive-energy ones unoccupied.
Such a distribution may be defined as one described by a density
matrix R = \ {Rp + R{), where Rt is of the form (48). This definition
is permissible because the only possible variations in Ri, namely
those due to g not being completely defined, are free from singularity
and thus correspond to finite changes, or finite changes per unit
volume, in the electron distribution. Our method does not give
any precise meaning to which negative-energy states are unoccupied
or which positive-energy ones are occupied. It is sufficiently de-
finite, though, to take as the basis of the theory of the position the
assumption that only distributions described by R = -J (R# + R{)
with Ri of the form (48) occur in nature.

(iii) A distribution R such as occurs in nature according
to the above assumption can be divided naturally into two parts

where Ra contains all the singularities and is also completely
fixed for any given field, so that any alteration one may make in
the distribution of electrons and positrons will correspond to an
alteration in Rb but to none in Ra. We get this division into two
parts by putting the term containing g into Rb and all the other
terms into Ra. Thus

It is easily seen that Rb is relativistically invariant and gauge
invariant, and it may be verified after some calculation that Rb is
Hermitian and that the electric density and current density
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corresponding to it satisfy the conservation law (9). It therefore
appears reasonable to make the assumption that the electric and
current densities corresponding to Rb are those which are physically
present, arising from the distribution of electrons and positrons. In
this way we can remove the infinities mentioned at the end of § 1.

The present paper is incomplete in that the effect of the
exclusion principle, equation (2) or (6), on Rb has not been
investigated. Further work that remains to be done is to examine
the physical consequences of the foregoing assumption and to see
whether it leads to any phenomena of the nature of a polarization
of a vacuum by an electromagnetic field.
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