Exploring Fundamental Physics in Diatomic Molecules

Timo Fleig

Département de Physique Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse

France

September 21, 2014

Laboratoire de Chimie et Physique Quantique

A Question at Large Scale

What "Happened" to Antimatter ?

- *Matter* and *antimatter* particles are created (and annihilated) in pairs.
- Matter-antimatter symmetric universe is empirically excluded¹
- A tiny portion of *matter*, about one particle per billion, managed to survive the Big Bang.

 \rightarrow Baryon Asymmetry Problem of the Universe (BAU)

• Fundamental symmetry violation could be at the heart of this problem.

¹A.G. Cohen, A. De Rújula, S.L. Glashow, *Astrophys. J.* **495** (1998) *539*

A Possible Explanation Via:

Sakharov's Conditions²

Condition 1: Distinguished direction of time (time arrow) Departure from thermal equilibrium

Condition 2: Baryon number (A) violation Inflation suggests that universe started with A = 0

Condition 3: (\mathcal{CP}) -violating physics present Standard Model (\mathcal{CP}) violation is regarded as insufficient Most Beyond SM theories invoke SuperSymmetry, richer (\mathcal{CP}) violation

SuSy-based BAU models: Leptogenesis, Dine-Affleck mechanism, GUT baryogenesis et al.

²M. Dine, A. Kusenko, "Origin of the matter-antimatter asymmetry", *Rev. Mod. Phys.* **76** (2004) *1* A. Sakharov, *J. Exp. Theor. Phys. Lett.* **5** (1967) *24*

Fundamental Discrete Symmetries

A bit of safe ground ?

CPT theorem:³ Local QFTs invariant

One example: The free Dirac equation (Weyl notation) $\hat{\mathcal{K}}^{\dagger}\hat{\mathcal{P}}^{\dagger}\hat{\mathcal{C}}^{\dagger}\left(-\imath\hbar\gamma^{\mu}\partial_{\mu}+m_{0}c^{2}\mathbb{1}_{4}\right)\hat{\mathcal{C}}\hat{\mathcal{P}}\hat{\mathcal{K}}\hat{\mathcal{K}}^{\dagger}\hat{\mathcal{P}}^{\dagger}\hat{\mathcal{C}}^{\dagger}\underline{\Psi}(x)=\underline{0}$ $\left(\gamma^{3}\right)^{\dagger}\left(\gamma^{1}\right)^{\dagger}\hat{K}_{0}\gamma^{0}\imath\left(\gamma^{2}\right)^{\dagger}\hat{K}_{0}\left(-\imath\hbar\gamma^{\mu}\partial_{\mu}+m_{0}c^{2}\mathbb{1}_{4}\right)\imath\gamma^{2}\hat{K}_{0}\gamma^{0}\gamma^{1}\gamma^{3}\hat{K}_{0}$ $\left(\gamma^{3}\right)^{\dagger}\left(\gamma^{1}\right)^{\dagger}\hat{K}_{0}\gamma^{0}\imath\left(\gamma^{2}\right)^{\dagger}\hat{K}_{0}\underline{\Psi}(x)=\underline{0}$ $\left(-\imath\hbar\gamma^{\mu}\partial_{\mu}+m_{0}c^{2}\mathbb{1}_{4}\right)\underline{\Psi}(x)=\underline{0}$

- \mathcal{CPT} invariance is connected to Lorentz invariance
- We have good reasons to "believe" in \mathcal{CPT} symmetry

³R. F. Streater, A. S. Wightman, "PCT, Spin and Statistics, and All That"

Fundamental Discrete Symmetries

Individual/combined symmetries may be violated

- The fall of \mathcal{P} invariance⁴
 - $\begin{array}{ccc} \pi^+ \longrightarrow \mu^+ + \nu_\mu & \hat{\mathcal{P}} \\ & & \text{both left-handed helicity} & \longrightarrow \\ \pi^+ \longrightarrow \mu^+ + \nu_\mu & \hat{\mathcal{CP}} \end{array}$

$$\pi^+ \longrightarrow \mu^+ + \nu_\mu$$

both right-handed helicity (not observed)

$$\pi^- \longrightarrow \mu^- + \overline{\nu}_\mu$$

both right-handed helicity (possible)

Perhaps it is (\mathcal{CP}) that is always conserved ?

• The fall of (\mathcal{CP}) invariance⁵

$$K_2 = \frac{1}{\sqrt{2}} \left(K_0 + \overline{K}_0 \right) \longrightarrow \pi + \pi$$

is (\mathcal{CP}) -odd, about 0.2% of events.

- ⁴C. S. Wu et al., *Phys Rev* **105** (1957) *254*
- ⁵J. H. Christenson et al., *Phys Rev Lett* **13** (1964) *138*

Electric Dipole Moment of Paramagnetic Atoms/Molecules

Possible sources⁶

- 1. Intrinsic EDM of an electron
- 2. (\mathcal{P} and \mathcal{T}) violating electron-nucleon interaction

⁶M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

Testing Time-Reversal Invariance: The Electron Electric Dipole Moment (*e*EDM) \vec{D}

 \vec{D} and \vec{J} (anti-)collinear, \leftarrow Pauli exclusion principle⁷ Implies violation of **Parity**(\mathcal{P}) and **Motion-Reversal**(\mathcal{T}) symmetries⁸ $\mathcal{CPT} \Rightarrow$ a kind of (\mathcal{CP}) violating interaction

⁷Hunter, *Science* **252** (1991) *73*

⁸T.D. Lee, C.N. Yang, *BNL* **443** (1957) *T91*

An Aside:

What is a fundamental EDM, what is not ?

Transformation properties for a quantum system

Non-relativistic electric dipole energy

 $E_{\rm dip} = -\left\langle \Psi \left| \mathbf{D} \cdot \mathbf{E}_{\rm ext} \right| \Psi \right\rangle$

- EDM orthogonal to angular momentum and zero due to endover-end rotation

Potential energy due to a particle EDM

$$E_{\rm EDM} = -d_e \left\langle \Psi \left| \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \right| \Psi \right\rangle$$

- EDM along angular momentum
- $d_e \gamma^0 \Sigma \neq \mathbf{0}$ in pure eigenstate

The induced fermion EDM

Standard Model Picture

- Only CP violation in the quark-mixing matrix (CKM)
- Electron only interacts indirectly via weak interaction with virtual quarks
- Such two-loop diagrams give zero ${\cal CP}\-$ odd contribution 9
- Three-loop \mathcal{CP} -odd contributions zero in the absence of gluonic corrections¹⁰
- The standard-model prediction is immeasurably small: $d_e^{SM} \leq 10^{-38} \, e \, \, {\rm cm}$

⁹E.D. Commins, *Adv At Mol Opt Phys* **40** (1998) *1*

¹⁰M. Pospelov, I.B. Khriplovich, *Sov J Nuc Phys* **53** (1991) *638*

The induced fermion EDM

Beyond the Standard Model

 χ : chargino, neutralino

 \tilde{f}'_i : supersymmetry (s)-fermion

 $\epsilon^{\mu}(q)$: photon

Chargino $(\tilde{\chi}_{1,2}^{\pm})$, neutralino $(\tilde{\chi}_{1,2,3,4}^{0})$ or gluino (\tilde{g}^{a}) fermion/sfermion interaction Lagrangian:

$$\mathcal{L}_{\chi f \tilde{f}'} = g_{Lij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_L f \right) \tilde{f}'^*_j + g_{Rij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_R f \right) \tilde{f}'^*_j + h.c.$$

One-loop fermion EDM:¹¹

$$\left(\frac{d_{f}^{E}}{e}\right)^{\chi} = \frac{m\chi_{i}}{16\pi^{2}m_{\tilde{f}'_{j}}^{2}} \mathcal{I}m\left[\left(g_{Rij}^{\chi f\tilde{f}'_{j}}\right)^{*}g_{Lij}^{\chi f\tilde{f}'_{j}}\right] \left[Q_{\chi}A\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right) + Q_{\tilde{f}'_{j}}B\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right)\right]$$

MSSM ("naïve SUSY") prediction: $d_e \leq 10^{-27} \, e \, \, {\rm cm}$

¹¹J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049

Search for the Electron EDM

 d_e from an atomic/molecular many-body problem

- Unpaired e^- in a stationary atomic/molecular state
- Measurement of an EDM dependent energy difference (transition energy) $\Delta \epsilon_t$ of atomic/molecular quantum states.
- Theory determination of an **enhancement**¹²

$$d_e = rac{\Delta \epsilon_t}{E_{ ext{eff}}} egin{array}{c} (\mathsf{Experiment}) \ (\mathsf{Theory}) \end{array}$$

• Enhancement factor R "translates" between atomic and particle scales and is related to the **EDM effective electric field** at the position of the electron,

$R \propto E_{\rm eff}$

¹²P.G.H. Sandars, J Phys B: At Mol Opt Phys **1** (1968) 499

Search for the Electron EDM

Atomic/molecular enhancement

• In the **non-relativistic limit** the EDM expectation value vanishes:

(Schiff's Theorem¹³)

 Relativistic view leads to a non-zero value, essentially due to length contraction in the observer frame¹⁴

 $\left\langle \hat{H}_{\rm EDM} \right\rangle = 0$

• Scaling with nuclear charge Z, for alkali atoms¹⁵

 $R\propto Z^3\,\alpha^2$

• Heavy atoms required. Typical values in practice:

Z > 50

¹³L.I. Schiff, *Phys Rev* **132** (1963) *2194*

¹⁴E.D. Commins, J.D. Jackson, D.P. DeMille, Am J Phys **75** (2007) 532

¹⁵P.G.H. Sandars, *Phys Lett* **14** (1965) *194*

Historical Development of eEDM Upper Bound¹⁶

¹⁶Sandars (1975), Commins, DeMille (2008)

The eEDM in a molecular framework

Perturbative EDM operator

Single-particle \mathcal{P} - and \mathcal{T} -odd eEDM Hamiltonian¹⁷: $\hat{H}_{\rm EDM} = -\frac{d_e}{4}\gamma^0\gamma^5 \left(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu}\right)F_{\mu\nu}$ which comprises an electric and a "motional" part $\hat{H}_{\rm EDM} = -d_e\gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B}\right]$

Magnetic contribution does not enter to leading order¹⁸ Electric field contributions

$$\mathbf{E} = \mathbf{E}_{\mathsf{int}} + \mathbf{E}_{\mathsf{ext}}$$

with an internal nuclear and electronic contribution

$$\mathbf{E}_{\text{int}}(i) = \sum_{A=1}^{N} \frac{Ze \ (\vec{r_i} - \vec{r_A})}{||\vec{r_i} - \vec{r_A}||^3} - \sum_{j=1}^{n} \frac{e \ (\vec{r_i} - \vec{r_j})}{||\vec{r_i} - \vec{r_j}||^3}$$

¹⁸E. Lindroth, E. Lynn, P.G.H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

¹⁷E. Salpeter, *Phys Rev* **112** (1958) *1642*

The eEDM in a molecular framework

Effective EDM many-body operator

Theoretical framework is relativistic quantum mechanics, no QED contributions

Exact reformulation of interaction constant for a single-particle expectation value $^{19}\,$

 $\left\langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \right\rangle_{\psi^{(0)}} = \frac{2 \imath c d_e}{e \hbar} \left\langle \gamma^0 \gamma^5 \vec{p}^{\,2} \right\rangle_{\psi^{(0)}}$

Approximate effective expectation value in many-body system $-d_e \left\langle \sum_{j=1}^n \gamma^0(j) \, \mathbf{\Sigma}(j) \cdot \mathbf{E}(j) \right\rangle_{\psi^{(0)}} \approx \frac{2\iota c d_e}{e\hbar} \left\langle \sum_{j=1}^n \gamma^0(j) \gamma^5(j) \, \vec{p}(j)^2 \right\rangle_{\psi^{(0)}}$

 $\psi^{(0)}$ here is the atomic/molecular electronic wavefunction. How do we optimize accurate electronic wavefunctions ?

¹⁹E. Commins, *Adv At Mol Opt Phys* **40** (1999) *1*

Relativistic Generalized-Active-Space Configuration Interaction²⁰

• Basis of time-reversal paired four-spinors

 $\begin{array}{ll} \mbox{Spinorbitals} & \mbox{General spinors} \\ \hline \hat{K}\varphi_i\,\alpha = \varphi_i^*\,\beta & \ \hat{K}\phi_i = \phi_{\overline{i}} \\ \hat{K}\varphi_i^*\,\beta = -\varphi_i\,\alpha & \ \hat{K}\phi_{\overline{i}} = -\phi_i \end{array}$

$$\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

 $[\]otimes$ x: vertex weight y: arc weight

²⁰S. Knecht, H.J.Aa. Jensen, TF, *J Chem Phys* **132** (2010) *014108*

TF, H.J.Aa. Jensen, J. Olsen, L. Visscher, J Chem Phys 124 (2006) 104106

Correlated Wavefunction Theory for ${\sf E}_{\rm eff}$

- Dirac-Coulomb Hamiltonian operator $\hat{H}^{DC} = \sum_{A} \sum_{i} \left[c(\vec{\alpha} \cdot \vec{p})_i + \beta_i m_0 c^2 + V_{iA} \right] + \sum_{i,j>i} \frac{1}{r_{ij}} \mathbb{1}_4 + \sum_{A,B>A} V_{AB}$
- All-electron Dirac-Coulomb Hartree-Fock (DCHF) calculation set of time-reversal paired 4-spinors $\hat{K}\varphi_i = \varphi_{\bar{i}}$ and $\hat{K}\varphi_{\bar{i}} = -\varphi_i$
- Expansion and variation²¹ in *n*-electron sector of Fock space $|\psi_k\rangle = \sum_{I=1}^{\dim \mathcal{F}^t(M,n)} c_{kI} |(S\overline{\mathcal{T}})_I\rangle$

Expectation values over relativistic Configuration Interaction wavefunctions²² $\left\langle \hat{H}_{\text{EDM}} \right\rangle_{\psi_k^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(M,n)} c_{kI}^* c_{kJ} \left\langle (\mathcal{S}\overline{\mathcal{T}})_I \right| \frac{2icd_e}{e\hbar} \sum_{j=1}^n \gamma^0(j) \gamma^5(j) \vec{p}(j)^2 \left| (\mathcal{S}\overline{\mathcal{T}})_J \right\rangle$

²¹S Knecht, H J Aa Jensen, TF, *J Chem Phys* **132** (2010) *014108*

²²TF and M K Nayak, *Phys Rev A* **88** (2013) *032514*

Search for the Electron EDM

Why molecules?

Be an atom in a parity eigenstate $\hat{\mathcal{P}} |\psi_p\rangle = \prod_{i=1}^n \hat{p}(i) \hat{\mathcal{A}} |\varphi_a(1) \cdot \ldots \cdot \varphi_m(n)\rangle.$ Then

$$\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = \left\langle \psi_p | \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} \hat{H}_{\text{EDM}} \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} | \psi_p \right\rangle = -p^2 \left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle$$
$$= -\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = 0$$

Parity eigenstates need to be mixed (polarization).

- 1. A perturbing laboratory E field is required to mix parity eigenstates. TI experiment²³ $E_{\rm eff} \approx 0.05 \left[\frac{{\rm GV}}{{
 m cm}}\right]$
- 2. Molecular fields: YbF²⁴: $E_{\rm eff} \approx 26 \left[\frac{\rm GV}{\rm cm}\right]$, HgF²⁵: $E_{\rm eff} \approx 100 \left[\frac{\rm GV}{\rm cm}\right]$,

²³V.V. Flambaum, Sov J Nucl Phys **24** (1976) 199

²⁴D.M. Kara, I.J. Smallman, J.J. Hudson, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, New J Phys 14 (2012) 103051

²⁵Dmitriev et al., *Phys Lett* **167A** (1992) *280*

The eEDM in a molecular framework

 $^{3}\Delta$ molecules 26

- One heavy nucleus (relativistic effect)
- One "science" electron (σ^1) , one "spectroscopy" electron (δ^1)
- Large $E_{\rm eff}$ for σ^1 electron
- Deeply bound molecule (fluorides)
- Small Λ (Ω)-doublet splitting²⁷ (optimal polarization)
- Large rotational constant (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)

 \Rightarrow Low-lying ${}^{3}\Delta_{1}$ as "science" state

²⁶E. Meyer, J. Bohn, D.A. Deskevich, *Phys Rev A* **73** (2006) *062108*

²⁷TF, C.M. Marian, J Mol Spectrosc **178** (1996) 1

HfF^+/ThF^+

JILA, Boulder, Colorado (Cornell group)

The eEDM in a molecular framework

A Proposed Measurement²⁸ on HfF⁺

²⁸A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc **270** (2011) 1

HfF⁺ electronic states and spectroscopic constants

		R_{e} [a.u.]			$\omega_e \; [{ m c}]$	m^{-1}]	
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
CAS-CI(10)	3.400	3.436	3.434	3.431	796	774	775	778
MR-CISD(10)	3.506	3.558	3.557	3.552	656	643	643	644
MR-CISD+T(10)	3.510	3.560			654	643		
MR-CISD(20)	3.401	3.438	3.437	3.434	800	768	769	772
Experiment ²⁹					790.76	760.9		
Experiment ³⁰	3.374	3.407			791.2	761.3	762.3	761.5

²⁹K. Cossel et al., Chem. Phys. Lett. **546** (2012) 1

³⁰B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺ and ThF⁺: E_{eff} in the $\Omega = 1$ science state³¹

HfF ⁺		ThF ⁺	
Model	$E_{\text{eff}} \left[\frac{\text{GV}}{\text{cm}} \right]$	Model	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$
CAS-CI(10)	24.1		
MR-CISD(10)	22.4		
MR-CISD(20)	23.3	MR_3 -CISD(18)	47.5
MR-CISD+T(20)	23.7	MR_6 -CISD(18)	36.2
MR-CISD(34)	22.9	MR_{10} -CISD(18)	35.2
MR-CISD(34)+T	23.3	MR_3 -CISDT(18)	35.4
Estimate, Meyer et al. ³²	≈ 30	Meyer et al.	≈ 90
20 e ⁻ corr., Titov et al. ³³	24.2	36 e ⁻ corr., Titov et al.	≈ 45

 (HfF^+)

Similar results with various methods System currently under exp. study

$(\mathsf{Th}\mathsf{F}^+)$

Different results with various methods Meyer's model inaccurate Titov's sr-CCSD(T) underestimates s-p mixing

³¹ TF and M.K. Nayak, Phys Rev A 88 (2013) 032514

M. Denis, M.K. Nayak, TF, et al., New J Phys (2014) in preparation

³²A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

³³E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

ThO

ACME Collaboration, Yale/Harvard, (DeMille/Doyle/Gabrielse groups)

Most Recent Measurement: ThO Molecule

ACME Collaboration, Harvard/Yale

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration*: J. Baron¹, W. C. Campbell², D. DeMille³, J. M. Doyle¹, G. Gabrielse¹, Y. V. Gurevich^{1,**}, P. W. Hess¹, N. R. Hutzler¹, E. Kirilov^{3,#}, I. Kozyryev^{3,†}, B. R. O'Leary³, C. D. Panda¹, M. F. Parsons¹, E. S. Petrik¹, B. Spaun¹, A. C. Vutha⁴, and A. D. West³

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilation with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable $(10^{-27}$ - 10^{-30} e cm) electron electric dipole moment (EDM, d_e), which is an asymmetric charge distribution along the spin (\vec{S}) . The EDM is also asymmetric under T. Using the polar molecule thorium monoxide (ThO), we measure $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29} e \text{ cm}$. This corresponds to an upper limit of $|d_e| < 8.7 \times 10^{-29} e \text{ cm}$ with 90 percent confidence, an order of magnitude improvement in sensitivity compared to the previous best limits. Our result constrains T-violating physics at the TeV energy scale.

The exceptionally high internal effective electric field (\mathcal{E}_{eff}) of heavy postral atoms and molecules can be used to precisely probe

is prepared using optical pumping and state preparation lasers. Parallel electric $(\vec{\mathcal{E}})$ and magnetic $(\vec{\mathcal{B}})$ fields exert torques on the electric and magnetic dipole moments, causing the spin vector to precess in the xy plane. The precession angle is measured with a readout laser and fluorescence detection. A change in this angle as $\vec{\mathcal{E}}_{\text{eff}}$ is reversed is proportional to d_e .

Science 6168 (2014) 269

Electron Electric Dipole Moment and Hyperfine Interaction Constants for ThO

Timo $Fleig^1$ and Malaya K. Nayak²

¹Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France ²Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, India (Dated: June 10, 2014)

A recently implemented relativistic four-component configuration interaction approach to study \mathcal{P} - and \mathcal{T} -odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the $\Omega = 1$ first excited state of the ThO molecule. We obtain a value of $E_{\text{eff}} = 75.2 \left[\frac{\text{GV}}{\text{cm}}\right]$ with an estimated error bar of 3% and 10% smaller than a previously reported result [J. Chem. Phys., 139:221103, 2013]. Using the same wavefunction model we obtain an excitation energy of $T_v^{\Omega=1} = 5410 \text{ [cm}^{-1}$], in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant $A_{||}$ as an expectation value, resulting in $A_{||} = -1339 \text{ [MHz]}$ for the $\Omega = 1$ state in ThO. The smaller effective electric field increases the previously determined upper bound [Science, 343:269, 2014] on the electron electric dipole moment to $|d_e| < 9.7 \times 10^{-29} e \text{ cm}$ and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.

1401.2284v2 J Mol Spectrosc **300** (2014) 16

Molecular Wavefunction for the "Science" State

	# of Kramers pairs	accumulated # of electrons min. max.	
Deleted	(176)		$^3\Delta_1$ is the first molecular
Virtual	183–K	36 36	excited state
Th: 6d σπ,7p, 8s Th: 7s, 6dδ	K	36-m 36	$7s^16d\delta^1$ configuration considerably mixed in this state
Th: 6s, 6p O: 2s, 2p	8	34–n 34	
Th: 5d	5	18-р 18	CI expansion space
Th: 5s, 5p	4	8-q 8	$\leq 500.000.000$ terms
Frozen core	(31)		

Basis Sets

Basis set/CI Model	$T_v [\rm cm^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
vDZ/MR_3 -CISD(18)	4535	80.8	-1283
vTZ/MR_3 -CISD(18)	3832	81.0	-1292
vQZ/MR_3 -CISD(18)	3643	80.7	-1298

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ using basis sets with increasing cardinal number and the wavefunction model MR₃-CISD(18)

Magnetic hyperfine interaction constant:

$$A_{||} = \frac{\mu_{Th}}{I\Omega} \left\langle \sum_{i=1}^{n} \left(\frac{\vec{\alpha_i} \times \vec{r_i}}{r_i^3} \right)_z \right\rangle_{\psi}$$

Number of Correlated Electrons

CI Model	$T_v [{\rm cm}^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
$MR\operatorname{-}CISD(2)$	5929	68.5	-1264
MR_3 -CISD(18)	3832	81.0	-1292
MR_3 -CISD(28)	3752	80.0	-1297
MR_3 -CISD(36) ³⁴	3742	80.8	-1287

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ correlating only the atomic valence shells down to including core-valence and core-core correlation and using the vTZ basis sets

³⁴Due to extreme computational demand the virtual cutoff is 5 a.u. here.

Active 4-Spinor Spaces

CI Model	$T_v [{\rm cm}^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
MR_3 -CISD(18)	3832	81.0	-1292
MR_5 -CISD(18)	4054	79.7	-1291
MR_7 -CISD(18)	4321	80.1	-1318
MR_{10} -CISD(18)	5329	75.6	-1335
MR_{13} -CISD(18)	5437	75.2	-1339
Exp. $(T_e)^{35}$	5317		

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ using the vTZ basis set and varying active spinor spaces

³⁵J. Paulovič, T. Nakajima, K. Hirao, R. Lindh, and P.-Å. Malmqvist, J. Chem. Phys. **119** (2003) 798

G. Edvinsson, A. Lagerqvist, J. Mol. Spectrosc. 113 (1985) 93

Higher Excitations

CI Model	$T_v [{\rm cm}^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
MR_3 -CISD(18)	4535	80.8	-1283
$MR_9 extsf{-}CISD(18)$	5703	73.8	-1321
MR_3 -CISDT(18)	5166	74.5	-1340

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ using the vDZ basis set and varying maximum excitation rank

REHE 2014, Smolenice, September 21, 2014

Historical Development of eEDM Upper Bound³⁶

³⁶Sandars (1975), Commins, DeMille (2008)

eEDM Constraint on Beyond-Standard-Model Theories³⁷

Model	$ d_e [e \cdot cm]$
Standard model	$< 10^{-38}$
Left-right symmetric	$10^{-28} \dots 10^{-26}$
Lepton-flavor changing	$10^{-29} \dots 10^{-26}$
Multi-Higgs	$10^{-28} \dots 10^{-27}$
Supersymmetric	$\leq 10^{-25}$
Experimental limit (TI) ³⁸	$< 1.6 \cdot 10^{-27}$
Experimental limit (YbF) ³⁹	$< 10.5 \cdot 10^{-28}$
Experimental limit (ThO) ⁴⁰	$< 9.6 \cdot 10^{-29}$

³⁷Courtesy: DeMille (2005), Huliyar (2009)

³⁸B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

³⁹J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

⁴⁰D. DeMille, ICAP 2014, Washington D.C., ACME Collaboration, *Science* **6168** (2014) *269*, 90% TF and M. K. Nayak, *J. Mol. Spectrosc.* **300** (2014) *16*, 10% L. V. Skripnikov and A. N. Petrov and A. V. Titov, *J. Chem. Phys.* **139** (2013) *221103*

Outlook

- Hyperfine interaction constants for an experimentally known diatomic molecule comparison with our calculations (WC⁴¹)
- Scalar-pseudoscalar \mathcal{P} and \mathcal{T} odd electron-nucleon interaction constant $W_{P,T}$
- Study of other diatomic molecules (in particular ThF⁺ (JILA, Boulder), WC (Leanhart, Ann Arbor))
- Nuclear Schiff moment electronic-structure study (diamagnetic systems)

⁴¹J. Lee, J. Chen, L. V. Skripnikov, A. N. Petrov, A. V. Titov, N. S. Mosyagin, A. E. Leanhardt, Phys Rev A 87 (2013) 2013

Acknowledgement/Collaboration

Malaya K. Nayak

DIRAC bunch

Bhabha Research Institute, India

Malika Denis

LCPQ, Toulouse, France

Project EDMeDM.

REHE 2014, Smolenice, September 21, 2014