Developments in Relativistic Many-Body Methods Ication - Developmental Physics

Timo Fleig

Department of Physics Laboratoire de Chimie et de Physique Quantique. Université Paul Sabatier Toulouse III

France

September 23, 2013

Université Paul Sabatier

Laboratoire de Chimie et Physique Quantiques

My Tenets for Today

On relativistic Wavefunction Theory 4 components vs. 2 components

2. Precision spectroscopy

Going for "Gold" without negative-energy states

3. Fundamental Physics

No-go without 4-component wavefunctions

Relativistic Electronic-Structure Theory

Idealism and Pragmatism

• Quantum Electrodynamics (QED) is the most rigorous theoretical ground for atomic and molecular electronic structure

Less adapted to situations where electron interactions dominate and/or electron correlation effects are strong 1

- "Filled-sea Fock-space" approaches do not seem to be a satisfactory option²
 Problems related to Negative-energy State (NES) correlations
- A viable and widely used alternative is the "Empty-Dirac" picture Usually in conjunction with a No-Virtual-Pair (NVP) approximation

¹ W. Kutzelnigg, *Chem Phys* **395** (2012) *16*

² W. Liu, *Phys Chem Chem Phys* **14** (2012) *35*

Four-Component Electronic-Structure Theory

Some Essentials

• Atomic basis sets; in low-energy approximation

 $\psi^S(\vec{r}) \approx \frac{\sigma \cdot \mathbf{p}}{m_0 c} \psi^L(\vec{r})$

Kinetic-balance condition

• Solution of the Dirac-Coulomb Hartree-Fock equations

 $\begin{pmatrix} \left(\hat{V}_{\text{nuc}} + \hat{v}_{\text{DCHF}} \right) \mathbb{1}_{2} & c\sigma \cdot \mathbf{p} \\ c\sigma \cdot \mathbf{p} & \left(\hat{V}_{\text{nuc}} + \hat{v}_{\text{DCHF}} - 2m_{0}c^{2} \right) \mathbb{1}_{2} \end{pmatrix} \begin{pmatrix} \psi_{a}^{L}(\vec{r}) \\ \psi_{a}^{S}(\vec{r}) \end{pmatrix} = \varepsilon \begin{pmatrix} \psi_{a}^{L}(\vec{r}) \\ \psi_{a}^{S}(\vec{r}) \end{pmatrix}, \quad \forall a \\ \varepsilon = E - m_{0}c^{2}$

• Fock matrix for "frozen" atomic core 1) Core energy: $\varepsilon_{\text{core}} = \sum_{i,j>i}^{2N_{\text{core}}} \{2\langle ij|ij\rangle - \langle ij|ji\rangle - \langle i\overline{j}|\overline{j}i\rangle\}$ 2) Inactive Fock matrix: $f_{pq}^{\text{DC}} = h_{pq}^{\text{D}} + \sum_{j}^{2N_{\text{core}}} \{2\langle pj|qj\rangle - \langle pj|jq\rangle - \langle p\overline{j}|\overline{j}q\rangle\}$

Four-Component Electronic-Structure Theory

Spectrum of the Dirac Hamiltonian

Four-Component Electronic-Structure Theory

The "empty-Dirac" picture

- Occupied positive-energy bound-state spinors Fermi vacuum state $|0\rangle$
- **Empty** continuum of negative-energy states
- Expectation value of parameterized state vector $\langle Ref|\hat{H}|Ref \rangle = \langle 0|e^{-\hat{\kappa}}\hat{H}e^{\hat{\kappa}}|0 \rangle$
- Approximation of general expectation value to first order: $\left\langle 0|e^{-\hat{\kappa}}\hat{H}^{DC}e^{\hat{\kappa}}|0\right\rangle \approx \left\langle 0|\left[\hat{H}^{DC},\hat{\kappa}\right]|0\right\rangle = \sum_{pq}\kappa_{pq}\left[\left\langle 0|\hat{H}^{DC}a_{p}^{\dagger}a_{q}|0\right\rangle - \left\langle 0|\hat{H}^{DC}a_{q}^{\dagger}a_{p}|0\right\rangle^{*}\right]$
- Parameterized Dirac-spinor transformations: $\hat{\kappa} = \sum_{pq} \left[\kappa_{p+q} + a^{\dagger}_{p} + a_{q+} + \kappa_{p+q} - a^{\dagger}_{p} + a_{q-} + \kappa_{p-q} + a^{\dagger}_{p} - a_{q+} + \kappa_{p-q} - a^{\dagger}_{p} - a_{q-} \right]$
- Green terms: minimization of energy w.r.t. rotations
- Red terms: maximization of energy w.r.t. rotations
 ⇒ minimax variation

Four-Component Correlation Methods

... and why they are not more expensive than two-component ones

Integrals over positive-energy 4-spinors:

$$\begin{split} h_{mn}^{+} &= \left\langle \psi_{m}^{+} | \hat{h} | \psi_{n}^{+} \right\rangle = \left\langle \left(\psi_{m}^{L} - \psi_{m}^{S} \right) | \left(\hat{h}_{11} - \hat{h}_{12} - \hat{h}_{22} \right) | \left(\psi_{n}^{L} - \psi_{n}^{S} \right) \right\rangle \\ &= \left\langle \psi_{m}^{L} | \hat{h}_{11} | \psi_{n}^{L} \right\rangle + \left\langle \psi_{m}^{L} | \hat{h}_{12} | \psi_{n}^{S} \right\rangle + \left\langle \psi_{m}^{S} | \hat{h}_{21} | \psi_{n}^{L} \right\rangle + \left\langle \psi_{m}^{S} | \hat{h}_{22} | \psi_{n}^{S} \right\rangle \\ &= \sum_{J=1}^{N^{L}} \sum_{K=1}^{N^{L}} c_{mJ}^{L^{*}} \left\langle \phi_{J}^{L} | \hat{h}_{11} | \phi_{K}^{L} \right\rangle c_{nK}^{L} + \sum_{J=1}^{N^{L}} \sum_{K=1}^{N^{S}} c_{mJ}^{L^{*}} \left\langle \phi_{J}^{L} | \hat{h}_{12} | \phi_{K}^{S} \right\rangle c_{nK}^{S} \\ &+ \sum_{J=1}^{N^{S}} \sum_{K=1}^{N^{L}} c_{mJ}^{S^{*}} \left\langle \phi_{J}^{S} | \hat{h}_{21} | \phi_{K}^{L} \right\rangle c_{nK}^{L} + \sum_{J=1}^{N^{S}} \sum_{K=1}^{N^{S}} c_{mJ}^{S^{*}} \left\langle \phi_{J}^{S} | \hat{h}_{22} | \phi_{K}^{S} \right\rangle c_{nK}^{S} \end{split}$$

- Key: Four-component no-virtual-pair (NVP) approximation
- $dim[\mathcal{F}^{4c}] = dim[\mathcal{F}^{2c}]$
- Direct comparison of 4- and 2-component Hamiltonians possible

Computational Scaling³

Method	Non-Rel.	2-comp.	4-comp.
Hartree-Fock	N^4	$8N^4$	$8\left(\frac{5}{2}N\right)^4$
4-Index transformation	$2N^5$	$32N^5$	$128N^5$
CCSD	$3N^6$	$10 \cdot$	$3N^6$
CCSDT	$30N^8$	$12 \cdot 3$	$30N^{8}$
CCSDTQ	$210N^{10}$	$14 \cdot 2$	$10N^{10}$

 \Rightarrow The correlated stage is the computational bottleneck (no savings in 2c formalism).

³L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102

Principal Approaches for Molecules

Relativistic Electronic-Structure Theory

Electron-electron interaction

Approximated low-frequency limit QED Hamiltonian

$$\hat{g}(1,2) = \frac{1}{r_{12}} \mathbf{1}_4 - \left\{ \frac{\boldsymbol{\alpha_1} \cdot \boldsymbol{\alpha_2}}{r_{12}} + \frac{(\boldsymbol{\alpha_1} \cdot \boldsymbol{\nabla_1})(\boldsymbol{\alpha_2} \cdot \boldsymbol{\nabla_2})r_{12}}{2} \right\} + \mathcal{O}\left(\alpha^3\right)$$

 $\begin{array}{l} \frac{1}{r_{12}} \mathbf{1}_{4} & \text{Coulomb term } (\rightarrow \text{Spin-same-orbit interaction}) \\ -\frac{\boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2}}{r_{12}} & \text{Gaunt term } (\rightarrow \text{Spin-other-orbit interaction}) \\ -\frac{(\boldsymbol{\alpha}_{1} \cdot \nabla_{1})(\boldsymbol{\alpha}_{2} \cdot \nabla_{2})r_{12}}{2} & \text{Gauge term} \\ \left\{ \dots \right\} & \text{Breit interaction} \\ \mathcal{O} \left(\boldsymbol{\alpha}^{3} \right) & \text{Higher-order terms, radiative corrections} \end{array}$

 \longrightarrow Currently truncation after Coulomb term

Spinors and Strings

General principles of rigorous relativistic correlation methods

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{i}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e_y}\right)} \hat{K}_0 = -i\Sigma_y \hat{K}_0$

Double group symmetry and quaternion algebra

Spinor basis:

 $\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

Spinorbitals	General spinors
$\hat{K}\varphi_i\alpha=\varphi_i^*\beta$	$\hat{K}\phi_i = \phi_{\overline{i}}$
$\hat{K}\varphi_i^*\beta = -\varphi_i\alpha$	$\hat{K}\phi_{\overline{i}} = -\phi_i$

 \otimes x: vertex weight y: arc weight

Parameterization of the Wavefunction

Generalized Active Spaces

Relativistic Generalized-Active-Space CC

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys 134 (2011) 214102
T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc 118,2 (2007) 347
J. Olsen, J Chem Phys 113 (2000) 7140

- "State-Selective" (SS) GAS-CC
 Generalized "Oliphant/Adamowicz" Ansatz⁴
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains GAS-selected higher excitations $|\psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

⁴N. Oliphant, L. Adamowicz J Chem Phys **94** (1991) 1229

Relativistic Generalized-Active-Space CC

Electronic Ground States ⁵

CC vector function

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \frac{1}{6} \left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right] \right\rangle \right. \dots \right) \right| \operatorname{Ref} \right\rangle$

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\begin{bmatrix} \hat{H}, \hat{T} \end{bmatrix}, \hat{T} \end{bmatrix}, \hat{T} \right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t_{i'j'}^{a'b'} t_{i"j'}^{a"b"} a_a^{\dagger} a_b^{\dagger} a_c a_d^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}$$

⁵L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102
L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem **224** (2010) 999

Relativistic Generalized-Active-Space CC

Excitation Energies⁶

$$J_{\mu}^{CC} = \sum_{\nu} A_{\mu\nu} x_{\nu} = \sum_{\nu} \left\langle \mu_{\text{GAS}} \left[e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} \right] \Phi_{0} \right\rangle x_{\nu}$$
$$A_{\mu\nu} = \left\langle \mu \left| \left(\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] + \left[\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right], \hat{T} \right] + \frac{1}{2} \left[\left[\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right], \hat{T} \right], \hat{T} \right] \dots \right] \right| \Phi_{0} \right\rangle$$

Algorithm for Jacobian matrix elements⁷

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T}\right], \hat{T}\right], \hat{T}\right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t_{i'j'}^{a'b'} t_{i"j"}^{a"b"} a_a^{\dagger} a_b^{\dagger} a_c \overline{a_d} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}$$

⁶M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

- ⁷L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102
- L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999

My Tenets for Today

- On relativistic Wavefunction Theory
 4 components vs. 2 components
- 2. Precision spectroscopy

Going for "Gold" without negative-energy states

3. Fundamental Physics

No-go without 4-component wavefunctions

Series AsH, SbH, BiH

When is CC superior to GAS-CI?

• CC4₃ calculations consistently better than CAS-CISD⁸

⁸M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

Methods in comparison

Chalcogen homonuclear and heteronuclear diatomics⁹

Vertical excitation energies among π^{*2} state manifold $\Lambda S \ States \ ^{3}\Sigma^{-}, \ ^{1}\Delta, \ ^{1}\Sigma^{+} \longrightarrow 0^{+}, \ 1, \ 2, \ 0^{+}, \ (\Omega)$

Splitting of 0^+ , 1 is a second-order spin-orbit effect Purely molecular spin-orbit splitting

Contenders: "Additive" ¹⁰: *SO-DDCI3*, *SO-CASPT2* "Non-additive" ¹¹: *4c-IH-FSCC*, *4c-GASCI*

⁹J.-B. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue, F. Neese, H. Bolvin J Chem Phys 135 (2011) 114106

¹⁰F. Neese, J Chem Phys **119** (2003) 9428

P.-Aa. Malmqvist, B.O. Roos, B. Schimmelpfennig, Chem Phys Lett 357 (2002) 357

¹¹L. Visscher, E. Eliav, U. Kaldor, *J Chem Phys* **115** (2001) *9720*

S. Knecht, H.J.Aa. Jensen, T. Fleig, J Chem Phys 132 (2010) 014108

Additive and non-additive methods in comparison

CESTC 2013, Znojmo, Czech Republic, September 23-25

Additive and non-additive methods in comparison

Conclusions in the light of evidence

4c No-virtual-pair approximation is extremely accurate 4c-GASCC GER calculations

Non-additive, spinor-based methods largely superior for excitation energies

4c-GASCI allows for balanced treatment of ground and excited states

Cl not size-extensive and inefficient in treating higher excitations

4c genuine MRCC is an important goal

 \Rightarrow The central problem in relativistic electronic-structure theory is non-relativistic.

My Tenets for Today

- On relativistic Wavefunction Theory
 4 components vs. 2 components
- 2. Precision spectroscopy

Going for "Gold" without negative-energy states

3. Fundamental Physics

No-go without 4-component wavefunctions

Testing fundamental physics: Implications of an *e*EDM \vec{D}

 \vec{D} aligned with \vec{J} due to projection theorem: $\left\langle \alpha', JM_J \left| \hat{V}_q \right| \alpha', JM_J \right\rangle = \frac{\left\langle \alpha', JM_J \right| \hat{\vec{J}} \cdot \hat{\vec{V}} \left| \alpha', JM_J \right\rangle}{\hbar^2 J^2 (J+1)} \left\langle JM_J \left| \hat{J}_q \right| JM_J \right\rangle$

Implies violation of $Parity(\mathcal{P})$ and $Time-Reversal(\mathcal{T})$ symmetries¹² The $C\mathcal{PT}$ theorem remains valid

D

¹²E.D. Commins, *Adv At Mol Opt Phys* **40** (1998) *1*

CP-Violating Physics

Characteristics and energy scales¹³

¹³M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

The search for physics beyond the standard model:

Current predictions for the eEDM¹⁴

¹⁴A.V. Titov, N.S. Mosyagin, A.N. Petrov, T.A. Isaev, D.P. DeMille, *Recent Advances in the Theory of Chemical and Physical Systems* (2006) *253-283*; courtesy: Huliyar (2009), DeMille (2005)

¹⁵B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* **88** (2002) *071805/1*

¹⁶J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

Essentials of the formalism

The pseudo-scalar \mathcal{PT} -odd eEDM Hamiltonian:

- Point of departure: Salpeter's¹⁷ modified Dirac equation: $\left[\gamma^{\mu} \left(-\imath \hbar \partial_{\mu} - \frac{e}{c} A_{\mu}\right) + m_0 c \mathbb{1}_4\right] \psi(x) = \frac{d_e}{4} \gamma^0 \gamma^5 \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}\right) F_{\mu\nu} \psi(x)$
- from which the eEDM operator can we written as an expectation value: $\langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi_H} = \frac{2icd_e}{e\hbar} \langle \gamma^0 \gamma^5 \vec{p}^2 \rangle_{\psi_H}$
- Requires kinetic-energy integrals of the type: $\langle \psi^L | \vec{p}^2 | \psi^S \rangle$
- and therefore explicitly the Small-component wave functions.
- Implementation as 4c-Cl expectation values¹⁸

$$\left\langle \hat{H}_{\text{edm}} \right\rangle_{\psi_k} = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(M,N)} c_{kI}^* c_{kJ} \left\langle (\mathcal{S}\overline{\mathcal{T}})_I \right| \sum_{i=1}^n \hat{H}_{\text{edm}}(i) \left| (\mathcal{S}\overline{\mathcal{T}})_J \right\rangle$$

¹⁷E. Salpeter, *Phys Rev* **112** (1958) *1642*

¹⁸T Fleig and M K Nayak, *Phys Rev A* **88** (2013) *032514*

Some candidate molecules

- ThF⁺, HfF⁺ (Experiment¹⁹, Cornell group)
- WC (Experiment, Leanhart group, Michigan)
- ThO (DeMille group; Theory²⁰, Meyer et al.)
- IH⁺ (Theory, Titov et al.²¹)
- PbO

 ¹⁹A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, *J Mol Spectrosc* 270 (2011) *1* ²⁰J. Paulovič, T. Nakajima, K. Hirao, R. Lindh, P.-Å. Malmqvist, *J Chem Phys* 119 (2003) *798*

²¹T.A. Isaev, A.N. Petrov, N.S. Mosyagin, A.V. Titov, *Phys Rev Lett* **95** (2005) *163004*

 $^{3}\Delta$ molecules

- Heavy nucleus (relativistic effect)
- One "science" electron (σ^1) , one "spectroscopy" electron (δ^1)
- Large E_{eff} for σ^1 electron

- Deeply bound molecule (fluorides)
- Small Λ -doublet splitting (experimental, technical reasons)
- Large rotational constant (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)
- $\bullet \; \Rightarrow \; \mbox{Low-lying} \; {}^3\!\Delta_1 \; \mbox{as "science" state}$

A Proposed Measurement²² on HfF⁺

²²A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc 270 (2011) 1

GASCI wavefunctions for HfF⁺

Correct relative description of

 $\Omega = 0$ (Hf $6s^2$, ${}^1\Sigma_0^+$) and $\Omega = 1$ (Hf $6s^15d^1$, ${}^3\Delta_1$) important for

1. Spectroscopic properties of involved states

2. Lifetime $\tau_{\Omega=1} = \left(\sum_{k} W_{k,\Omega=1}^{s}\right)^{-1}$ of "science" state

label	configurations
CAS-CI(10)	$F(2s2p)^8 \; Hf(6s5d)^2$, $F(2s2p)^7 \; Hf(6s5d)^3$, $F(2s2p)^6 \; Hf(6s5d)^4$
MR-CISD(10)	$v^{1} + v^{2}$ configurations
MR-CISD(20)	+ up to 2 holes in $Hf(5s5p)$ and $F(1s)$ shells
MR-CISD+T(20)	+ active-space defined Triples replacements to MR-CISD(20)
MR-CISD(34)	$MR extsf{-CISD}(20) + up extsf{ to } 1$ hole in $Hf(4f)$ shell
MR-CISD(34)+T	MR-CISD(34) + 20-electron Triples correction

HfF⁺ potential curves in RASCISD approximation

CESTC 2013, Znojmo, Czech Republic, September 23-25

HfF^+ spectroscopy; excitation energy and correlation model²³

	R_{e} [a.u.]	$\omega_e \ [\mathrm{cm}^{-1}]$			$T_e \ [cm^{-1}]$				
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
CAS-CI(10)	3.400	3.435	793	773	774	777	1543	0	1057	2480
MR-CISD(10)	3.506	3.558	651	639	639	640	68	0	1007	2489
MR-CISD+T(10)	3.510	3.560	649	640			0	26		
MR-CISD(20)	3.401	3.438	794	766	766	770	0	386	1519	3165
MR_{10} -CISD(20)	3.401	3.439	796	766	773	772	0	752	1890	3549
Experiment ²⁴			790.76	760.9			0	991.83		
Experiment ²⁵	3.374	3.407	791.2	761.3	762.3	761.5	0	993	2166	3951

- CAS-CI(10) reproduces relative energies of $\Omega = 0$ and $\Omega = 1$ incorrectly.
- MR-CISD(10) accounts for required differential electron correlations.
- MR-CISD(20) is an acceptable model.
- MR_{10} -CISD+T(20) will yield a very accurate description.

²³T Fleig and M K Nayak, *Phys Rev A* **88** (2013) *032514*

²⁴K.C. Cossel, D.N. Gresh, L.C. Sinclair, T. Coffrey, L.V. Skripnikov, A.N. Petrov, N.S. Mosyagin, A.V. Titov, R.W. Field, E.R. Meyer, E.A. Cornell, J. Ye, *Chem Phys Lett* **546** (2012) *1*

²⁵B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$		
Model	vDZ	vTZ	
CAS-CI(10)		24.1	
MR-CISD(10)	21.6	22.4	
MR-CISD(20)	22.9	23.3	
MR_{10} -CISD(20)	23.0		
MR-CISD+T(20)		23.7	
MR-CISD(34)		22.9	
MR-CISD(34)+T		23.3	
Estimate, Meyer et al. ²⁶	\approx	30	
Titov: 20 e ⁻ corr. ²⁷	24	4.2	

HfF⁺: E_{eff} in the $\Omega = 1$ science state

Correction estimate:

 $(\pm 1\%)$ Basis set

 $(\pm 2\%)$ Number of correlated electrons

 $(\pm 2\%)$ Higher excitations

Modification of -3.7% to value of Titov et al.

(even larger taking internuclear distance into account)

²⁷A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

²⁶E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

 $\left<\hat{H}_{
m edm}
ight>_{\psi_{\Omega=1}}$ as a function of R

CESTC 2013, Znojmo, Czech Republic, September 23-25

eEDM in ${}^3\Delta$ Molecules

ThO

# 0	of Kramers	pairs accu # of min	mulated electrons max		Vertical excitation energies T $_v ~[{ m cm}^{-1}]$				
			1110/10	Correlat	ion model	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
				CAS2in	9	0	6706	7349	8333
				CAS2in	CAS2in9_SD2		6598	7074	8090
Virtual	X	18	18	SD16_CAS2in9_SD18 0 6			6420	7240	8527
Kramers pairs		10	10	Exp. ²⁸	(T_e)	0	5317	6128	8600
			R = 3.47	77 a.u., vDZ, Dii	rac-Coulomt)			
Th: 7s, 6d, 7p	9	18–n	18	r					
Th: 6s, 6p O: 2s, 2p	8	16-m	16		Effe	ective electri	c field $E_{ ext{eff}}$	$\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	
(Th: 5s, 5p, 5d)					CAS2in	9		75.2	
Frozen	(41)				CAS2in	9_SD2		71.7	
					SD16_0	CAS2in9	_SD18	74.1	
CAS2in9		n = 0	m = 0		Meyer	Bohn		104	
CAS2in9_SD2	6546	n=2	m = 0		ivicyci,			TOT	
SD16_CAS2in9	_SD18	n=2	m = 2	L					

- Rather weak correlation effects
- \rightarrow Potential curves, deeper core correlation for E_{eff}, Th(5*s*, 5*p*, 5*d*) shells, vTZ basis sets

²⁸J. Paulovic, T. Nakajima, K. Hirao, R. Lindh, P.-Å. Malmqvist, J Chem Phys **119** (2003) 798, and refs.

eEDM in ${}^3\Delta$ Molecules

___ _ _ _

#	of Kramers	accumulated pairs # of electrons min. max.	ThF⊤	Vertical excitation	energies -	$\Gamma_v [cm^{-1}]$
	7					
			-	Correlation model	$\Omega = 0$	$\Omega = 1$
				CAS2in6	-1101	1 0
Virtual	x	18 18		CAS2in6_SD2	-334	0
Kramers pairs		10 10	-	Exp. ²⁹ (T _e)	0	315
				$R=3.8\; {\rm a.u.,\; vl}$	DZ, Dirac	c-Coulomb
Th: 7s. 6d	6	18-n 18				
Th: 6s, 6p F: 2s, 2p	8	16-m 16		Effective electric	c field E_{e}	ff $\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$
(Th: 5s, 5p, 5d)	Ī			CAS2in6		32.7
Frozen	(41)					
core				CAS2in6_	SD2	45.2
				Meyer Ro	hn	90
CAS2in6		n = 0 $m = 0$		ivicyci, DC	////	50
CAS2in6_SD2		n=2 $m=0$				
SD16_CAS2in	6_SD18	n=2 $m=2$				

- $\bullet\,$ Strong correlation effects on spectroscopic constants and $E_{\rm eff}$
- \rightarrow Valence and outer core shells to be considered, Th(6s, 6p, 5s, 5p, 5d), O(2s, 2p)

²⁹B. J. Barker, I. O. Antonov, M. C. Heaven, K. A. Peterson, J Chem Phys **136** (2012) 104305

- Malika Denis
- **T. F.**, *Principal Investigator*
- Mikhail G. Kozlov, St. Petersburg Nuclear Physics Institute
- Malaya K. Nayak, Bhabha Atomic Research Centre, Mumbai
- Jessica Loras
- Trond Saue
- Avijit Shee

ThO, ThF⁺, WC

Hyperfine structure constants

Other $\mathcal{P}\text{-}$ and $\mathcal{P}, \mathcal{T}\text{-}nonconserving operators$

DIRAC a metalaboratory for the development of relativistic 4- and 2-component

electronic-structure methodology

• KR-CI.

Kramers-Restricted GAS Configuration Interaction Program (released in DIRAC10/DIRAC11/DIRAC12) Authors: S Knecht, T Fleig, J Olsen, HJAa Jensen

• KR-CC.

Kramers-Restricted GAS Coupled Cluster Program (not yet released)

Authors: LK Sørensen, J Olsen, M Hubert, T Fleig

The induced fermion EDM

Standard Model Picture

- Only CP violation in the quark-mixing matrix (CKM)
- Electron only interacts indirectly via weak interaction with virtual quarks
- Such two-loop diagrams give zero ${\cal CP}\-$ odd contribution 5
- Three-loop $\mathcal{CP}\text{-}odd$ contributions zero in the absence of gluonic corrections^6
- The standard-model prediction is immeasurably small: $d_e^{SM} \leq 10^{-38} \, e \, \, {\rm cm}$

⁵E.D. Commins, *Adv At Mol Opt Phys* **40** (1998) *1*

⁶M. Pospelov, I.B. Khriplovich, Sov J Nuc Phys **53** (1991) 638

The induced fermion EDM

Beyond the Standard Model

 χ : chargino, neutralino

 \tilde{f}'_i : supersymmetry (s)-fermion

 $\epsilon^{\mu}(q)$: photon

Chargino $(\tilde{\chi}_{1,2}^{\pm})$, neutralino $(\tilde{\chi}_{1,2,3,4}^{0})$ or gluino (\tilde{g}^{a}) fermion/sfermion interaction Lagrangian:

$$\mathcal{L}_{\chi f \tilde{f}'} = g_{Lij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_L f\right) \tilde{f}'^*_j + g_{Rij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_R f\right) \tilde{f}'^*_j + h.c.$$

One-loop fermion EDM:³⁰

$$\left(\frac{d_{f}^{E}}{e}\right)^{\chi} = \frac{m\chi_{i}}{16\pi^{2}m_{\tilde{f}'_{j}}^{2}}\mathcal{I}m\left[\left(g_{Rij}^{\chi f\tilde{f}'_{j}}\right)^{*}g_{Lij}^{\chi f\tilde{f}'_{j}}\right] \left[Q_{\chi}A\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right) + Q_{\tilde{f}'_{j}}B\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right)\right]$$

MSSM ("naïve SUSY") prediction: $d_e \leq 10^{-27} \, e \, \, {\rm cm}$

³⁰J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049

HfF⁺ spectroscopy; first vertical excitation energy

 $T_e(exp.) = 992 \ [cm^{-1}]^{31}$

	$T_{v}^{3.4[\mathrm{a.u.}]} [\mathrm{cm}^{-1}]$					
	νE	DΖ	vTZ			
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 0$	$\Omega = 1$		
CAS-CI(10)	1487	0	1488	0		
MR-CISD(10)	0	450	0	358		
MR-CISD+T(10)			0	442		
MR-CISD(20)	0	587	0	451		
MR_{10} -CISD(20)	0	(1013)	0	816		
MR-CISD+T(20)		-	0	679		

- Error compensations among basis set, active-space size, higher excitations
- Final calculation: MR_{10} -CISD+T(20), ≈ 2.5 billion parameters

³¹K.C. Cossel, D.N. Gresh, L.C. Sinclair, T. Coffrey, L.V. Skripnikov, A.N. Petrov, N.S. Mosyagin, A.V. Titov, R.W. Field, E.R. Meyer, E.A. Cornell, J. Ye, *Chem Phys Lett* **546** (2012) *1*

A measure of accuracy:

Hyperfine interaction constants

$$A_{||} = \frac{\mu_{At}}{I} \sum_{i=1}^{n} \frac{\vec{\alpha_i} \times \vec{r_i}}{r_i^3}$$

- Measure of electron density in the vicinity of heavy nuclei
- Relevant atomic integrals implemented in local version of DIRAC12 (by M. K. Nayak)
- Incorporate integrals into 4c-GASCI and 4c-GASCC expectation value modules
- \Rightarrow A possible calibrating criterion for electron EDM expectation values