
Chapter 1FOUR-COMPONENT ELECTRONIC STRUCTUREMETHODS FOR MOLECULEST. SaueCNRS, UMR 7551, Laboratoire de Chimie Quantique, 4 Rue Blaise Pasal, F-67000Strasbourg, Franesaue�quantix.u-strasbg.frL. VissherDepartment of Theoretial Chemistry, Faulty of Sienes, Vrije Universiteit Amster-dam, De Boelaan 1083, 1081 HV Amsterdam, The Netherlandsvissher�hem.vu.nlAbstrat In this hapter we onsider the extension of 4-omponent relativistimethods from atomi to moleular systems, in partiular the hallengesarising from the introdution of the algebrai approximation. In order toanalyze the variational stability of the relativisti many-eletron Hamil-tonian we derive a variational theory of QED in the semilassial limitusing the seond quantization formalism and exponential parametriza-tion. In QED the negative-energy orbitals are �lled leading to a trueminimization priniple for the eletroni ground state, whereas in thestandard 4-omponent approah these orbitals are empty and treated asan orthogonal omplement, thus leading to a minimax priniple. We em-phasize the non-uniqueness of the resulting no-pair Hamiltonian of thestandard approah. 4-omponent methods allow the ontinuous updateof the Hamiltonian and thereby omplete relaxation of the eletroniwave funtion. We also disuss more pratial aspets of the imple-mentation of 4-omponent relativisti methods. We arefully analyzetheir omputational ost and onlude that the di�erene with respetto non-relativisti methods onstitute a prefator and not a di�erene inorder. We furthermore disuss how omputational ost may be reduedwhile staying at the 4-omponent level, e.g. by exploiting the atominature of the small omponent density.
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2Keywords: Relativisti Quantum Chemistry, Eletroni Struture Theory, Compu-tational Chemistry, 4-omponent methods, variational ollapse, quan-tum eletrodynamis, basis sets alulations, algebrai approximation,Dira equation, moleulesIntrodution4-omponent eletroni struture methods for atoms were introduedin hapter six. In the present hapter we onsider the extension of thesemethods to moleular systems (see [116℄ and referenes therein for reentreviews). It is therefore natural in this hapter to fous on the addi-tional omplexities added when going from single atoms to polyatomisystems. An obvious di�erene is the lak of spherial symmetry. In theatomi ase the high symmetry allows the separation of radial and an-gular degrees of freedom. The angular part an be solved ompletely bysymmetry, partiularly failitated by the introdution of Raah algebra[38℄, whereas radial equations an be solved by �nite di�erene methods.In moleular alulations one generally has to resort to the algebrai ap-proximation, that is the use of �nite basis set expansions. The �rst basisset alulations led to rather disastrous results (see [88℄ for referenes).Shwarz and Wehsel-Trakowski [89℄ identi�ed two problems onnetedwith 4-omponent relativisti alulations in the algebrai approah:1 The oupling of the large and small omponents of the Dira equa-tion requires separate basis set expansions for eah omponent.2 The relativisti many-eletron Hamiltonian is not bounded frombelow and, aording to an argument given Brown and Ravenhall[10℄, gives only ontinuum solutions. This has been referred to asthe �Brown-Ravenhall disease�.In the atomi ase the �rst problem is avoided by the use of �nite di�er-ene methods, and the seond problem is solved by imposing the bound-ary onditions at r = 0 and r !1 for bound solutions [39℄. In pratiethe above two problems have also been solved in the algebrai approxi-mations, and 4-omponent relativisti moleular alulations are therebyroutinely arried out today. On the theoretial side things have appar-ently not been ompletely straightened out, as witnessed by a numberof misunderstandings in the literature. After an initial overview of therelativisti many-eletron Hamiltonian in setion 1, we therefore give avariational formulation of QED in the semilassial limit, that is withontinuous eletromagneti �elds, in setion 2. At this level of theory atrue minimization priniple is assumed to exist [30℄, and this puts theD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 3disussion of the variational stability of the relativisti many-eletronHamiltonian on �rm grounds.The separate basis set expansion of the large and small omponentsneeded to solve the seond problem above leads to inreased omputa-tional ost. 4-omponent alulations are therefore onsidered limitedto benhmark alulations, and more ost-e�ient methods are soughtby reduing the 4-omponent Hamiltonian to 1- or 2-omponent approx-imate forms. There is, however, another approah whih onsists ofstaying within the 4-omponent form and instead seek redution of om-putational ost by redution or elimination of intermediate quantities(e.g. two-eletron integrals) appearing in the atual alulations. Theurrent status and perspetives of this approah are disussed in setion3. Notation and units: Unless otherwise stated, all formulas appearingin this hapter are in atomi units. In these units the eletron mass mand the elementary harge e are both unity. We have, however, hosento retain their symbols so that the reader an see how the fundamentalharateristis of the eletrons enter the equations. This is partiularimportant for the eletron harge sine it provides the oupling to ex-ternal �elds as will be disussed in setion 1.1.1. In this manner onean distinguish equations desribing eletrons from those desribing itsantipartile, the positron. Operators generally ome with operator hats,and vetors are written in bold haraters. We shall also make extensiveuse of the Einstein summation onvention or impliit summation, whihmeans that a repeated index signals free summation over this index. Adot produt is aordingly written u � v = uivi. This onvention allowsformulas to be written in a more ompat manner, whih is partiularlyuseful in the setion on QED.1. The HamiltonianThe general form of the many-eletron Hamiltonian isĤ =Xi ĥ(i) + 12Xi 6=j ĝ(i; j) + V̂nn; V̂nn = 12 XA 6=B ZAZBe2jRA �RB j (1.1)where ĥ(i) are one-eletron operators, ĝ(i; j) represents the two-eletroninteration and V̂nn is the lassial repulsion of �xed nulei. This form isvalid in both the relativisti and the non-relativisti domain to the ex-tent that three-partile and higher interations an be ignored. For thedevelopment of the various methods of quantum hemistry it is rarelyneessary to be more spei� regarding the form of the many-eletronHamiltonian. This holds partiularly true if the operator is reast in se-D R A F T 6th Deember 2002, 5:04pm D R A F T



4ond quantized form, as will be disussed in setion 1.3. This observationsignals that one should arefully distinguish Hamiltonians from meth-ods. At the 4-omponent relativisti moleular level of theory one now�nds an almost omplete set of methods analogous to the arsenal devel-oped in the non-relativisti domain, suh as Hartree-Fok (HF) (see e.g.[95, 61, 3, 64, 102, 23, 81, 73, 117℄ and referenes therein), seond-orderMøller-Plesset perturbation theory (MP2) [25, 57℄, Multi-Con�gurationSelf Consistent Field (MCSCF) [47, 98℄, Restrited Ative Spae Con-�guration Interation (RASCI) [101℄, Coupled Cluster (CC) [106, 109℄and Density Funtional Theory (DFT) (see e.g. [99, 60, 118, 84℄). Wetherefore �nd it unneessary to elaborate on the general priniples ofthese methods sine this information is available in a number of text-books [96, 66, 76, 43℄. We shall rather try to point out the spei�adaptions and onsiderations needed to arry these methods over intothe 4-omponent relativisti realm. We would also like to point out thatin view of the distintion between Hamiltonians and methods emphasizedabove, we advise against the use of method names suh as Dira-Hartree-Fok and the shorter version Dira-Fok (whih is not very fair to DouglasHartree who �rst suggested to Bertha Swirles the extension of the SCFmethod to the Dira equation [33℄) and instead reommend �the Hartree-Fok method at the 4-omponent relativisti level� or, more spei�ally,DC-HF (the Hartree-Fok method based on the Dira-Coulomb Hamil-tonian).1.1 The one-eletron part1.1.1 The Dira equation in an eletromagneti �eld.The starting point for 4-omponent moleular alulations is Dira's el-ebrated relativisti wave equation [18, 19℄. In ovariant form (that is theform in whih the equation �looks the same� in all Lorentz frames [77℄)it is given by(i��� �m) = 0; 8>><>>: �� = �r;� i ��t�� = � (�; iI4) (1.2)in whih appears the 4-gradient ��. Note that we do not distinguishbetween ovariant and ontravariant 4-vetors, as this is not neessaryat the level of speial relativity [77, p.6℄. The quantity � is given interms of the 4� 4 identity matrix I4 and the Dira matries� = � 02 �� 02 � and � = � I2 0202 �I2 � (1.3)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 5and generates the C4 Cli�ord algebra [72℄, the algebra of gamma matri-es. The Pauli spin matries�x = � 0 11 0 � ; �y = � 0 �ii 0 � ; �z = � 1 00 �1 � (1.4)are themselves generators of the C3 Cli�ord algebra, that is the algebraof omplex quaternions, a property that we shall make use of in setion1.1.2. Note also that the Dira � matries an be expressed in terms ofthe 4� 4 spin matries� = ��; � = � � 0202 � � ; � = � 02 I2I2 02 � (1.5)upon the introdution of the auxiliary matrix �[68℄. In order to align therelativisti and non-relativisti energy sales one usually performs thesubstitution � ! �0 = � � I4 (1.6)but we will for the moment retain the original form of the Dira equation.The free-partile Dira equation in its more familiar form is obtainedby multipliation by � from the left�ĥD;0 � i ��t� = 0; ĥD;0 = �m2 +  (� � p) (1.7)External �elds are introdued through the priniple of minimal ele-tromagneti interation [37℄p� ! �� = p� � qA� (1.8)in whih appears 4-momentum p� = �i�� and the 4-potential A� =(A; i�). We are interested in eletrons and therefore hoose the hargeq = �e. The Dira equation then attains the formD̂ = �ĥD;A� � i ��t� = 0; ĥD;A� = �m2 +  (� � �)� e� (1.9)It is important to note that the minimal substitution (1.8) follows fromthe term Lint = j�A� (1.10)in the Lagrangian desribing the interation between the partile and theeletromagneti �eld as the produt of the 4-urrent j� = (j; i�) and the4-potential. This term was �rst proposed by Shwarzshild [90℄ to satisfyLorentz ovariane. It is employed in ad ho basis in the non-relativistiD R A F T 6th Deember 2002, 5:04pm D R A F T



6domain, even though it does not represent the proper non-relativistilimit, whih is eletrostatis (see [78℄ and referenes therein). Comparing(1.9) and (1.10) we an identify the 4-urrent asj� = �e y�� ; � = �e yI4 ; j = �e y� (1.11)Classially the urrent density is given as harge multiplied by veloityand indeed one �nds from Heisenbergs equation of motion that the velo-ity operator in the relativisti domain is �. This may appear somewhatsurprising, but may be interpreted as the eletron osillating at the speedof light  about its mean position (�Zitterbewegung� [86, 68℄). Note thatjust as we may identify �e� as the operator of urrent density, we mayidentify �eI4 as the operator of harge density. This identi�ation willprove useful in setion 1.2.External eletri E and magneti B �elds appear in the Hamiltonianonly indiretly through the salar � and vetor A potentialsE = �r�� �A�t ; B =r�A (1.12)This an be onsidered an advantage as the freedom of gauge [46℄ leavesroom to hoose the most onvenient form of the potentials. For instane,a uniform eletri �eld may be represented by A� = �0;� iE � r� as wellas A� = (�Et; 0), but the former hoie is usually preferred sine it anbe handled by time-independent theory [7℄. Quantum hemistry, be itrelativisti or not, is usually expressed in Coulomb gauge, that is throughthe transversality ondition r �A = 0. From Maxwell's equations andthe de�nitions (1.12) the �eld equations in the presene of a density �and a urrent j an then be expressed as [41℄r2� = �4�� (1.13) r2A� �2 �2A�t2 !�r�2 ���t = �4��2j (1.14)where � is the �ne-struture onstant. The equation for the salar po-tential is simply the Poisson equation with solution�(r; t) = Z �(r0; t)jr� r0jd� 0 (1.15)At �rst sight, this result appears to be in ontradition with the theory ofspeial relativity sine the salar potential is given by the instantaneousharge density. However, one must bear in mind that the salar potentialitself is not an observable. The e�ets of retardation, as well as magnetiD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 7interations, enter through the vetor potential. The Coulomb gaugebears its name beause it singles out the instantaneous Coulomb intera-tion whih is the proper non-relativisti limit of lassial eletrodynamisand whih is the dominant interation of hemistry. All retardation andmagneti interations enter as higher-order terms in a perturbation ex-pansion of the total interation in terms of the �ne-struture onstant� [14℄. For instane, to �rst order the interation between two pointharges q1 and q2 is in Coulomb gauge given by [42, 15, 46℄Lint = q1q2r12 ��1 + 122 �(v1 � v2) + 1r212 (r12 � v1) (r12 � v2)�� (1.16)where v1 and v2 are their veloities. The �rst term an be identi�ed as aharge-harge interation, whereas the seond term is a urrent-urrentinteration.In moleular theory we shall employ ĥD;V , the Dira operator in themoleular �eld. It orresponds to the introdution of the 4-potential�(ri) =XA ZAejri �RAj ; A(ri) = 0: (1.17)where ZAe and RA is harge and position, respetively, of nuleus A.The nulei are aordingly treated as soures of external salar potentialsand nulear spins are ignored. This "lamped nuleus" approximation isessentially the same as the one introdued by Born and Oppenheimer [8℄in non-relativisti theory in whih the main assumption is that eletronsfollow the slower movements of nulei adiabatially. However, in therelativisti domain two onsequenes of this approximation should bekept in mind. The �rst is that the restrition to a partiular frame inwhih the nulei are at rest invalidates Lorentz ovariane. In reality,though, nulei will always move relative to eah other so that no framean be found in whih all nulei are stationary. Seond, from (1.16) it islear that all harge-harge interations involving nulei will be negletedin the "lamped nuleus" approximation.The operators appearing in the Dira equation (1.9) are 4 � 4 ma-trix operators and the orresponding wave funtion is therefore a 4-omponent vetor funtion = "  L S # ;  X = "  X� X� # ; X = L; S: (1.18)The four degrees of freedom ome from the fat that the Dira equationdesribes both eletrons and positrons and expliitly inludes spin. Fora given potential the positive-energy solutions orrespond to eletroniD R A F T 6th Deember 2002, 5:04pm D R A F T



8solutions, and in the non-relativisti limit (to be disussed in setion1.1.4) the lower two omponents of these solutions go to zero, whereasthe upper two omponents redue to a spin orbital in whih the spatialpart beomes a solution of the orresponding non-relativisti Shrödingerequation. The upper and lower two omponents are therefore generallyreferred to as the large and small omponents, respetively. For the samepotential the negative-energy branh of the spetrum gives the positronisolutions indiretly, that is by harge onjugation (see setion 1.1.3) andin the non-relativisti limit it is now the large omponents that go to zero.For this reason it has been suggested [56℄ that one should rather speak ofupper and lower omponents than large and small ones. However, sinefous in hemistry is on eletroni solutions we will retain the ommonterminology. On the other hand one should not forget that the largeomponents of positive-energy solutions of the Dira equation are largeby a fator �1 only in an averaged sense; there may be regions in spaewhere the small omponents dominate.It is important to realize that the four degrees of freedom in the Diraspinor (1.18), as ompared to the salar eigenfuntions of the Shrödingerequation, are not to be assoiated with spei� omponents. It is aommon mistake to assoiate the small omponents with the positronidegrees of freedom. For instane, one annot simply delete the smallomponents of a given eletroni solution. One an also see from (1.18)that spin (� or �) is assoiated with two omponents and not one.1.1.2 Time reversal symmetry. In this and the followingsetion we shall analyze two features of the Dira equation (1.9) that arerelated to the four degrees of freedom in the relativisti wave equation.The �rst feature is harge onjugation symmetry, whih re�ets thatthe Dira equation desribes both eletrons and positrons, but generally,as we shall see, not of the same system. The seond feature is timereversal symmetry whih to some extent an reover the lak of spinsymmetry in the relativisti domain. It is interesting to note that bothfeatures involve a pairing of eigenfuntions of the Dira equation. As weshall see, in the ase of time reversal symmetry this pairing is broken bythe introdution of an external vetor potential. In the ase of hargeonjugation symmetry the pairing is broken by the introdution of any4-potential.Both features are represented by antiunitary operators bK de�ned bybK h 1 j  2i = D bK 1 j bK 2E = h 2 j  1i = h 1 j  2i� (1.19)An example of an antiunitary operator is provided by the omplex on-jugation operator bK0. In the non-relativisti domain this operator om-D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 9mutes with the Hamiltonian in the absene of external magneti �elds.It's e�et on the non-relativisti Shrödinger equation in the moleular�eld (1.17)is therebybK0 �ĥNR � i ��t� bK�10 bK0 NR (r; t) = �ĥNR + i ��t� NR (r; t) (1.20)= �ĥNR � i ��t� NR (r;�t) = 0where  NR = bK0 NR. Through the substitution t ! �t one reoversthe form of the original equation. The omplex onjugation operatoris therefore identi�ed as the time-reversal operator in non-relativistisystems [115℄. Consider now the e�et of bK0 on the Dira equation (1.9).Proeeding as in (1.20) we obtain��m2 + ��� � (�p+ eA)� e�+ i ��t� bK0 (r; t) = 0 (1.21)In this ase the substitution t! �t is not enough to reover the originalequation and so the omplex onjugation operator an not be identi-�ed as the time-reversal operator in the relativisti domain. To �nd theproper form we may note that the produt of a unitary and an antiuni-tary operator is an antiunitary operator. We may therefore take as ourstarting point the generi form bK = U bK0 (1.22)where U is a 4 � 4 unitary matrix. Next, we note that the problemwith (1.21) is that �y hanges sign under omplex onjugation, whereasthe other 4 � 4 spin matries (1.5) do not. If one wants an antiunitarytransformation under whih the individual terms of the Dira equationare either symmetri or antisymmetri the unitary operator U (1.22)must therefore ontain �y. We then �nally arrive at the hoie UT =�i�y whih gives the time reversal operator bK for relativisti systems.Its appliation gives266664n�m2 +  (� � p)� e�o| {z }(+) ��e (� �A)� i ��t�| {z }(�) 377775 (r; t) = 0 (1.23)where  = bK and one an see that in the absene of external vetorpotentials, one reovers the orret form of the Dira equation throughthe substitution t! �t.D R A F T 6th Deember 2002, 5:04pm D R A F T



10Equation (1.23) shows that under time reversal the Dira equationsplits into a symmetri (+) and an antisymmetri (�) part. Furtherinsight is obtained by reordering the Dira equation"  L S # = 26664  L� L� S� S� 37775 ! 26664  L� S� L� S� 37775 = �  � � � (1.24)The time-symmetri part of the Dira equation an then be written asD+ = 2664 m2 � e� �idz 0 �id��idz �m2 � e� �id� 00 �id+ m2 � e� idz�id+ 0 �idz �m2 � e� 3775 (1.25)where we have introdued the notationdz = ��z ; d� = ��x � i ��y : (1.26)In the same manner we �nd that the time-antisymmetri part an bewritten as D� = 26664 �i ��t eAz 0 eA�eAz �i ��t eA� 00 eA+ �i ��t �eAzeA+ 0 �eAz �i ��t 37775 (1.27)where A� = Ax � iAy. The above two forms an be summarized by thematrix struture Dt = � A B�tB� tA� � ; t = �1: (1.28)It is then a simple exerise to show that if� A B�tB� tA� � �  � � � = � �  � � � = � (1.29)then � A B�tB� tA� � � � �� �� � = t� � � �� �� � = t� : (1.30)This shows that the time symmetri part of the Dira equation has dou-bly degenerate eigensolutions. In the reordered equation (1.24) the timereversal operator has the formK = � 02 �I2I2 02 �K0 (1.31)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 11and one therefore easily sees that the eigenvetors  and  are related bytime reversal symmetry. They will therefore be referred to as Kramerspartners. A orthonormal Kramers paired basis an be onstruted froma spinor set f ig and the orresponding Kramers partners n io. Withthe introdution of an external vetor potential the double degenerayis lifted. One may use degenerate perturbation theory to obtain thesplitting. To zeroth order one obtains the eigenvalues via diagonalizationof the 2�2 Hamiltonian matrix in the spae of the two Kramers partnersas E� = �� e ���D j(� �A)j E��� :The double degeneray of the time symmetri Dira equation suggeststhat a blok diagonalization of the matrix operator is possible. This isindeed true, but at the expense of going from omplex to quaternionalgebra. First, let us reall the de�nition of a (real) quaternion numberq = 3X�=0 v�e� = v0 +�iv1 +�jv2 + �kv3; v� 2 R (1.32)The quaternion units �i, �j and �k are equivalent in the sense that they maybe interhanged by yli permutation �i ! �j ! �k !�i. It was observedalready by Jordan [69℄ that the algebra of imaginary i times the Paulispin matries is that of the quaternion units, that is�i$ i�z; �j$ i�y; �k$ i�x (1.33)The link between time reversal symmetry an then be established bynoting that the time-symmetri form of (1.28) an be written in termsof Pauli spin matriesD+ = [I2 
AR℄ + [(i�z)
AI ℄ + [(i�y)
BR℄ + [(i�x)
BI ℄ (1.34)learly showing the quaternion struture of the matrix operator. Theblok diagonalization is ahieved through the unitary quaternion trans-formationU yD+U = " A+B�j 00 ��k�A+B�j��k # : U = 1p2 " I2 �jI2�jI2 I2 # (1.35)For the upper blok of the quaternion Dira operator we �nd the stru-tureQD+ = � m2 � e� 00 �m2 � e� ���i � 0 dzdz 0 ���j � 0 dydy 0 ���k � 0 dxdx 0 � :D R A F T 6th Deember 2002, 5:04pm D R A F T



12One observes that the rest mass term and the salar potential enter thereal part of the operator whereas the kineti energy is represented bythe quaternion imaginary part. The quaternion Dira operator has nopreferential axis, in ontrast to the onventional form (1.25) where thePauli spin matries in their standard form orrespond to spin quantiza-tion along the z-axis.Time reversal symmetry provides only a partial ompensation for theloss of spin symmetry in the relativisti domain. The oupling of thespin and spatial degrees of freedom by the spin-orbit interation hangesthe struture of the equations relative to those of non-relativisti theory.The extra prie to be paid due to this oupling an be diretly relatedto the algebra needed to solve the Dira equation by matrix diagonaliza-tion using a �nite real basis expansion. In the general ase the matrixrepresentation of the symmetri Dira operator an be blok diagonal-ized through the quaternion unitary transformation (1.35) and one thenneeds to diagonalize the quaternion subblok A+B�j. In the absene ofspin-orbit oupling, as in the non-relativisti limit, this subblok beomesreal. However, in the relativisti domain symmetry redution in termsof going from quaternion to omplex or real algebra an be ahieved byombining time reversal and spatial symmetry [82, 83℄. One further thingto note is that Kramers partners do not map diretly on to spin � and �orbitals. For instane the Kramers partner of a p1� orbital is p�1� andnot p1�.1.1.3 Charge onjugation symmetry. The hoie UC =i��y in (1.22) gives the harge onjugation operator bC (usually this termis reserved for the unitary part UC only). Its appliation gives266664���m2 +  (� � p)� i ��t�| {z }(�) + e f (� �A)� �g| {z }(+) 377775 bC (r; t) = 0 (1.36)It an be seen that the term ontaining the 4-potential is symmetri(+) under harge onjugation, whereas the free-partile Dira equation(1.7) is antisymmetri (�). It follows that if  is a solution of the Diraequation for an eletron (thus with harge �e) in the 4-potential A�,then bC is a solution of the Dira equation for a partile with harge +ein the same potential. In the stationary ase the eigenvalues of  andbC have the same magnitude, but opposite sign. After an initial falseidenti�ation with the proton [20℄, Dira boldly predited the existeneof the positron [17℄, on�rmed experimentally by Anderson in 1932 [2℄.D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 13Note, however, that for a given 4-potential the Dira operator desribingan eletron is not idential to the one desribing a positron sine thepartiles ouple to the 4-potential through their harge (1.8). Only inthe absene of external �elds do the two equations beome idential.To see harge onjugation �at work� let us onsider a stationary ele-troni solution  of the free-partile Dira equation (1.7) with eigen-value � (positive ontinuum) and it's harge onjugated partner bC witheigenvalue �� (negative ontinuum). We now introdue an external 4-potential through minimal oupling (1.8) with the eletron harge �e ,thus adding the term V̂ = �e��A� to the free-partile HamiltonianĥD;0. The eigenvalues of the 2 � 2 Hamiltonian matrix in the spae ofthe two harge onjugated partners is thenE� = ��p�2 +
2; 8>><>>: � = D ���V̂ ��� E
 = ���D ���V̂ ��� bC E��� : (1.37)The positive sign gives the eletroni solution whih an be expanded asEe = E+ = �+�+ 12�1 +O(�2) > �+�; � = �
� �2 : (1.38)The orresponding positroni solution an be obtained by introduingthe 4-potential through minimal oupling with the positroni harge +e.Alternatively, it an be obtained through harge onjugation of the so-lution orresponding to E� of (1.37). The orresponding energy isEp = �E� = ���+ 12� +O(�2) (1.39)One an easily see that if the eletron is attrated by the 4-potential, thatis � is negative, then the positron is repulsed, due to it's opposite harge.Unless the oupling term 
 dominates � the eletroni solution desendsbelow +m2 and the negative energy solution desends further down thenegative ontinuum. However, this does not imply, as is often stated,that for systems with bound eletrons all negative energy orbitals anbe identi�ed as having energies below �m2. Potentials are not alwayspurely attrative or repulsive, e.g. in an anion one may observe negative-energy orbitals entering the gap as suh solutions far from the nuleussee a negative and thus attrative potential.1.1.4 Towards the non-relativisti limit. 4-omponent op-erators and wave funtions are usually taken to imply relativisti theory.D R A F T 6th Deember 2002, 5:04pm D R A F T



14In this setion we shall, however, show that also non-relativisti alu-lations may be arried out at the 4-omponent level. In fat, as hasbeen disussed extensively by Vissher and Saue [104℄, a multitude ofHamiltonians, with and without spin-orbit interation inluded, may beformulated at the 4-omponent level of theory. These Hamiltonians areobtained from non-unitary transformations W of the Dira equation [31℄ =W 0 ) W y �ĥD;A� � i ��t�W 0 = 0; (1.40)possibly followed by the deletion of ertain parts of the transformedoperators. As starting point for these Hamiltonians we hoose the time-independent Dira equation in the moleular �eld (1.17)" V̂  (� � p) (� � p) V̂ � 2m2 # "  L S # = � I2 0202 I2 � "  L S #E; V̂ = �e�(1.41)where the metri is expliitly inluded sine non-unitary transformationswill be performed. We have also performed the substitution (1.6) to alignrelativisti and non-relativisti energy sales.Consider �rst the non-relativisti limit, generally obtained as !1.The Dira operator ĥD;V has terms linear and even quadrati in the speedof light and one an therefore not apply this limit diretly. Instead, one�rst performs the non-unitary transformation"  L S # = � I2 0202 �1I2 � "  Le S # (1.42)whih gives the transformed equation264 V̂ (� � p)(� � p) �2m 1� V̂2m2! 375 "  Le S # = � I2 0202 �2I2 � "  Le S #E(1.43)The speed of light now appears only in inverse powers and the propernon-relativisti limit may be obtained, but with the following restritions[55℄:1 jEj � 2, that is we restrit attention to the positive-energy solu-tions. This also means that a separate non-relativisti limit existsfor the negative-energy solutions.2 The potential � in V̂ must be non-singular. This does not holdfor the potential of point harges, but does hold for the extendednulei ommonly used in 4-omponent relativisti alulations.D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 15With the above restritions we arrive in the non-relativisti limit at theLevy-Leblond equation [58℄" V̂ (� � p)(� � p) �2m # "  Le S # = � I2 0202 02 � "  Le S #E (1.44)whih forms the starting point of the diret perturbation theory of Kutzel-nigg [55℄. By elimination of the modi�ed small omponent e Swe obtainthe more familiar non-relativisti Shrödinger equation in the moleular�eld using the identity (� � p) (� � p) = p2. However, in some ases the 4-omponent non-relativisti form (1.44) may be more advantageous thanthe onventional 1-omponent form, in partiular upon the introdutionof external magneti �elds [44℄.Another route to the non-relativisti limit, with an interesting stop onthe way, is provided by the non-unitary transformation"  L S # = 24 I2 0202 12m (� � p) 35"  Le S # (1.45)whih leads to what has been alled the modi�ed Dira equation [24℄24 V̂ bTbT 14m22 (� � p) V̂ (� � p)� bT 35"  Le S # = 24 I2 0202 12m2 bT 35"  Le S #E(1.46)where T̂ is the kineti energy operator. The speed of light again appearsonly in inverse powers whih failitates taking the non-relativisti limit.Another possibility is to use the identity(� � p) V̂ (� � p) = p bV � p+ i� � �p bV � p� (1.47)By dropping the spin-dependent term on the right hand side one ob-tains the spin-free form of the modi�ed Dira equation. It allows salarrelativisti alulations within a 4-omponent framework, although theuniqueness of the distintion between salar and spin-orbit relativistie�ets has been questioned [103℄.1.2 The two-eletron partThe extension from one-eletron systems to fully interating many-eletron systems is more ompliated in the relativisti domain than inthe non-relativisti one. From our disussion of Coulomb gauge in setion1.1.1 this an be understood sine in the relativisti framework we haveD R A F T 6th Deember 2002, 5:04pm D R A F T



16to add the e�ets of retardation and magneti interation to the non-relativisti limit represented by the instantaneous Coulomb interation.The neessary orretion terms an be obtained rigorously by invokingthe full mahinery of QED where the interation is desribed in termsof the exhange of virtual photons. We shall however restrit ourselvesto the semilassial limit, that is ontinuous eletromagneti �elds. To�rst order the eletron-eletron interation is then given by the Coulomb-Breit interation ĝ(1; 2) = ĝCoulomb + ĝBreit (1.48)The zeroth order term is the Coulomb termĝCoulomb = e2 I4 � I4r12 : (1.49)We have inserted 4 � 4 times identity matries I4 to remind the readerthat, although at �rst sight the Coulomb term appears to be identialto the non-relativisti eletron-eletron interation, it's physial ontentis di�erent. Upon redution to non-relativisti form [13, 4, 68, 45, 91℄through a Foldy-Wouthuysen transformation one �nds that the relativis-ti operator ontains for instane spin-own orbit interation in additionto the instantaneous Coulomb interation.The �rst order term is the Breit interation [9℄ĝBreit = � e222r12 �(�1 � �2) + 1r212 (�1 � r12) (�2 � r12)� : (1.50)We have written the Breit term in a slightly unusual form using ex-pliitly the relativisti veloity operator �. In this manner one easilyreognizes (1.48) as the quantum mehanial analogue of the lassial ex-pression (1.16). It is important to note that although the Breit term anbe derived as the low-frequeny limit of the full eletron-eletron inter-ation as desribed by QED, it an equally well [68℄ be derived from thequantization of (1.16), whih is essentially how it was derived by Breit.In this hapter we will not go beyond the semilassial limit of QED, thatis we will not onsider quantization of the eletromagneti �eld sine thiswould open up a whole new level of omplexity. The Breit term an berewritten in the form ĝBreit = ĝGaunt + ĝgauge (1.51)The �rst term is the Gaunt termĝGaunt = �e2 �1 � �22r12 (1.52)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 17whereas the seond termĝgauge = �e2 (�1 �r1) (�2 �r2) r1222 ; (1.53)where r1and r2 at only on r12 and not on the wave funtion, dis-appears in Lorentz (Feynman) gauge. By omparison with (1.11) onesees that the Coulomb and Gaunt terms represent harge-harge andurrent-urrent interations, respetively. One an furthermore show byredution to the non-relativisti form that the Gaunt term arries allspin-other orbit interation [79℄.The experiene aumulated so far indiates that the Breit term hasrather minor e�ets on the spetrosopi onstants of moleular systems[112, 101, 74℄ so that the Coulomb term is usually su�ient. However,it is needed to get spin-orbit splittings orretly, in partiular for lightsystems. From a pratial point of view the Gaunt term is then preferredsine it involves the same two-eletron integrals as the Coulomb term (atleast in a salar basis) and provides the full spin-other orbit interation.1.3 Seond quantizationCreation and annihilation operators were �rst introdued by Dira todesribe absorption and emission of photons [16℄, and the formalism waslater extended to fermions by Jordan and Wigner [49, 51℄. Althoughoriginally oneived to desribe proesses in whih the partile numberis not onserved, the seond quantization formalism [34, 50℄ is widelyused in moleular eletroni-struture theory [43℄ that onsiders systemswith a �xed partile number. This is so beause it allows the derivationand expression of the methodology in an elegant manner, in partiularwhen ombined with exponential parametrization. In this setion we willonsider the seond quantized form of the many-eletron Hamiltonian atthe 4-omponent relativisti level.The seond-quantized Hamiltonian is obtained from the �rst-quantizedform (1.1) upon the introdution of �eld operators	(1) = 'p (r1) ap = e'p (r1) eap: (1.54)In the above expression the �eld operator has been expanded in twodi�erent orbital sets f'pg and f e'pg related by a unitary transforma-tion whih then de�nes two di�erent sets of annihilation operators, fapgand feapg, related by the inverse transformation. In QED parlane theorbital set obtained as the solution of the free-partile Dira equationorresponds to the �free� piture, whereas the one obtained with themoleular �eld (1.17) leads to the Furry [36℄ or bound-state interationD R A F T 6th Deember 2002, 5:04pm D R A F T



18piture [93, 94℄. The general form of the seond-quantized HamiltonianisĤ = Z 	y(1)ĥ(1)	(1)d�1 + 12 Z Z 	y(1)	y(2)ĝ(1; 2)	(2)	(1)d�1d�2(1.55)where ĝ(1; 2) is the hosen form of the eletron-eletron interation. Wewill for the moment limit attention to the Coulomb (1.49) and Gauntterm (1.52). At the 4-omponent level the diret produt 	(2)	(1)leads to an expansion in terms of vetor funtions with sixteen ompo-nents. From this one sees that the two-eletron operator ĝ(1; 2) shouldbe onsidered a 16 � 16 matrix operator [68℄, so that the dot produtsappearing in the Coulomb and Gaunt terms should be replaed by diretproduts. Expanding the �eld operators in a spei� orbital basis theseond-quantized Dira-Coulomb-(Gaunt) Hamiltonian is written asĤ = hpqaypaq + 14Lpq;rsaypayrasaq (1.56)in whih appear one-eletron integrals over the Dira operator in themoleular �eld hpq = Z 'y(r1)ĥD;V (1)'(r1)d�1 (1.57)and where we have introdued antisymmetrized two-eletron integralsLpq;rs = (pq j rs)� (ps j rq) = Lrs;pq = �Lps;rq: (1.58)We write the two-eletron integrals as(pq j rs) = Z Z 
pq(r1)
rs(r2)r12 d�1d�2 (1.59)where we introdue generalized overlap distributions (inluding harge)
pq(r) = 'yp(r)S�'q(r); S� = ie�� = �e (�i�; I4) : (1.60)The time-like part orresponds to standard overlap distributions andontributes to the Coulomb term, whereas the spae part orresponds tourrent distributions and ontributes to the Gaunt term.2. Variational proeduresThere has been onsiderable disussion as to the variational stabilityof the Dira-Coulomb-(Gaunt) Hamiltonian. The disussion originatedfrom an argument put forward by Brown and Ravenhall [10℄. TheyD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 19onsidered the interation of two eletrons desribed by this Hamilto-nian. Consider for instane the helium atom. In a perturbational ap-proah one an start with the non-interating system and thus a Slater-determinant onsisting of the 1s orbitals obtained as solutions of thehydrogeni atom with Z = 2. This Slater determinant is, however,degenerate with an in priniple in�nite number of Slater determinantsontaining one orbital from the positive ontinuum and one from thenegative ontinuum. When the eletron-eletron interation is turnedon, these determinants will mix in and lead to what has been alled aontinuum dissolution, meaning that no bound state is obtained. Brownand Ravenhall suggested the use of projetion operators to avoid themixing in of these ontinuum determinants, a proposal that has beenfurther explored by Suher and others (see [54℄ for a review). In thissetion we will arefully onsider variational approahes based on theDira-Coulomb-(Gaunt) Hamiltonian using the seond quantization for-malism introdued in the previous setion. This will allow us to employan exponential parametrization of the wave funtion in terms of orbitalrotations and furthermore make the onnetion to QED where a trueminimization priniple is assumed to exist.2.1 The standard approahIn the seond quantization formalism [43℄ Slater determinants are re-plaed by oupation-number vetors in Fok spae as the fundamentalentity. The antisymmetry of the wave funtion under partile exhangefollows from the antiommutation properties of the reation- and anni-hilation operators[ap; aq℄+ = hayp; ayqi+ = 0; hayp; aqi+ = Æpq (1.61)Starting with a given set of orthonormal orbitals f'pg the Fok spaeequivalent of a Slater determinant is generated by ating with the orre-sponding reation operators on the vauum state j0ij�i = ay1ay2 : : : ayN j0i (1.62)where the vauum state itself is de�ned by the relationai j0i = 0; 8ai: (1.63)The oupation-number vetor j�i is an eigenfuntion of the numberoperator N̂ = aypap (1.64)D R A F T 6th Deember 2002, 5:04pm D R A F T



20with eigenvalue N orresponding to the number of oupied orbitals. TheFok spae formalism goes beyond expansions in Slater determinants byallowing the oupling of vetors with di�erent oupation numbers.The variational ansatz at the Hartree-Fok level of theory is���e�E = exp [�b�℄ j�i (1.65)where exp [�b�℄ is an orbital rotation operator whih is the negative ex-ponential of the single replaement operatorb� = �pqaypaq; �pq = ���qp: (1.66)It is readily shown that b� ommutes with the number operator (1.64)whih implies that the orbital rotation operator onserves partile num-ber. The antihermitiity of the matrix ontaining the single replaementamplitudes f�pqg guarantees the unitarity of the orbital rotation opera-tor. Using (1.62) we an therefore rewrite the HF wavefuntion as���e�E = eay1eay2 : : : eayN j0i (1.67)in whih appear transformed reation operatorseayp = exp [�b�℄ ayp exp [b�℄ = ayqUqp; U = exp [��℄ : (1.68)To derive (1.67) we have used the resultexp [�b�℄ j0i = j0i (1.69)whih follows from the fat that annihilation operators appear on theright in the �rst and higher order terms of the exponential expansion ofthe orbital rotation operator.The orbital set orresponding to the transformed reation operators(1.68) is given by e'p = 'qU�qp (1.70)and demonstrates that the orbital rotation operator provides a means ofparameterizing the wave funtion in suh a manner that orthonormalityof the orbitals is assured without the need to introdue Lagrange mul-tipliers. The orbital rotation operator furthermore allows the use of un-onstrained optimization tehniques by hoosing a linearly independentset of elements of the � matrix as variational parameters. Due to theantihermitiity of the � matrix this is straightforwardly aomplished byhoosing e.g. the upper triangle and the (imaginary) diagonal elements.The b� operator an then be written asb� =Xp<q h�pqaypaq � ��pqayqapi : (1.71)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 21Table 1.1. Classes of variational parameters in the standard 4-omponent approahompared to QED.Generi Standard QEDA �ia �++ia ; �+�ia �++ia ; ��+iaB �ij �++ij �++ij ; �+�ij ; ���ijC �ab �++ab ; �+�ab ; ���ab �++abWe have disarded the diagonal elements sine they only introdue a om-plex phase in the wave funtion and do not hange the energy. Otherredundant parameters should also be eliminated from the set of varia-tional parameters. Within the hosen parametrization this is an easytask, as will be seen shortly. For this purpose it is onvenient to intro-due lasses of orbitals and thereby the elements of the � matrix. Weshall use indies i, j, k and l to identify oupied orbitals. We further-more employ indies a, b,  and d for virtual orbitals and p, q, r and s asgeneral indies. When needed we shall use supersripts + and � to dis-tinguish positive- and negative-energy orbitals. This of ourse assumesthat the atual potential allows this distintion. We an then identifythree lasses of variational parameters as given in table 1.1 (the olumnmarked QED should be ignored for the moment). It should be notedthat the diret use of the elements of the U matrix (1.68) as variationalparameters is less advantageous sine they are related in a non-linearmanner by the unitary ondition U yU = I. It is furthermore di�ult toidentify redundant parameters in this alternative parametrization.We now gather the hosen, generally omplex variational parametersin the vetor K = � ��� � (1.72)and onsider a Taylor expansion of the energy in terms of these. LetK = 0 orrespond to the urrent expansion point, that is the referenedeterminant (1.62) and the orresponding orbital set. We then haveE (K) = E[0℄ +KyE[1℄ + 12KyE[2℄K+O(�3): (1.73)The various terms of the Taylor expansion an be easily found by om-paring with a Baker-Campbell-Hausdor� (BCH) expansion of the energyexpetation valueE = De� ���Ĥ��� e�E = D� ���exp [b�℄ Ĥ exp [�b�℄����E (1.74)= D� ���Ĥ����E+ D� ���hb�; Ĥi����E+ 12 D� ���hb�; hb�; Ĥii����E+O(�3)D R A F T 6th Deember 2002, 5:04pm D R A F T



22The zeroth order term is the expetation value of the energy withrespet to the urrent Slater determinantE[0℄ = hii + 12�ii ['j ℄ ; �pq ['i℄ = Lpqii (1.75)where we have introdued the mean-�eld potential � ['i℄ involving sum-mation over the orbital set f'ig. It will turn out to be useful to alsoonsider the expliit form of the energy expression in the algebrai ap-proximation. Consider the expansion of the urrent orbital set in someset of suitable basis funtions (to be disussed in setion 3.1) 'p = ���pwhere Greek indies are used for the AO-basis. The energy (1.75) anthen be re-expressed asE = D��h�� + 12D��L����D��; D�� = �i��i (1.76)in whih appears the AO-density matrix D.The �rst-order term an be expressed asKyE[1℄ = Xp<qn���pq D� ���hayqap; Ĥi����E+ �pq D� ���haypaq; Ĥi����Eo= �Fip��pi � ��ipFpi�+ :: (1.77)in whih appears the Fok matrixFpq = hpq +�pq ['i℄ = hpq + Lpq��D��: (1.78)From (1.77) one an easily see that derivatives of the energy at the ur-rent expansion point (K = 0) with respet to parameter lasses B and C(see table 1.1) are identially zero. Sine this will hold for any expansionpoint the two parameter lasses an be eliminated as redundant. Theonly non-redundant parameters are rotations between oupied (+) andvirtual (�) orbitals, that is parameter lass A, and the b� an aordinglybe written in terms of non-redundant parameters asb� = �iaayaai � ��aiayiaa (1.79)Note that in order to ensure unitarity of the orbital rotation operatorthe b� operator ontains de-exitation operators nayiaao in addition toexitation operators nayaaio. This an be ontrasted with the exponen-tial operator in a oupled-luster expansion whih is entirely based onD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 23exitation operators. In terms of non-redundant parameters the gradientvetor an be written asE[1℄ = � gg� � ; gai = �E���ai �����K=0 = D� ���h�ayiaa; Ĥi����E = �Fai (1.80)The urrent expansion point orresponds to a stationary value of theenergy when all the elements of the gradient vetor are zero. From theabove expression we an see that this orresponds to the oupied-virtualbloks of the Fok matrix being zero. This an be aomplished by diag-onalization of the Fok matrix (until onvergene of the SCF proedure)and then leads to the anonial Hartree-Fok orbitals with assoiated or-bital energies f�pg. Alternatively one an proeed by seond-order meth-ods suh as Newton-Raphson. These are generally more expensive sinethey involve alulation of the Hessian matrix E[2℄; but are also morerobust. The seond-order methods lead to a set of orthonormal orbitalsnot neessarily equal to, but related through a unitary transformation,to the anonial HF orbitals.To haraterize the stationary points we must onsider the eigenvaluesof the Hessian matrix. It has been de�ned in suh a manner that it isHermitian and diagonal dominant. It has the strutureE[2℄ = � A BB� A� � ; Aai;bj = ÆijFab � ÆabF �ij �LabijBai;bj = �Laj;bi (1.81)Consider �rst a non-interating system, i.e. ĝ(i; j) = 0. Then all two-eletron terms disappear. In anonial orbitals the Hessian furthermorebeomes diagonal with diagonal elementsAai;ai = �a � �i8>><>>: > 0 for n�++ia o< 0 for n�+�ia o (no summation !) (1.82)One sees that the stationary point is a minimum with respet to rota-tions n�++ia o between oupied (+) and positive-energy virtual orbitals,but a maximum with respet to rotations n�+�ia o between oupied and(virtual) negative-energy orbitals.For an interating system the diagonal elements of the Hessian or-respond to energy di�erenes between singly exited determinants �i!aand the referene determinantAai;ai = E (�i!a)�E (�) = �a � �i �Laa;ii (no summation !) (1.83)D R A F T 6th Deember 2002, 5:04pm D R A F T



24Sine the exited determinant is alulated in the orbitals optimized forthe referene determinant the diagonal elements of the Hessian onstitutea rather poor approximation to exitation energies that goes under thename of the single-transition approximation [21℄. A better approxima-tion of the energies needed to reah the manifold of singly exited stateswith respet to the ground state is obtained at the RPA (random-phaseapproximation) level (oupled Hartree-Fok) where the single exitationenergies from a losed-shell ground state are the eigenvalues of the Hes-sian matrix. In view of this, it is learly reasonable to laim that theminimax priniple (1.82) applies to interating systems as well.The minimax priniple for non-interating systems is not identialto the minimax priniple for the Dira equation proposed by Talman[97℄ whih states that the expetation value of the Dira operator isa minimum with respet to variations in the large omponents and amaximum with respet to variations in the small omponentsE = min L 24max S D ���ĥD��� Eh j i 35 (1.84)This minimax priniple has been justly ritiized by Kutzelnigg [56℄. Theproblem is that the oupling between the large and the small omponentsof the Dira spinor means that some variations of the large omponentmay lead to energies below the exat energy. We shall disuss this furtherin setion 3.1, but one should note that the minimax priniple (1.82) issuseptible to the same problem unless the hosen basis set expansionallows the proper oupling of large and small omponents. There is a sig-ni�ant di�erene, though. The Talman minimax priniple operationallyimplies the separate variation of the large and small omponents. How-ever, due to their oupling variations must be done in a onerted mannerand this is ahieved by the minimax de�ned in (1.82).2.2 Towards QEDThe standard approah to 4-omponent relativisti moleular alula-tions is not quantum eletrodynamis and does not even onstitute itssemilassial limit, that is the level of theory in whih the eletromag-neti �eld is not quantized. In this setion we shall explore a variationaldesription of the proper semilassial limit of QED. This setion is verymuh inspired by two rarely ited papers by Chaix and Iraane [12℄ onthe transition from quantum eletrodynamis to mean-�eld theory, butwhereas these authors employ the elements of the U matrix (1.68) asvariational parameters, leading to what they all the Bogoliubov-Dira-D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 25Fok formalism, we shall employ the more advantageous parametrizationin terms of elements of the � matrix.In the previous setion we have seen that the standard approah to4-omponent relativisti moleular alulations leads to a minimax prin-iple at the Hartree-Fok level. This means that the bound eletronistates at this level of theory are exited states and may therefore de-ay through an in�nite suession of transition through various states ofthe negative-energy ontinuum, thereby ausing a radiative atastrophe[40℄. To avoid this di�ulty Dira postulated that the negative-energyorbitals are all oupied so that transitions into the negative-energy on-tinuum, �the Dira sea�, is forbidden by the Pauli exlusion priniple.On the other hand, the exitation of an eletron from the Dira sea to apositive-energy orbital, requiring an energy on the order of 2m2, leavesa hole with opposite harge that in time was identi�ed as the positron.The �rst step towards proper QED is to introdue a partile-hole for-malism. The �eld operators (1.54) are rewritten as	 = '+p bp + '�p dyp (1.85)in whih appears eletron annihilation operators bp assoiated with thepositive-energy orbitals '+p and positron reation operators dyp desribingthe reation of positrons whose orbitals are obtained by harge onjugat-ing the assoiated negative-energy orbitals '�p . This distintion leads toa more involved expression for the seond quantized form of the Hamil-tonian Ĥ = h++pq bypbq + h+�pq bypdyq + h�+pq dpbq + h��pq dpdyq (1.86)+ 14L++++pqrs bypbyrbsbq + 14L+�++pqrs bypbyrbsdyq+ 14L+++�pqrs bypbyrdysbq + 14L+�+�pqrs bypbyrdysdyq+ 14L++�+pqrs bypdrbsbq + 14L+��+pqrs bypdrbsdyq+ 14L++��pqrs bypdrdysbq + 14L+���pqrs bypdrdysdyq+ 14L�+++pqrs dpbyrbsbq + 14L��++pqrs dpbyrbsdyq+ 14L�++�pqrs dpbyrdysbq + 14L��+�pqrs dpbyrdysdyq+ 14L�+�+pqrs dpdrbsbq + 14L���+pqrs dpdrbsdyq+ 14L�+��pqrs dpdrdysbq + 14L����pqrs dpdrdysdyqD R A F T 6th Deember 2002, 5:04pm D R A F T



26By inspetion one immediately sees that the QED Hamiltonian ouplesoupation-number vetors with di�erent partile number. However, wewill demonstrate later that harge is onserved.As in the previous setion we onsider the desription of bound ele-troni states in terms of a single Slater determinant or, equivalently, interms of a single oupation-number vetor in Fok spaej�i = by1by2 : : : byn j0i : (1.87)The vauum state j0i is in this formalism de�ned by(bp j0i = 0; 8bp) and (dp j0i = 0; 8dp) : (1.88)In analogy with (1.65) we now onsider the following variational ansatz���e�E = exp [�b�℄ j�i (1.89)The b� operator appearing in the orbital rotation operator now has theform b� = �++pq bypbq| {z }b�++ +�+�pq bypdyq| {z }b�+� +��+pq dpbq| {z }b��+ +���pq dpdq| {z }b��� (1.90)We may next introdue number operators N̂ e and N̂p for eletrons andpositrons, respetively N̂ e = bypbp; N̂p = dypdp: (1.91)One �nds that the �̂ operator ommutes with neither number operatorh�̂; N̂ ei = h�̂; N̂pi = �̂�+ � �̂+�; (1.92)but with the linear ombinationQ̂ = e �N̂p � N̂ e� (1.93)whih an be identi�ed as the harge operator. From this we an onludethat the orbital rotation operator of QED onserves harge but not thepartile number. The harge operator furthermore ommutes with theQED Hamiltonian (1.86), thus demonstrating that the latter onservesharge as well.Using the unitarity of the orbital rotation operator we may now rewritethe HF ansatz as ���e�E = eby1eby2 : : :ebyn ���e0E (1.94)where appear the transformed reation operatorsebyp = exp [�b�℄ byp exp [b�℄ = byqUqp; U = exp [��℄ : (1.95)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 27Note that due to harge onservation we an identify the transformedreation operators with dressed eletrons. Equation (1.94) ontains notonly dressed eletrons, but also a dressed vauum���e0E = exp [�b�℄ j0i = n1� ���pq dpdq � ���pp +O(�2)o j0i 6= j0i : (1.96)This relation may be ompared with (1.69) and shows the e�et of va-uum polarization whih is not present in the standard approah desribedin the previous setion.If we evaluate the expetation value of the Hamiltonian (1.86) with re-spet to the referene determinant (1.87) we obtain the expression (1.75),but with all the negative-energy orbitals inluded amongst the oupiedorbitals, thus leading to an in�nite negative energy. In order to avoidworking with in�nite energies renormalization proedures are introduedin QED. In the present ase the in�nite negative energy is avoided bywriting the Hamiltonian on reordered form, that is all reation operatorsare shifted to the left and all annihilation operators are shifted to theright as if they antiommuted. Using the notation of Chaix and Iraane[12℄ we write the reordered QED Hamiltonian asĤ = Z N h	y(1)ĥ(1)	(1)d�1i (1.97)+ 12 Z Z N h	y(1)	y(2)ĝ(1; 2)	(2)	(1)i d�1d�2In the orbital set whih diagonalizes ĥ, the one-eletron part, an bewritten as ĥ = h++pq bypbq + h+�pq bypdyq + h�+pq dpbq � h��pq dyqdp= �+p bypbp + ����p � dypdp (1.98)One may observe that on this reordered form eletrons and positronsboth appear with positive energies, but with opposite harges.To relate the original Hamiltonian (1.86) to the reordered form (1.97)one may employ Wik's theorem [114, 35℄. For the one-eletron part thisgivesN h	y(1)	(2)i = 	y(1)	(2) � D0(ref) ���	y(1)	(2)��� 0(ref )E (1.99)whih shows that normal ordering of a one-eletron operator orrespondsto the subtration of its vauum expetation value. We have inserted asupersript (ref) on the vauum to remind the reader that the de�nitionof the vauum and thus the reordering depends on the hoie of orbital setD R A F T 6th Deember 2002, 5:04pm D R A F T



28in whih the �eld operators are expanded. As referene vauum the barevauum is employed, orresponding to the orbital sets generated fromthe solution of the free-partile Dira equation (1.7). Normal ordering ofthe two-eletron part givesN h	y(1)	y(2)	(3)	(4)i = 	y(1)	y(2)	(3)	(4) (1.100)� N h	y(1)	(4)i	y(2)	(3)� N h	y(2)	(3)i	y(1)	(4)+ N h	y(1)	(3)i	y(2)	(4)+ N h	y(2)	(4)i	y(1)	(3)� D0(ref) ���	y(1)	y(2)	(3)	(4)��� 0(ref )Ewhih does not orrespond to simple subtration of the vauum expeta-tion value, even though one readily sees that the bare vauum expetationvalue of the reordered Hamiltonian (1.97) is zero.We have already seen that the partile-hole formalism leads to a ratherompliated expression for the Hamiltonian (1.86). With the introdu-tion of reordering more omplexity is added and manipulations involvingthe reordered Hamiltonian beome extremely tedious. In order to sim-plify the ensuing manipulations it is therefore advantageous to go bakto the form of the �eld operators (1.54) introdued in the previous se-tion and instead expliitly de�ne the bare vauum as �lled with all thenegative-energy solutions of the free-partile Dira equation���0(ref )E = ay[�1℄ay[�2℄ : : : ay[�1℄ jemptyi : (1.101)The empty state jemptyi orresponds to the vauum (1.63) of the stan-dard approah to 4-omponent relativisti moleular theory. In the aboveexpression as in the following we use square brakets (e.g. h��[pq℄) aroundindies referring to the negative-energy solutions of the free-partile Diraequation. We an now write the reordered QED Hamiltonian asĤ = nhpq � �pq h'�[i℄io aypaq+14Lpqrsaypayrasaq�h��[ii℄ +12L����[iijj℄ (1.102)What we loose by this approah is the physial piture of eletron-positron pair reation that was provided by the partile-hole formalism.Using this reordered Hamiltonian we an now easily �nd the termsappearing in the Taylor expansion (1.73). The energy at the urrentexpansion point is given byE[0℄QED = h++ii + h��ii � h��[ii℄ + 12���[ii℄ h'�[j℄i (1.103)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 29+ 12�++ii h'+j i+ 12�++ii h'�j i+ 12���ii h'+j i+ 12���ii h'�j i� 12�++ii h'�[j℄i� 12���ii h'�[j℄i� 12���[ii℄ h'+j i� 12���[ii℄ h'�j iThis rather formidable expression beomes quite a lot more intelligiblewhen expressed in AO-basisE[0℄QED = DQED�� h�� + 12DQED�� L����DQED�� (1.104)in whih appears the AO-density matrix of QEDDQED�� = D�� +Dpol�� ; Dpol�� = (�)Xi ��i��i � �[i℄��[i℄� : (1.105)Comparing with (1.76) one sees that the standard AO-density matrixD has been replaed by the QED ounterpart DQED obtained by theaddition of the vauum polarization density Dpol whih re�ets how thevauum density is modi�ed with respet to the referene vauum uponthe introdution of the atual potential.The gradient vetor in semilassial QED is given by a formula iden-tial to (1.80), exept that the Fok matrix of the standard approahis to be replaed by its QED ounterpart FQED whih is obtained bythe substitution D ! DQED in (1.78). One again we �nd that thenon-redundant orbital rotations are given by the parameter lass A oftable 1.1. However, the reader should arefully note that the distri-bution of the elements of the �-matrix on the three parameter lasseshanges when going from the standard approah to QED, re�eting thatthe negative-energy orbitals are now �lled and not empty.The Hessian in semilassial QED has the same form as in (1.81), butwith the substitution F ! FQED. For a non-interating system theHessian beomes diagonal like in the standard approah (1.82)Aai;ai = �a � �i > 0; 8�ia (1.106)Following the same line of argument as in setion 2.1 we may onludethat the Hessian of the interating systems has all eigenvalues positiveas well. We have thereby shown that the eletroni ground state ofsemilassial QED is haraterized by a minimization priniple at theHartree-Fok level of theory.2.3 DisussionIn the previous two subsetions we have developed variational the-ory at the losed-shell Hartree-Fok level aording to the standard 4-omponent approah and QED in the semilassial limit. In this setionD R A F T 6th Deember 2002, 5:04pm D R A F T



30we will summarize and disuss our �ndings. This will allow us to returnto and study in more detail the argument of Brown and Ravenhall. Itfurthermore allows us to onsider the extension to the orrelated level oftheory in the next subsetion.In QED the negative-energy orbitals are �lled, in aordane withDira's proposal. This allows, at su�iently large energies, to reateeletron-positron pairs out of the vauum. Suh proesses do not on-serve partile number, but do onserve harge. The energies of intera-tion in hemistry are generally too low for real pair reation proesses, butthe Dira sea manifests itself through the phenomenon of vauum polar-ization. As we have seen, at the losed-shell Hartree-Fok level the QEDeletroni ground state orresponds to a true minimum of the energy andthis allows for instane the relativisti extension of the Hohenberg-Kohntheorem of DFT [75℄. In ontrast, the eletroni ground state in thestandard approah is haraterized by a minimax priniple. The vauumis then empty, and the negative-energy orbitals are aordingly treatedas an orthogonal omplement to the eletroni orbitals. However, andthis is a ruial point, retaining the additional degrees of freedom pro-vided by this orthogonal omplement (the positroni degrees of freedom)allows the omplete relaxation of the eletroni ground state.With the notation and mahinery introdued in the two previous sub-setions we may now revisit the argument of Brown and Ravenhall. Weonsider a system of two non-interating eletrons and in the standardapproah (std) write the ground state asj�0i = ayiayi j0istd (1.107)orresponding to the Slater determinant of the degenerate Kramers part-ners 'i and 'i. The ground state energy is E(0)0 = �i+ �i = 2�i. We thenturn on the two-eletron interation. By standard Rayleigh-Shrödingerperturbation theory the �rst order amplitudes of the perturbed wavefuntion are an = h�n jĝ(1; 2)j�0iE(0)0 �E(0)n : (1.108)One an now straightforwardly onstrut doubly-exited determinantsj�ni = ����i!b�i!a+E = ayaayb j0istd (1.109)with one orbital '+a from the positive ontinuum and one orbital '�b fromthe negative ontinuum suh that the energy E(0)n = �+a + ��b beomesidential with E(0)0 and perturbation theory breaks down. The solutionD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 31proposed by Brown and Ravenhall was to embed the Hamiltonian inprojetion operators �+ onto positive energy orbitalsĤ ! �+Ĥ�+: (1.110)This orresponds to retaining only the purely eletroni terms of theQED Hamiltonian (1.86)Ĥno�pair = h++pq bypbq + 14L++++pqrs bypbyrbsbq: (1.111)Pair reation and annihilation is thereby exluded and this approxima-tion has therefore been referred to as the no-pair approximation. How-ever, the no-pair Hamiltonian is not unique sine the distintion betweeneletroni and positroni reation and annihilation operators depends onthe orbital set in whih the �eld operators are expanded. One possiblehoie is the solutions of the free-partile Dira equation (1.7), giving the�free� piture. Another hoie is the solutions of the Dira equation in themoleular �eld (1.17) leading to the Furry piture. A third possibility isto ontinuously update the projetion operators through SCF iterationsso that they at onvergene orrespond to the solutions of the ombinedmoleular and mean-�eld potentials of the Hartree-Fok equations. Weshall see that this hoie, the �fuzzy� piture, as proposed by Mittleman[67℄, orresponds to the standard 4-omponent approah.Let us, however, �rst onsider the two-eletron system disussed byBrown and Ravenhall as desribed by QED. We write the referene de-terminant as j�0iQED = byibyi j0iQED (1.112)where the vauum is de�ned by (1.88) and thereby the omplete orbitalset of the non-interating system. Using (1.102) we �nd the QED groundstate energy to be E(0)QED;0 = 2�+i + (�)Xj ���j � h��[jj℄� : (1.113)Let us next onsider the QED analogues of the troublesome doubly ex-ited determinants (1.109). From the reinterpretation of the �eld op-erators (1.85) and the de�nition of the vauum (1.88) we immediatelyobtain j�niQED = byadb j0iQED = 0 (!); (1.114)showing that these determinants simply do not our sine all the negative-energy orbitals are already oupied. One may attempt the alternativeform j�ni0QED = byadyb j0iQED (1.115)D R A F T 6th Deember 2002, 5:04pm D R A F T



32orresponding to the reation of a true eletron-positron pair out of thevauum. However, this determinant orresponds to a di�erent harge(zero and not �2) and does therefore not interat with the two-eletronreferene determinant sine the QED Hamiltonian onserves harge. Suhdeterminants are thus exluded on physial grounds. We an thereforeonlude that at the QED level the Brown-Ravenhall disease is easilyured; the referene determinant (1.112) mixes only with purely ele-troni determinants for �xed partile number N . The two-eletron part ofthe QED Hamiltonian (1.86) allows oupling of the referene oupation-number vetor to vetors to whih are added one or two eletron-positronpairs. These an again ouple to vetors with more pairs at higher orderin perturbation theory. It is perhaps easier to analyze these interatingoupation-number vetors by going from the partile-hole formalismto the original form of the �eld operators (1.54) and instead �ll up allthe negative-energy orbitals of the interating system. The oupation-number vetor of the partile-hole formalism ontaining one and twoeletron-positron pair(s) then orrespond to determinantsj�k�!a+i and ����l�!b+k�!a+E ; (1.116)respetively. The �rst lass of determinants ontain the exitation of aneletron from the negative-energy orbital k to the virtual positive-energyorbital a. Using the form (1.102) of the reordered QED Hamiltonianwith all two-eletron terms deleted we �nd that the unperturbed energyof the determinant j�ni = j�k�!a+i isE(0)QED;n = 2�+i + �+a � ��k + (�)Xj ���j � h��[jj℄� (1.117)Using the full Hamiltonian we an determine the transition moment, thatis the numerator of (1.108), and thus obtain the following expression forthe �rst-order amplitude of the perturbed wave funtionan = �L�+��ka[ii℄��k � �+a (no summation !) (1.118)The denominator is learly of order O(2). The numerator L�+��ka[ii℄ =(kajii) � (kijia) ontains two-eletron integrals in whih the integrationover one eletron ontains the overlap of one positive-energy and onenegative-energy orbital. To determine the order of this ontribution letus reall from the disussion in setion 1.1.1 that for positive-energysolutions the large omponent is in an averaged sense a fator  largerD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 33than the small omponent, and that for negative-energy solution this roleis reversed. We an then onlude that the numerator is on the order ofO(�1) and thus the amplitude (1.118) is of order O(�3). By similararguments we �nd that the amplitude of doubly-exited determinantsj�ni = ����l�!b+k�!a+E is an = L�+�+kalb��k + ��l � �+a � �+b (1.119)and is of order O(�4). It is important to note that the determinants of(1.116) ontain exitations from oupied negative-energy orbitals to vir-tual positive-energy orbitals. They are therefore absent in the standardapproah sine in this approah the vauum is empty and the negative-energy orbitals only serve as an orthogonal omplement. The preseneof the determinants (1.116) onstitute a pure QED e�et and our orderanalysis shows the minuteness of their ontribution.We have seen that the standard approah di�ers from QED in thesemilassial limit only by the absene of vauum polarization. This is arather minute e�et, giving rise to the Uehling e�et, whih is a minorontribution to the Lamb shift [77℄, and it would therefore be surprising ifthe elimination of vauum polarization should lead to a omplete break-down of the theory. In subsetion 2.1 we have seen that the eletroniground state in the standard approah an be found by the minimaxpriniple (1.83). However, in pratie the solutions are found by vetorseletion, that is in eah iteration of the SCF yle vetors for the nextiteration are not seleted aording to an aufbau priniple, rather oneselets the lower eletroni orbitals that are generally easily identi�edthrough the energy gap down to the negative-energy orbitals. This pro-edure orresponds preisely to the use of a no-pair Hamiltonian (1.111)with ontinuously updated projetion operators as proposed by Mittle-man. Another way of seeing this proedure is to note that the formulasof the standard approah an be reovered from QED by hoosing thereferene vauum as the vauum de�ned by the self-onsistent mean-�eld potential. The vauum polarization density Dpol (1.105) then goesto zero. Having identi�ed the eletroni Hamiltonian of the standard4-omponent approah with the no-pair Hamiltonian in the �fuzzy� pi-ture, we an see that the Brown-Ravenhall disease is ured, sine thedoubly exited determinants (1.109) leading to ontinuum dissolutionare projeted out.The no-pair Hamiltonian (1.111) depends on the orbital set in whihthe �eld operators (1.85) are expanded and thus on the potential gen-erating this orbital. This non-uniqueness of the no-pair HamiltonianD R A F T 6th Deember 2002, 5:04pm D R A F T



34is an important point that seems to esape a number of authors. Inpartiular when deriving various approximate 1- or 2-omponent rela-tivisti Hamiltonians a number of authors embed the Dira-Coulomb-(Gaunt/Breit) Hamiltonian in projetion operators (1.110) without spei-fying the referene orbitals. In an otherwise exellent paper by M. Baryszand A.J.Sadlej [5℄ one reads: �[: : :℄ one should mention that the methodsof relativisti quantum hemistry, whih are based diretly on 4-spinors[: : :℄, also neglet the positroni (negative energy) solutions. This isgenerally known as the no-pair approximation [: : :℄ and makes the exateletroni 2-spinor solutions fully equivalent to four-omponent eletronisolutions. Hene, as long as our knowledge of the pure eletroni spe-trum of the Dira equation is su�ient, the 4-spinor formalism beomesobsolete.� What the authors miss is the fat that the 4-omponent meth-ods update the projetion operators of the no-pair Hamiltonian until self-onsisteny and therefore ahieve a omplete relaxation of orbitals to theatual potential. The approximate 1- and 2- omponent methods freezethe projetion operators before performing an approximate deouplingof the eletroni and positroni degrees of freedom. This may lead toexellent approximations that allow relativisti alulations at reduedomputational ost, but it is inorret to state they provide ompleteequivalene with the 4-omponent methods.Just how good these approximations with �xed projetion operatorsare an be easily investigated at the 4-omponent level in the algebraiapproximation. It su�es to generate the orbital set orresponding to thereferene potential de�ning the projetion operator and then delete thenegative energy vetors from the ensuing alulation in the atual poten-tial. In table 1.2 this proedure is illustrated by 4-omponent relativistiHartree-Fok alulations on the radon atom. It an be seen that theuse of projetion operators de�ned by the free-partile Dira equation,the �free� piture, gives rather large deviations, in partiular in the oreregion, ompared to the standard approah, the �fuzzy� piture, basedon fully relaxed projetion operators. On the other hand, the use of pro-jetion operators de�ned by the moleular �eld (1.17), the Furry piture,ompare fairly well with the standard approah. For referene we havealso inluded the results of a 1-omponent (salar) seond-order Douglas-Kroll alulation in the same basis. Apart from the lak of spin-orbitinteration one an see that the result is rather lose to the Furry pi-ture, whih an be onsidered as in�nite-order Douglas-Kroll. An at �rstsight surprising result is obtained by projeting the standard or �fuzzy�oupied orbitals onto the negative-energy free partile solutions in thesame basis. On then �nds that the negative-energy free partile solutionsontribute only 0.0053 to the total density of 86 eletrons! However, al-D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 35Table 1.2. The e�et of embedding the Dira-Coulomb Hamiltonian by projetionoperators onto positive energy orbitals as illustrated by a Hartree-Fok alulationon the radon atom. The alulations were arried out using a point nuleus andan unontrated 32s32p17d11f family Gaussian large omponent basis. The smallomponent basis was generated by restrited kineti balane. For omparison wehave inluded the results of a salar seond-order Douglas-Kroll alulation (DK2) inthe same basis. Fuzzy Furry Free DK2E(total) -23610.98632 -23611.01630 -24153.25409 -23533.645691s1=2 -3644.74282 -3644.75635 -3859.56081 -3626.815942s1=2 -669.37883 -669.38209 -694.44791 -667.279972p1=2 -642.35771 -642.36308 -650.93434 -570.132122p3=2 -541.08440 -541.08776 -540.98657 idem3s1=2 -166.96715 -166.96783 -172.50957 -166.544453p1=2 -154.90291 -154.90395 -156.89683 -138.485863p3=2 -131.72668 -131.72734 -131.61723 idem3d3=2 -112.56321 -112.56374 -112.25150 -109.694423d5=2 -107.75599 -107.75642 -107.45065 idem4s1=2 -41.34840 -41.34854 -42.76820 -41.252514p1=2 -36.02132 -36.02153 -36.50780 -31.854844p3=2 -30.11915 -30.11927 -30.06259 idem4d3=2 -21.54718 -21.54726 -21.44792 -20.894994d5=2 -20.43800 -20.43805 -20.34020 idem4f5=2 -9.19411 -9.19409 -9.11432 -9.064964f7=2 -8.92842 -8.92840 -8.85031 idem5s1=2 -8.41670 -8.41671 -8.72474 -8.398945p1=2 -6.40907 -6.40910 -6.49582 -5.540505p3=2 -5.17528 -5.17529 -5.14742 idem5d3=2 -2.18932 -2.18932 -2.15957 -2.090815d5=2 -2.01625 -2.01625 -1.98766 idem6s1=2 -1.07263 -1.07263 -1.12104 -1.067876p1=2 -0.54033 -0.54033 -0.54932 -0.427776p3=2 -0.38390 -0.38390 -0.37708 idembeit minute, one should keep in mind that the negative-energy orbitalsontribute very large energies and this explains the large deviations ofthe �free� piture result from the standard approah.2.4 The orrelated levelLet us now onsider the extension to the orrelated level. The mostgeneral variational parametrization is provided by the MCSCF ansatz���	MCSCFE = exp [�b�℄Xi i j�ii (1.120)D R A F T 6th Deember 2002, 5:04pm D R A F T



36in whih the orbital rotation parameters f�pqg are supplemented by theoe�ients fig of the CI expansion in Slater-determinants fj�iig. Atthe Hartree-Fok level the orbital rotation parameters provide relaxationof orbitals. At the orrelated level orbital relaxation, in addition to or-relation, is also provided by the CI expansion oe�ients. In fat, inthe non-relativisti domain the orbital rotation parameters beome re-dundant in the limit of a omplete CI-expansion within the given orbitalbasis, showing that in this domain the exat solution within a given1-partile basis is provided by full CI.At the 4-omponent relativisti level the hoie of CI-expansion be-omes more di�ult sine one employs a no-pair Hamiltonian with pro-jetion operators that in priniple should be allowed to relax ompletelyto the atual potential of the system. At the MCSCF level the relaxationis provided by the orbital rotation parameters that an be employed inonjuntion with an expansion in purely eletroni determinants, thatis ontaining only positive-energy orbitals. In CI and CC methods theorbital basis is frozen, and the onventional approah is to employ the no-pair Hamiltonian (1.111) de�ned by Hartree-Fok orbitals. This meansthat determinantal expansions are restrited to purely eletroni determi-nants generated from this orbital set. Complete relaxation of the proje-tion operators is therefore not possible, although the projetion operatorsde�ned by the Hartree-Fok orbitals an be expeted to onstitute a verygood approximation. In the limit of full CI the orbital parameters �++iadesribing rotations between oupied and virtual positive energy or-bitals beome redundant, but the parameters �+�ia , desribing rotationsbetween oupied positive energy orbitals and virtual negative energyorbitals are not aounted for by the CI-expansion. This tells us that atthe 4-omponent relativisti level the exat solution in a given 1-partilebasis is not provided by full CI, but by MCSCF.Bunge et al. [11℄ has advoated 4-omponent relativisti CI using inaddition to purely eletroni determinants also mixed determinants, thatis Slater determinants ontaining both positive- and negative-energy or-bitals. A sublass of these determinants are preisely the doubly exiteddeterminants that appear in the argument of Brown and Ravenhall ana-lyzed in the previous setion. It is our �rm onvition that the methodsadvoated by Bunge et al. are plain wrong and our argument against theuse of these methods runs as follows: Consider CI at the QED level oftheory, or rather in the semilassial limit that was analyzed in setion2.2. The CI ansatz is ���	CIE =Xi i j�ii (1.121)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 37whih is simply the MCSCF ansatz (1.120) with the orbital rotation oper-ator deleted. We may assume that we start with the orbital set generatedat the Hartree-Fok level. We want to desribe a system of N eletronsand so our Hartree-Fok referene is simply an oupation-number ve-tor of N eletrons as in (1.87). The QED Hamiltonian (1.97) does notonserve partile number and so the CI-expansion (1.121) will ontainoupation-number vetors with partile number N +2n, where n is thenumber of eletron-positron pairs generated from the referene determi-nant. On the other hand, the QED Hamiltonian does onserve hargeand so the oupation-number vetors with N partiles must all be purelyeletroni sine they are the only ones that ouple to the referene deter-minant through the QED Hamiltonian. The oupation-number vetorswith more than N partiles orrespond to determinants (1.116) involv-ing one or more exitations of eletrons from oupied negative-energyorbitals to virtual positive-energy orbitals. The inlusion of these de-terminants will provide omplete relaxation of the orbital set. However,as emphasized already in the previous setion, these determinants areabsent in the standard approah sine all the negative-energy states areempty. The mixed determinants inluded by Bunge et al. in the CI-expansion simply do not exist at the QED level. They are forbiddenby the Pauli exlusion priniple sine they involve the double oupa-tion of negative-energy orbitals. Their inlusion an preisely lead to theontinuum dissolution predited by Brown and Ravenhall. Bunge et al.laims variational ontrol using the Hylleraas-Undheim theorem whihimplies that the ordered sequene of eigenvalues of a CI-matrix with onedeterminant added to the expansion are interlaed with those of the orig-inal CI-matrix. However, the Hylleraas-Undheim theorem only onnetssequenes of eigenvalues and not eigenstates. It is well known in diret-CI methods that upon enlarging the trial vetor spae root �ipping anour, that is two states may hange order, and this is preisely the pos-sibility that preludes variational ontrol in the approah advoated byBunge et al. [11℄.3. Implementation and Computational SalingNow that the neessary general theory has been introdued in thepreeding setions we an diret our attention to the appliation tomoleules. This onerns both the implementation of algorithms andtheir omputational saling in omparison to the "spinfree" algorithmsthat are used in non-relativisti quantum hemistry. We start by onsid-ering basis set expansion tehniques.
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383.1 The algebrai approximationWhile Hartree-Fok equations for atoms an be solved via numerialintegration one needs a basis set expansion to apply the method to gen-eral moleular systems. In order to obtain a viable sheme one would liketo hoose funtions that are readily integrated, preferably using the sametehniques as employed in non-relativisti quantum hemistry, so thatone an bene�t from the large body of experiene and implementationsthat are available in this �eld. Non-relativisti orbitals are, however, usu-ally hosen as real funtions of the spae oordinates only, whereas theDira spinors are omplex funtions of spae and spin oordinates. Howan one best exploit the available basis set tehnology in this domain ?Basis set expansion is usually done in the LCAO approximation wherethe moleular orbitals are expressed as linear ombinations of atomi or-bitals. These atomi orbitals are in turn expressed as �xed linear om-binations of simpler funtions alled primitives. Consider the solution ofthe time-independent Dira equation for a moleular �eld (1.41) in thealgebrai approximation. We expand the large and small omponent intwo di�erent sets of primitives Xp = �X� X�p; X = L; S: (1.122)We then obtain the eigenvalue equation" V LL �LS�SL V SS � 2m2SSS # " LpSp # = " SLL 00 SSS # " LpSp # �p(1.123)in whih appear the matrix elementsSXY�� = D�X� j �Y� E ; V XY�� = D�X� ���V̂ ����Y� E ; �XY�� = D�X� j(� � p)j�Y� E(1.124)The �rst attempts along these lines failed rather miserably, even forone-eletron systems. The origin of the problem was the neglet of theoupling of the large and small omponents in the Dira equation2m Sp (r) = bRp (� � p) Lp (r) ; bRp = "1 + �p � V̂2m2 #�1 (1.125)We obtain the �nite basis equivalent of this relation by �rst writing out(1.123) in terms of two matrix equationsV LLLp + �LSSp = SLLLp �p (1.126)�SL + �V SS � 2m2SSS� Sp = SSSSp �p (1.127)D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 39and solve for the vetor Sp of small omponent expansion oe�ients.This gives the relationSp = 12m "SSS + �pSSS � V SS2m2 #�1�SLLp : (1.128)From (1.125) or, alternatively, (1.128) we see that the small omponentwave funtion an be regarded as the result of the onseutive ationof the operators (� � p) and bRp on the large omponent wave funtion.The energy-dependent operator bRp is totally symmetri, but the operator(� � p) ouples funtions of opposite parity whih indiates that separatebasis set expansions are needed for the large and small omponents,as was antiipated by (1.122). We thus see that the oupling of thelarge and small omponents generally leads to the use of larger basis setsand thereby inreased omputational ost at the 4-omponent relativistilevel ompared to non-relativisti methods. For instane, at the Hartree-Fok level three lasses of integrals over the Coulomb operator (1.49)appear � (LL jLL), (SS jLL) and (SS jSS) � where the �rst andsmaller lass (all indies orrespond to large omponent basis funtions)onstitute the two-eletron integrals of a non-relativisti alulation. Onthe other hand, we shall see that a loser study of the oupling relationprovides suggestions as how to redue omputational ost.Before entering a detailed disussion of the oupling (1.125), let us �rstonsider the hoie of primitives in the basis set expansions in relativistialulations. We know that the exat solutions of the relativisti hydro-geni atom [6℄ di�er from the non-relativisti ones in having a singularityat the nuleus and having a oupling between the spatial and spin o-ordinates. The singularity is somewhat arti�ial beause it appears inthe exat solution for a model in whih the nuleus is represented by apoint harge. A more realisti �nite nuleus model [108℄ gives the wavefuntions an approximately Gaussian shape in this region. The seonddi�erene, oupling of the spatial and spin degrees of freedom, leads tomore ompliations. An expansion in 2-spinor funtions was suggestedby the Oxford group[73℄ who de�ned basis funtions as�L� (rA) = NL� fL� (rA) ���;m� (�A; 'A)�S� (rA) = NS� fS� (rA) ����;m� (�A; 'A) (1.129)The radial funtions fL� (rA) and fS� (rA) depend only on the distaneto expansion enter A, all the angular and spin dependene is arriedby the 2-spinor funtions ���;m� (�A; 'A) for whih the analyti form isknown [39℄. The problem with this approah is that, due to the hangedD R A F T 6th Deember 2002, 5:04pm D R A F T



40angular dependene relative to non-relativisti theory, ompletely newintegral evaluation routines need to be developed. This made the atualimplementation for moleular systems appear relatively late[73, 117℄. Im-plementations of a more pragmati approah with salar expansion fun-tions were available about a deade earlier[1, 23, 62, 24, 81℄ beausethey employed non-relativisti integral evaluation pakages [65℄. In suhshemes one hooses expansion funtions in whih only one omponentof the 4-spinor is non-zero : Xp = " �X 00 �X # " X�pX�p # ; X = L; S (1.130)Here �X is a row vetor of primitives and X�p and X�p are olumnvetors of the orresponding expansion oe�ients. Note that the sameset of primitives is used for the � and � omponents. The salar funtions�� (rA) are again hosen as funtions of the position of the eletronrelative to expansion enters A. One may still separate the radial andangular parts by hoosing the spherial form�� (rA) = N 0�r`�A f� (rA)Y`�;m� (�A; 'A) (1.131)but this gives now only a marginal advantage over the Cartesian form�� (rA) = N 00�xnx�A yny�A znz�A f� (rA) (1.132)sine neither has the orret angular dependene. The orret angulardependene is in this approah of ourse still ahieved at the Hartree-Fok stage one the atual spinors are found.In all three models � 2-spinor, spherial or Cartesian � one still needsto hoose the spei� form of the radial expansion funtions f� (rA).Again one an take the exat solutions for the hydrogeni atom as aguideline. Slater funtions f� (rA) = e���rA have the orret long rangebehavior, but do not have the orret shape lose to the nulei. Theyneither represent the singularity found in the point nuleus model northe approximate Gaussian shape appropriate for �nite nulear models.There may thus be an advantage for expansion in Gaussian type fun-tions f� (rA) = e���r2A for properties that depend on the preise shapenear extended nulei, while properties that depend on the eletron den-sity in the outer regions of the moleule are better desribed using Slatertype funtions. In pratie, however, deisive is the more e�ient evalu-ation of multi-enter integrals that makes Gaussian based expansions themethod of hoie for both kind of properties. In both the salar and thetwo-spinor expansion shemes one an then employ integration shemesdeveloped for Gaussian type funtions [43℄.D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 41As said before, the advantage of the salar funtion approah is thatthey require very little adaptation of existing non-relativisti integralevaluation routines. A disadvantage is, however, that the expansion inNL large and NS small omponent primitives is unneessarily long. Tosee why this is so we need to onsider the relation (1.125) between thelarge and the small omponent part of the wavefuntion in more detail.For eletroni orbitals and non-singular potentials �, e.g. �nite nulei,the oupling redues in the non-relativisti limit tolim!12m  Sp (r) = (� � p) Lp (r) (1.133)and equivalently, in the algebrai approximation, tolim!1 2m Sp = hSSSi�1�SLLp (1.134)sine the operator R̂p then goes to unity. In pratie one obtains thisresult for point nulei as well in the algebrai approximation beauseGaussian basis funtions are not able to desribe the singularities atnulei. When using basis set expansions, one usually ignores the e�et ofR̂p sine this operator, even in the relativisti regime, is lose to unity dueto the large value of 2m2. This is alled the kineti balane proedure[88, 92℄ sine it guarantees proper representation of the operator identity(� � p) (� � p) = p2 in matrix form. We an see this better by insertingthe non-relativisti oupling (1.134) into the matrix equation (1.126).We then obtainV LLLp + 12m�LS hSSSi�1�SLLp = SLLLp �p (1.135)whih gives the matrix representation of the non-relativisti Shrödingerequation provided that the relationD�L� ���p2����L� E = D�L� j(� � p)
 (� � p)j�L� E (1.136)holds. The term 
 =X�� ����SE� ��SSS��1��� D�S� ��� (1.137)has the form of the resolution of identity in a non-orthogonal basis. Asarefully analyzed by Dyall et al. [22℄ it is not neessary to have aomplete small omponent basis in order for relation (1.136) to hold;it su�es that the small omponent basis spans the result of the op-erator (� � p) ating on the large omponent basis. This observationD R A F T 6th Deember 2002, 5:04pm D R A F T



42explains the weakness of the Talman minimax priniple (1.84) alludedto in setion 2.1. Assume that we have the exat solution. If the largeomponent funtion is now varied by adding new primitives without on-jointly adding small omponent primitives that span the e�et of (� � p)on these new funtions, then relation (1.136) will not hold. The kinetienergy will be underestimated, and one may observe that the energyfalls below the exat energy, ontrary to the Talman minimax priniple.The kineti balane reipe in pratie prevents this so-alled variationalollapse. It does not mean that kinetially balaned basis sets alwaysprovide an upper limit of the true energy sine the relation (1.134) doesnot represent the exat oupling (1.128). The e�et of the operator R̂pan be seen in �gure 1.1 where we ompare the small omponent ra-dial funtion of the 1s1=2 orbital of the radon atom from a Hartree-Fokalulation using a �nite nuleus with the funtion generated by kinetibalane from the orresponding large omponent radial funtion. It anbe seen that lose to the nuleus there is a marked disrepany betweenthe two funtions, illustrating that the kineti balane presription givesa rather poor desription of the oupling of the large and small ompo-nents in this region. However, sine this breakdown ours in the loseviinity of nulei, well within the radial expetation value of the 1s1=2 or-bital, it is reasonable to assume that it ours in a region of loal atomisymmetry, even for moleular systems. This implies that large ompo-nent s funtions then only ouple to small omponent p funtions andnot to other angular momentum types. With a su�iently �exible basisthe kineti balane presription will therefore allow the establishmentof the orret oupling. In most ases energy optimizing a sequene ofunontrated kinetially balaned basis sets shows monotonous onver-gene from above upon extending the basis. For very large basis sets onesometimes sees that the energy in a kineti balane basis set expansionis slightly lower than the referene value that is obtained via numeriintegration [32℄. There is, however, ample numerial evidene that suhsmall deviations do not present a real problem, and the kineti balaneproedure has therefore beome the standard approah in developingbasis sets for 4-omponent relativisti alulations.Sine it su�es to span the range of funtions �SA� (r) = (� � p)�LA� (r)in the small omponent basis, kineti balane an be realized in di�er-ent ways. In 2-omponent basis sets one an diretly inlude one smallomponent expansion funtion for eah large omponent funtion . This1:1 relation between the large and small omponent basis funtions hasbeen denoted restrited kineti balane. In salar basis sets one usuallyonsiders all three omponents of the p separately, whih is then denotedunrestrited kineti balane. Still, the separate one-omponent funtionsD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 43an be reombined in the transformation to the orthogonal basis whenthe Hartree-Fok matrix equation is solved. If this is done, the �nalresult beomes idential to that of the 2-omponent proedure, with asonly di�erene the alulation of primitive integrals and the onstrutionof the Fok matrix. In these steps the salar expansion method needssigni�antly more primitive funtions than needed in the omparabletwo-spinor expansion. As example we take the representation of the 2pspinors. The large omponent is expressed as a linear ombination of 2px,2py, and 2pz Cartesian Gaussian funtions using the same exponents forthe whole set of p-funtions. The small omponent is then expanded inthe set of funtions that are generated by operation with the three om-ponents of the gradient operator on the three salar 2p funtions. Thisgives seven unique funtions (1s, 3s and 3d) to balane three large om-ponent funtions. This overrepresentation an be redued using so-alleddual family basis sets [32℄ in whih the exponents of the d-funtions area subset of those of s-funtions, and the exponents of f-funtions a subsetof those of p-funtions, et. This is e�ient beause small omponentsalar funtions are then used to balane two large omponent funtionsat the same time. Still, one always ends up with a longer expansion thanused in an qualitatively equivalent two-spinor expansion. The super�u-ous linear ombinations are usually projeted away beause they maygive problems with linear dependenies. The problem is enhaned inheavier elements beause the p1=2 and p3=2 orbitals then have markedlydi�erent radial extent [80℄. A salar expansion sheme does not permitdistintion between these subshells whih means that the tight funtionsneeded in the expansion set for the p1=2 will also be inluded in theset used for the p3=2. This illustrates that a two-spinor expansion is tobe preferred on theoretial grounds . It is, however, also a matter ofstrategy whether this redution in appliation time really warrants theadditional e�ort in onstruting and maintaining a dediated integralevaluation implementation for relativisti alulations. An implementa-tion of the salar expansion sheme that shares most of its inner kernelswith a non-relativisti implementation will bene�t easily from new ad-vanes in non-relativisti integral evaluation tehniques, while these needto be rederived and separately implemented in a two-spinor sheme. An-other issue is the interfae of non-relativisti and relativisti shemes, anapproah advoated by Dyall [26, 27, 28, 29℄, where it also may be easierto work with primitive salar expansion funtions throughout.Let us now diret attention to the R̂ operator (1.125) that modi�es thefuntion (� � p) L (r) in regions where the potential � (r) is large. Thisis the ase in the viinity of nulei and has important impliations for thekineti balane proedure for ontrated basis sets. The kineti balaneD R A F T 6th Deember 2002, 5:04pm D R A F T



44presription has proven to be a valid method to generate primitive smallomponent basis sets. However, it is lear from �gure 1.1 that it failswhen applied to the large omponent part of an eigenspinor. The dra-mati onsequenes an easily be veri�ed for hydrogeni systems [100℄.It means that the simple kineti balane proedure an not be applied toheavily ontrated basis funtions (that approah the exat large ompo-nent solution) beause the generated small omponent funtions do notprovide su�ient �exibility to establish the orret oupling. The properproedure is to take both the large and the small omponent oe�ientsdiretly from unontrated atomi referene alulations. This has beenreferred to as atomi balane [100℄. As a side remark we note that thesometimes advoated [63℄ use of non-relativisti funtions to expand thelarge omponent, ombined with appliation of the kineti balane pre-sription for the small omponent, also prevents the divergenes but atthe expense of having wrong expansion funtions for both the large andthe small omponent. Again, ontration with the atomi spinor oe�-ients is easier in two-spinor expansion shemes than in salar expansionshemes beause the former makes it possible to de�ne spei� ontra-tions for the spin-orbit split subshells (j = l � 1=2 and j = l + 1=2). Inthe latter sheme one needs to give one set of ontration oe�ients fora given nl shell whih makes it neessary to ompromise.The R̂-operator is also of interest when studying the long-range be-havior of the small omponent wave funtion. In regions of negligiblepotential it redues to a onstant fator ofR̂p = �1 + �p2m2 ��1 (1.138)Sine the amplitude of the large omponent wave funtion in this regionis dominated by that from the HOMO with a small value of "p and onlya small gradient, the small omponent wave funtion will have nearlyzero amplitude in this region. The small omponent density is thereforerather loalized and atomi in nature. This observation has made it pos-sible to alulate spetrosopi onstants of moleular systems where theomplete set of (SS jSS) integrals is eliminated and the potential urveis orreted by a simple Coulombi orretion [107℄. This onstitute aperturbational orretion, but more elaborate shemes of integral model-ing have been developed in order to redue omputational ost. Reentlya sheme was presented in whih all overlap between small omponentbasis funtions loated on di�erent expansion enters was negleted inthe evaluation of potential energy matrix elements [48℄. The promisingresults obtained in these pilot alulations indiate that in the long runit will probably su�e to restrit evaluation of potential energy inte-D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 45
Figure 1.1. The atual small omponent radial funtion [r�1Q(r) ℄ of the 1s1=2 or-bital of radon obtained from a numerial GRASP alulation with Gaussian nuleus,as ompared with the radial small omponent funtion [r�1P (r) ℄ generated fromrestrited kineti balane (RKB). For omparison the radial expetation value of the1s1=2 orbital is 0.0015 a.u.
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46grals in the small omponent basis to those that share a ommon enter.In this approximation the saling of integral evaluation then beomesaN4L + bNSN2L + NS where the �rst term is omparable to that of anon-relativisti all-eletron alulation. This means that the preedingdisussion on the e�ieny of integral evaluation in two-spinor versussalar expansion shemes looses some of its signi�ane beause it willapply mainly to small systems. For larger systems the integral evalu-ation ost will be dominated by the "non-relativisti" �rst term and itbeomes more important to employ e�ient integral-diret or multipoleexpansion tehniques to improve the omputational e�ieny than tooptimize the alulation of integrals over the small omponent basis.For small moleules, moleular symmetry may of ourse also help toinrease omputational e�ieny. In the two-spinors expansion one anresort diretly to double group symmetry and apply projetion opera-tors or other tehniques to reate the appropriate symmetri linear om-binations of atomi two-spinors. When salar funtions are hosen asexpansion basis it is natural to �rst adapt these using non-relativistipoint group symmetry and then ombine the resulting funtions to ob-tain double group symmetry adapted funtions. In that ase one mayombine the symmetry adaption of salar basis funtions to single pointgroups with time reversal symmetry in a quaternion symmetry sheme[82, 83℄. The sidestep via non-relativisti symmetry adapted funtionsalso has advantages when approximate, in partiular so-alled spinfree,algorithms are onsidered. If one has de�ned a basis in whih the largeomponent salar funtions transform aording to the irreps of the ap-propriate single point group and the small omponent funtions are re-lated by the kineti balane relation, it beomes possible to identify spin-orbit ouplings as arising due to the o�-diagonal matrix elements of theFok operator. Negleting these ontributions beomes then idential tosolving the spinfree modi�ed Dira equation of setion 1.1.4 [24, 104℄. While this is not very important in the Hartree-Fok stage it o�ersmajor saving in the eletron orrelation proedure. It means that or-relation alulations an be arried out using non-relativisti algorithmsand implementations. This will be disussed in more detail in the nextsetion.3.2 Eletron orrelation methodsThe eletron orrelation methods available for 4-omponent methodsare derived from non-relativisti ounterparts. As disussed in setion 2.4a no-pair Hamiltonian (1.110) with fully relaxed projetion operators isaessible only at the MCSCF level, where orbital rotations are inluded.D R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 47At the CI or CC level the �best� hoie of no-pair Hamiltonian is the onede�ned by the Hartree-Fok (or MCSCF) orbitals. The generation of thematrix elements appearing in the no-pair Hamiltonian (1.111) is ratherostly sine it involves summation of integrals over both the large andsmall omponent type basis sets. In the salar expansion sheme this isonveniently expressed in quaternion algebra [110℄ and gives the followingexpression in terms of eletron repulsion integrals over salar funtionsg�12�34pqrs = L;SXX L;SXY NXX�;� NYX�;� BXX;�12��;pq gXXY Y���� BY Y;�34��;rs (�12;�34 = 0; 1; 2; 3)(1.139)where the B-matries are quaternion density matriesBXX;�12��;pq e�12 = 3X�1=0 3X�1=0 X;�1�p X;�2�q e��1e�2 : (1.140)Eah quaternion integral g�12�34pqrs an be expressed as a sum of 16 indi-vidual real numbers multiplied by a quaternion phase e�12 for eletron 1and a quaternion phase e�34 for eletron 2. This is fully equivalent to themore onventional notation in terms of barred and unbarred partners ofKramers pairs. One an see that the e�et of spin-orbit oupling trans-lates into making the density matries omplex instead of real, while theuse of a 4-omponent instead of a 2-omponent formalism leads to the ad-ditional summation over the small omponent basis funtions. Togetherthis makes the 4-index formation step, though still saling as a �fth powerwith the number of basis funtions, muh more ostly than the same stepin non-relativisti alulations. Let M be the number of ative Kramerspairs (or spatial orbitals in the non-relativisti ase) in a orrelated al-ulation. Pernpointner et al. [70℄ take the realisti assumption that theprimitive small omponent basis is about twie the size of the primitivelarge omponent basis, that is NS � 2NL and arrive using M = NL ata non-relativisti/relativisti operation ount ratio of 1:130 for the �rsthalftransformation and a ratio of 1:88 for the seond halftransformation.The inrease in the �rst steps is largely due to the presene of the smallomponent basis set, while that in the last steps is aused by the ou-pling of the spin and spatial degrees of freedom. The omputationalsaling in the �rst steps an be redued by using two-spinor expansionfuntions (so that NS = NL) and/or by using one-enter approximationsand it is probable that this will not present a major problem in the nearfuture. The limiting ratio will then be that of a two-spinor algorithmthat gives a saling of 1:10 in the �rst halftransformation and 1:24 inthe seond. The later steps remain more demanding due to the fat thatD R A F T 6th Deember 2002, 5:04pm D R A F T



48spin-orbit ouplings, that are negleted in a purely non-relativisti the-ory, are taken into aount. This gives a shift from real to omplex orquaternion algebra and a loss of permutational symmetry. Here one mayonly improve the saling in ases that these ouplings are so small thatapproximate algorithms an be used. This is similar to the situation with2-omponent methods where spin-orbit oupling are often negleted inthe Hartree-Fok proedure and introdued in a CI step. Preisely thesame treatment with similar omputational gains (and loss of aurayin some ases) is possible for the 4-omponent sheme. After the indextransformation we end up with a seond quantized Hamiltonian that anbe used in various orrelation treatments. The omputations are thenidential to those neessary in 2-omponent alulations.A number of algorithms and implementations have been developedthat takle the eletron orrelation problem in the 2- or 4-omponentno-pair approximation. We will here only onsider the algorithms thatassume true 4- or 2-spinors and not the methods that neglet the e�eton spin-orbit ouplings in the Hartree-Fok stage. For more ompletedesriptions of the algorithms we refer to a reent overview by one of us[111℄. In this review we will fous on the omputational saling of thesemethods.The omputationally most e�ient treatment is given by many-bodyperturbation theory, in partiular MP2. Sine one only needs to sumtransformed integrals divided by the orbital energy di�erenes, this methodallows for integral-diret implementations, thus opening up for applia-tion to larger systems. The method has as drawbak that it is onlyappliable in ases were a single determinant referene already gives areasonable desription of the system. The omputational saling is iden-tial to that of the index transformation step beause the summation ofthe transformed integrals themselves takes a negligible amount of time.The CI-type methods are more �exible but omputationally less ef-�ient and, more importantly, lak the orret saling of energy withsystem size. This restrits their appliation to relatively small modelsystems in whih they an give results lose enough to the full CI limit.As orbital generator usually an average-of-on�guration Hartree-Fokproedure is used, but work MCSCF algorithms is underway [98℄. Theomputational saling depends muh on the atual implementation andon the type of CI that is used.The last lass of ab initio orrelated method are the oupled lustertype approahes. They share with the perturbation theory type methodsthe features of size-extensivity and reasonable omputational e�ieny,but also the requirement that the referene wave funtion should be sim-ple. Appliation of these type of relativisti methods to atoms has beenD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 49pioneered by the groups of Lindgren [59℄ and Kaldor [52, 53℄ who haveshown that almost arbitrary auray an be reahed one a su�ientnumber of one-partile funtions (up to i-type funtions) and exitationlevel is used. While suh aurate treatments are feasible due to thehigh symmetry and relatively few eletrons to be orrelated in atomisystems, this is still out of reah for moleular appliations. It is possibleto formulate the theory entirely in terms of Kramers' pairs instead ofindividual spinors but the orresponding algorithms have not yet beenfully developed for the general ase. The unrestrited CCSD(T) algo-rithm that has been implemented an be routinely applied to diatomisbut larger systems and basis sets beyond triple or quadruple zeta levelare usually still too demanding. These systems are smaller than feasiblewith e�ient non-relativisti implementations of CC methods, whih ismainly due to the limiting steps in the neessary index transformationthat make this step often more expensive or umbersome (due to theneessary diskspae and I/O) than the oupled luster step itself. Thissituation will improve due to the inreasing performane of omputerhardware and the development of more e�ient (parallel) algorithms,but unless approximations are made that break the notorious seventhpower saling with system size the oupled luster algorithms will re-main only appliable to relatively small systems.The latter problem is in fat shared among all the orrelation methodsand is no di�erent from the situation in non-relativisti quantum hem-istry. However, while in non-relativisti quantum hemistry rewriting ofthe algorithms in the atomi orbital basis ombined with approximationof long-range interations via multipole expansions [113, 85℄ permits thedevelopment of algorithms that sale muh better with system size [87℄,this is umbersome in the relativisti ase. In order to make AO-diretalgorithms feasible one also needs to take into aount the large di�er-ene in size between the ative spinor set and the omplete basis set.It is quite ommon to orrelate only 10 % of the eletrons in a system,using only the lowest lying virtual spinors. This makes the AO list offuntions muh longer than MO-list and it takes larger systems beforethe gain due to approximate treatment of long-range e�ets starts to payo�. This leaves the implementers of methods with a di�ult hoie : Inthe long run one will see that omputations for system sizes for whih thee�ort of using AO-based algorithms pays o� are easily feasible and thatthis then enables muh larger omputations. In the urrent situation itis, however, still more e�ient to use MO-based algorithms.The observations regarding the omputational saling of the varioussteps in a onventional ab initio alulation (using salar basis funtions)are summarized in table 1.3. The �rst steps show a linear dependeneD R A F T 6th Deember 2002, 5:04pm D R A F T



50on the number of primitive integrals that need to be alulated and on-trated with the density matrix. The fators a, b and  depend on thetype of basis funtions ontained in the integrals. Fator  will in gen-eral be larger then a beause the small omponent basis ontains higherangular momentum type funtions than the large omponent basis. Thisis the main reason that relativisti Hartree-Fok alulations for smallmoleules are so muh more expensive than omparable non-relativistialulations. The di�erene in algebra (quaternion instead of real) fur-thermore redues the permutational symmetry of the density matrixmaking the Fok matrix building and diagonalization proedure moreexpensive. This algebra di�erene also shows up in two-spinor meth-ods where the presene of two-eletron spin-orbit integrals inreases theomputation time by a onstant fator relative to non-relativisti al-ulations. Index transformation of two-eletron integrals exhibits thewell-known �fth order saling with the number of basis funtions. Inthe transformation of the �rst two indies one sees mainly the e�etsof the small omponent basis set. In the seond halftransformation thee�et of spin-orbit ouplings start to dominate making the saling of fullDira-Coulomb and two-spinor approahes omparable. They beomefully equivalent in the last step (taken here as a CCSD alulation sinethis algorithm has been analyzed in detail previously [105℄) where thevariational inlusion of spin-orbit oupling leads to a 32-fold inrease inoperation ount. The numbers presented here are theoretial estimatesand atual measurements may give a somewhat di�erent piture depend-ing on e�ieny of implementation and onvergene of iterative proe-dures. Still, we think that it is useful to have suh estimates, � bothas a guideline for the e�ieny of implementation and for the develop-ment of a long term strategy. We an for instane dedue that moleulesmay as well be treated with relativisti oupled luster methods based onthe spinfree Dira-Coulomb equation than by other salar relativisti ornon-relativisti ounterparts sine the rate-determining step is the CCSDstep whih outsales the preliminary Hartree-Fok or index transforma-tion steps. Inluding spin-orbit oupling inreases the omputationaltime, regardless of whether this is done in a 2- or a 4-spinor algorithm.This trend that is already visible in large basis set alulation on di-atomis will beome even stronger one more powerful omputers thatallow larger moleules to be treated beome available. On the otherhand, if we move to the large systems still inaessible by urrent ou-pled luster algorithms and use only Hartree-Fok or DFT methods wesee that the inlusion of spin-orbit ouplings is less ruial. The e�ortshould go into the e�ient evaluation or approximation of integrals overthe small omponent basis set. For suh larger systems one an then useD R A F T 6th Deember 2002, 5:04pm D R A F T



Four-omponent eletroni struture methods for moleules 51Table 1.3. Theoretial operation ounts of steps in a orrelated alulation for dif-ferent approximation of the Dira Coulomb no-pair Hamiltonian. 2-Spinor is anymethod that works with frozen no-pair projetion operators but keeps the spin-orbitouplings, Spinfree is any method that varies the projetion operators but negletsspin-orbit ouplings. N is the number of basis funtions (with subsripts referringto Large or Small omponent where appropriate). M is the number of ative or-bitals or Kramers' pairs (with the subsripts for the CCSD algorithm referring tothe subsets of Oupied or Virtual orbitals). The steps onsidered are: A)Integralevaluation/Hartree-Fok/DFT, B)Index transformation, step 1, C)Index transforma-tion, step 2, D) CCSDNon-Relativisti SpinfreeA 18aN4 18 �aN4L + 4bN2SN2L + 4N4S�B 12MN4 + 12M2N3 12M �N4L + 4N2SN2L + 4N4S�+ 12M2 �N3L + 4NSN2L + 4N3S�C 12M3N2 + 12M4N 12M3 �N2L + 4N2S�+ 12M3 (NL + 4NS)D 14M4oM2v + 4M4oM2v + 12M2oM4v 14M4oM2v + 4M4oM2v + 12M2oM4v2-spinor Dira-CoulombA 12aN4 12 �aN4L + bN2SN2L + N4S�B 2MN4 + 8M2N3 2M �N4L +N2SN2L +N4S�+ 8M2 �N3L +NSN2L +N3S�C 4M3N2 + 16M4N 4M3 �N2L +N2S�+ 16M4 (NL +NS)D 8M4oM2v + 128M4oM2v + 16M2oM4v 8M4oM2v + 128M4oM2v + 16M2oM4vthe e�et of the loality of the small omponent wave funtion makingintegrals presreening and/or one-enter expansion methods take e�et.4. ConlusionIn this hapter we have disussed 4-omponent relativisti methodsand in partiular the hallenges that arise when extending the applia-tion of these methods from atomi to moleular systems, notably arisingfrom the introdution of the algebrai approximation. We have analyzedin detail the variational stability of the Dira-Coulomb-(Gaunt/Breit)Hamiltonian by omparing the standard approah to 4-omponent rela-tivisti moleular alulations with QED in the semilassial limit. We�nd that we reover the formulas of the standard approah by deletingvauum polarization from semilassial QED. The e�et is, however, thatthe minimization priniple of QED is replaed by a minimax priniplein the standard approah, due to the fat that in QED all negative-energy orbitals are �lled whereas they are empty and treated as an or-thogonal omplement in the standard approah. The standard approahemploys a (and not �the� !) no-pair Hamiltonian whih orresponds tosurrounding the relativisti many-eletron Hamiltonian by projetion op-erators. Contrary to approximate 1-or 2-omponent approximations the4-omponent methods allows a ontinuous update of the projetion oper-D R A F T 6th Deember 2002, 5:04pm D R A F T



52ators and thereby of the no-pair Hamiltonian and thus allows a ompleterelaxation of the eletroni wave funtion to the atual potential of thesystem.We insist on the distintion between Hamiltonians and methods. It isthen easier to see that the di�erene in omputational ost of relativistiand non-relativisti alulations is a di�erene in prefator rather thanorder, and so it is not like omparing DFT with CCSD. Through a arefulanalysis of omputational ost we furthermore show that one must distin-guish the extra omputational ost arising from the introdution of largerbasis sets, notably the separate expansion of the large and small om-ponents, from the ost arising from the transition from non-relativistito relativisti symmetry, that is the introdution of spin-orbit oupling.This latter ontribution is idential at the 2- and 4-omponent level oftheory. We onsider how the omputational ost an be redued by ex-ploiting symmetry, in partiular time reversal symmetry, and the atominature of the small omponent density. We also outline the dilemmafaing the programmer on whether he should hoose a salar basis ex-pansion whih allows him to bene�t from the ontinuous developmentof (integral) odes in the non-relativisti domain or whether he shouldhoose the more natural expansion in terms of 2-spinors whih requires amore dediated programming e�ort. The area of 4-omponent relativistimoleular methods ontinues to be an area of hallenge and promise.Referenes[1℄ P. J. C. Aerts, Ph. D. thesis, University of Groningen, (1986).[2℄ C. D. Anderson, Phys.Rev. 41, 405(1932).[3℄ T. Aoyama, H. Yamakawa and O. Matsuoka, J. Chem. Phys. 73, 1329(1980).[4℄ W. A. Barker and F. N. Glover, Phys.Rev. 99, 317 (1955).[5℄ M. Barysz and A. Sadlej, J. Mol. Strut.(Theohem) 573, 181(2001).[6℄ H. A. Bethe and E. E. Salpeter, Quantum mehanis of one- andtwo-eletron atoms, Springer, Berlin (1957).[7℄ F. Bloh., in F. Bopp (ed.), W. Heisenberg und die Physik unsererZeit, Vieweg & Sohn, Braunshweig (1961).[8℄ M. Born and J.R. Oppenheimer, Ann. Phys. 84, 457 (1927).[9℄ G. Breit, Phys.Rev. 34, 553 (1929).[10℄ G. E. Brown and D. G. Ravenhall, Pro. Roy. So. London A 208,552 (1951).[11℄ C. F. Bunge, R. Jauregui,and E. Ley-Koo, Int. J. Quant. Chem. 70,805 (1998).D R A F T 6th Deember 2002, 5:04pm D R A F T
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