heoretical Contribution to a New Upper Bound

Electron Electric Dipole Momen

Timo Fleig

Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III France

February 14, 2014

Université Paul Sabatier

Laboratoire de Chimie et Physique Quantiques

Electric Dipole Moment of Paramagnetic Atoms/Molecules

Possible sources¹

- 1. Intrinsic EDM of an electron
- 2. (\mathcal{P} and \mathcal{T}) violating electron-nucleon interaction

¹M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

Testing Extensions to the Standard Model:

The Electron Electric Dipole Moment (eEDM) \vec{D}

Implies violation of $Parity(\mathcal{P})$ and $Motion-Reversal(\mathcal{T})$ symmetries²

The \mathcal{CPT} theorem assumed to be valid

²T.D. Lee, C.N. Yang, *BNL* **443** (1957) *T91*

Search for the Electron EDM

 d_e from an atomic/molecular many-body problem

- Unpaired e^- in a stationary atomic/molecular state
- Measurement of an EDM dependent energy difference (transition energy) $\Delta \epsilon_t$ of atomic/molecular quantum states.
- Theory determination of an **enhancement**³

$$d_e = rac{\Delta \epsilon_t}{E_{ ext{eff}}} egin{array}{c} (\mathsf{Experiment}) \ (\mathsf{Theory}) \end{array}$$

• Enhancement factor R "translates" between atomic and particle scales and is related to the **effective electric field** at the position of the electron,

$R \propto E_{\rm eff}$

³P.G.H. Sandars, *J Phys B: At Mol Opt Phys* **1** (1968) *499*

Search for the Electron EDM

Atomic/molecular enhancement

• In the **non-relativistic limit** the EDM expectation value vanishes:

(Schiff's Theorem⁴)

 Relativistic view leads to a non-zero value, essentially due to length contraction in the observer frame⁵

 $\left\langle \hat{H}_{\rm EDM} \right\rangle = 0$

• Scaling with nuclear charge Z, for alkali atoms⁶

 $R\propto Z^3\,\alpha^2$

• Heavy atoms required. Typical values in practice:

Z > 50

⁴L.I. Schiff, *Phys Rev* **132** (1963) *2194*

⁵E.D. Commins, J.D. Jackson, D.P. DeMille, Am J Phys **75** (2007) 532

⁶P.G.H. Sandars, *Phys Lett* **14** (1965) *194*

The eEDM in a molecular framework

Perturbative EDM operator

 \mathcal{P} - and \mathcal{T} -odd eEDM Hamiltonian⁷:

$$\hat{H}_{\rm EDM} = -\frac{d_e}{4} \gamma^0 \gamma^5 \left(\gamma^\mu \gamma^\nu - \gamma^\nu \gamma^\mu\right) F_{\mu\nu}$$

which comprises an electric and a "motional" part

$$\hat{H}_{\rm EDM} = -d_e \gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} - \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right]$$

Magnetic contribution does not enter to leading order⁸ Electric field contributions

$$\mathbf{E} = \mathbf{E}_{\mathsf{int}} + \mathbf{E}_{\mathsf{ext}}$$

with an internal nuclear and electronic contribution

$$\mathbf{E}_{\text{int}}(i) = \sum_{A=1}^{N} \frac{Ze \ (\vec{r_i} - \vec{r_A})}{||\vec{r_i} - \vec{r_A}||^3} - \sum_{j=1}^{n} \frac{e \ (\vec{r_i} - \vec{r_j})}{||\vec{r_i} - \vec{r_j}||^3}$$

⁷E. Salpeter, *Phys Rev* **112** (1958) *1642*

⁸E. Lindroth, E. Lynn, P.G.H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

The eEDM in a molecular framework

Effective EDM many-body operator

Theoretical framework is relativistic quantum mechanics, no QED contributions

Exact reformulation for a single-particle expectation value⁹ $\left\langle -d_e\gamma^0\mathbf{\Sigma}\cdot\mathbf{E}\right\rangle_{\psi^{(0)}} = \frac{2\imath c d_e}{e\hbar} \left\langle \gamma^0\gamma^5\vec{p}\,^2\right\rangle_{\psi^{(0)}}$

Approximate effective expectation value in many-body system $-d_e \left\langle \sum_{j=1}^n \gamma^0(j) \, \mathbf{\Sigma}(j) \cdot \mathbf{E}(j) \right\rangle_{\psi^{(0)}} \approx \frac{2\imath c d_e}{e\hbar} \left\langle \sum_{j=1}^n \gamma^0(j) \gamma^5(j) \, \vec{p}(j)^2 \right\rangle_{\psi^{(0)}}$

 $\psi^{(0)}$ here is the atomic/molecular electronic wavefunction.

⁹E. Commins, *Adv At Mol Opt Phys* **40** (1999) *1*

Correlated Wavefunction Theory for ${\sf E}_{\rm eff}$

- Dirac-Coulomb Hamiltonian operator $\hat{H}^{DC} = \sum_{A} \sum_{i} \left[c(\vec{\alpha} \cdot \vec{p})_i + \beta_i m_0 c^2 + V_{iA} \right] + \sum_{i,j>i} \frac{1}{r_{ij}} \mathbb{1}_4 + \sum_{A,B>A} V_{AB}$
- All-electron Dirac-Coulomb Hartree-Fock (DCHF) calculation set of time-reversal paired 4-spinors $\hat{K}\varphi_i = \varphi_{\bar{i}}$ and $\hat{K}\varphi_{\bar{i}} = -\varphi_i$
- Expansion and variation¹⁰ in *n*-electron sector of Fock space $|\psi_k\rangle = \sum_{I=1}^{\dim \mathcal{F}^t(M,n)} c_{kI} \left| (S\overline{\mathcal{T}})_I \right\rangle$

Expectation values over relativistic Configuration Interaction wavefunctions¹¹ $\left\langle \hat{H}_{\text{EDM}} \right\rangle_{\psi_k^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(M,n)} c_{kI}^* c_{kJ} \left\langle (\mathcal{S}\overline{\mathcal{T}})_I \right| \frac{2icd_e}{e\hbar} \sum_{j=1}^n \gamma^0(j) \gamma^5(j) \vec{p}(j)^2 \left| (\mathcal{S}\overline{\mathcal{T}})_J \right\rangle$

¹⁰S Knecht, H J Aa Jensen, TF, *J Chem Phys* **132** (2010) *014108*

¹¹TF and M K Nayak, *Phys Rev A* **88** (2013) *032514*

Search for the Electron EDM

Why molecules?

Be an atom in a parity eigenstate $\hat{\mathcal{P}} |\psi_p\rangle = \prod_{i=1}^n \hat{p}(i) \hat{\mathcal{A}} |\varphi_a(1) \cdot \ldots \cdot \varphi_m(n)\rangle.$ Then

$$\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = \left\langle \psi_p | \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} \hat{H}_{\text{EDM}} \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} | \psi_p \right\rangle = -p^2 \left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle$$
$$= -\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = 0$$

Parity eigenstates need to be mixed (polarization).

- 1. A perturbing laboratory E field is required to mix parity eigenstates. TI experiment¹² $E_{\rm eff} \approx 0.05 \left[\frac{\rm GV}{\rm cm}\right]$
- 2. Molecular fields: YbF¹³: $E_{\rm eff} \approx 26 \left[\frac{\rm GV}{\rm cm}\right]$, HgF¹⁴: $E_{\rm eff} \approx 100 \left[\frac{\rm GV}{\rm cm}\right]$,

¹⁴Dmitriev et al., *Phys Lett* **167A** (1992) *280*

¹²V.V. Flambaum, Sov J Nucl Phys **24** (1976) 199

¹³D.M. Kara, I.J. Smallman, J.J. Hudson, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, New J Phys 14 (2012) 103051

The eEDM in a molecular framework

 $^{3}\Delta \text{ molecules}^{15}$

- One heavy nucleus (relativistic effect)
- One "science" electron (σ^1) , one "spectroscopy" electron (δ^1)
- Large $E_{\rm eff}$ for σ^1 electron
- Deeply bound molecule (fluorides)
- Small Λ (Ω)-doublet splitting (optimal polarization)
- Large rotational constant (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)
- $\bullet \ \Rightarrow \ \mbox{Low-lying} \ ^3\Delta_1 \ \mbox{as} \ \ \mbox{"science"} \ \ \mbox{state}$

¹⁵E. Meyer, J. Bohn, D.A. Deskevich, *Phys Rev A* **73** (2006) *062108*

HfF^+

Flavor Physics and Mass Generation, Singapore, February 14, 2014

The eEDM in a molecular framework

A Proposed Measurement¹⁶ on HfF⁺

¹⁶A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc **270** (2011) 1

HfF⁺ electronic states and spectroscopic constants

	R_{e} [a.u.]			$\omega_e \; [{ m cm}^{-1}]$				
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
CAS-CI(10)	3.400	3.436	3.434	3.431	796	774	775	778
MR-CISD(10)	3.506	3.558	3.557	3.552	656	643	643	644
MR-CISD+T(10)	3.510	3.560			654	643		
MR-CISD(20)	3.401	3.438	3.437	3.434	800	768	769	772
Experiment ¹⁷					790.76	760.9		
Experiment ¹⁸	3.374	3.407			791.2	761.3	762.3	761.5

¹⁷K. Cossel et al., *Chem. Phys. Lett.* **546** (2012) *1*

¹⁸B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺: E_{eff} in the $\Omega = 1$ science state¹⁹

Model	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$
CAS-CI(10)	24.1
MR-CISD(10)	22.4
MR-CISD(20)	23.3
MR-CISD+T(20)	23.7
MR-CISD(34)	22.9
MR-CISD(34)+T	23.3
Estimate, Meyer et al. ²⁰	≈ 30
$20 e^-$ corr., Titov et al. ²¹	24.2

(+) All-electron calculation

- (+) No configuration selection
- (+) Spinors as one-particle basis functions
- (+) Dirac-Coulomb Hamiltonian

- (-) Basis-set incompleteness
 - \rightarrow vQZ corrections
- (-) Higher excitations
 - \rightarrow CC expectation values

¹⁹TF and M.K. Nayak, *Phys Rev A* **88** (2013) *032514*

²⁰A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

²¹E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

ThO

Flavor Physics and Mass Generation, Singapore, February 14, 2014

Most Recent Measurement: ThO Molecule

ACME Collaboration, Harvard/Yale

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration*: J. Baron¹, W. C. Campbell², D. DeMille³, J. M. Doyle¹, G. Gabrielse¹, Y. V. Gurevich^{1,**}, P. W. Hess¹, N. R. Hutzler¹, E. Kirilov^{3,#}, I. Kozyryev^{3,†}, B. R. O'Leary³, C. D. Panda¹, M. F. Parsons¹, E. S. Petrik¹, B. Spaun¹, A. C. Vutha⁴, and A. D. West³

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilation with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable $(10^{-27}$ - 10^{-30} e cm) electron electric dipole moment (EDM, d_e), which is an asymmetric charge distribution along the spin (\vec{S}) . The EDM is also asymmetric under T. Using the polar molecule thorium monoxide (ThO), we measure $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29} e \text{ cm}$. This corresponds to an upper limit of $|d_e| < 8.7 \times 10^{-29} e \text{ cm}$ with 90 percent confidence, an order of magnitude improvement in sensitivity compared to the previous best limits. Our result constrains T-violating physics at the TeV energy scale.

The exceptionally high internal effective electric field (\mathcal{E}_{eff}) of heavy neutral stome and molecules can be used to precisely probe

is prepared using optical pumping and state preparation lasers. Parallel electric $(\vec{\mathcal{E}})$ and magnetic $(\vec{\mathcal{B}})$ fields exert torques on the electric and magnetic dipole moments, causing the spin vector to precess in the xy plane. The precession angle is measured with a readout laser and fluorescence detection. A change in this angle as $\vec{\mathcal{E}}_{\text{eff}}$ is reversed is proportional to d_e .

Science 6168 (2014) 269

Electron Electric Dipole Moment and Hyperfine Interaction Constants for ThO

Timo $Fleig^1$ and Malaya K. Nayak²

¹Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France ²Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, India (Dated: January 22, 2014)

A recently implemented relativistic four-component configuration interaction approach to study \mathcal{P} - and \mathcal{T} -odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the $\Omega = 1$ first excited state of the ThO molecule. We obtain a value of $E_{\text{eff}} = 75.6 \left[\frac{\text{GV}}{\text{cm}}\right]$ with an estimated error bar of 3% and 10% smaller than a previously reported result [arXiv:1308.0414 [physics.atom-ph]]. Using the same wavefunction model we obtain an excitation energy of $T_v^{\Omega=1} = 5329 \text{ [cm}^{-1}$], in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant $A_{||}$ as an expectation value, resulting in $A_{||} = -1335$ [MHz] for the $\Omega = 1$ state in ThO. The smaller effective electric field increases the previously measured upper bound to the electron electric dipole moment interaction constant [arXiv:1310.7534v2 [physics.atom-ph]] and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.

1401.2284v2 J Mol Spectrosc (2014) submitted

Molecular Wavefunction for the "Science" State

	# of Kramers pairs	accumulated # of electrons min. max.	
Deleted	(176)		$^{3}\Delta_{1}$ is the first molecular
Virtual	183–K	36 36	excited state
Th: 6d σπ,7p, 8s Th: 7s, 6dδ	K	36-m 36	$7s^16d\delta^1$ configuration considerably mixed in this state
Th: 6s, 6p O: 2s, 2p	8	34–n 34	
Th: 5d	5	18-p 18	CI expansion space
Th: 5s, 5p	4	8-q 8	$\leq 500.000.000$ terms
Frozen core	(31)		

Basis Sets

Basis set/Cl Model	$T_v [\rm cm^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
vDZ/MR_3 -CISD(18)	4535	80.8	-1283
vTZ/MR_3 -CISD(18)	3832	81.0	-1292
vQZ/MR_3 -CISD(18)	3643	80.7	-1298

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ using basis sets with increasing cardinal number and the wavefunction model MR₃-CISD(18)

Magnetic hyperfine interaction constant:

$$A_{||} = \frac{\mu_{Th}}{I\Omega} \left\langle \sum_{i=1}^{n} \left(\frac{\vec{\alpha_i} \times \vec{r_i}}{r_i^3} \right)_z \right\rangle_{\psi}$$

Number of Correlated Electrons

CI Model	$T_v [{\rm cm}^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
MR-CISD(2)	5929	68.5	-1264
MR_3 -CISD(18)	3832	81.0	-1292
MR_3 -CISD(28)	3752	80.0	-1297
MR_3 -CISD(36) ²²	3742	80.8	-1287

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ correlating only the atomic valence shells down to including core-valence and core-core correlation and using the vTZ basis sets

 $^{^{22}}$ Due to extreme computational demand the virtual cutoff is 5 a.u. here.

Active 4-Spinor Spaces

CI Model	$T_v [{\rm cm}^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
MR_3 -CISD(18)	3832	81.0	-1292
MR_5 -CISD(18)	4054	79.7	-1291
MR_7 -CISD(18)	4321	80.1	-1318
MR_{10} -CISD(18)	5329	75.6	-1335
Exp. $(T_e)^{23}$	5317		

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ using the vTZ basis set and varying active spinor spaces

²³J. Paulovič, T. Nakajima, K. Hirao, R. Lindh, and P.-Å. Malmqvist, J. Chem. Phys. **119** (2003) 798

Higher Excitations

CI Model	$T_v [{\rm cm}^{-1}]$	$E_{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	$A_{ }$ [MHz]
MR_3 -CISD(18)	4535	80.8	-1283
MR_9 -CISD(18)	5703	73.8	-1321
MR_3 -CISDT(18)	5166	74.5	-1340

Vertical excitation energy, effective electric field, and hyperfine constant at an internuclear distance of R = 3.477 a₀ for $\Omega = 1$ using the vDZ basis set and varying maximum excitation rank

Flavor Physics and Mass Generation, Singapore, February 14, 2014

Upper bounds on the eEDM²⁴

²⁴A.V. Titov, N.S. Mosyagin, A.N. Petrov, T.A. Isaev, D.P. DeMille, *Recent Advances in the Theory of Chemical and Physical Systems* (2006) *253-283*; courtesy: Huliyar (2009), DeMille (2005)

²⁵B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

²⁶J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

²⁷ACME Collaboration, Science **6168** (2014) *269*, TF and MKN, 1401.2284v2

Outlook

Project EDMeDM.

- Hyperfine interaction constants for an experimentally known diatomic molecule comparison with our calculations
- \bullet Implementation of the scalar-pseudoscalar ${\cal P}$ and ${\cal T}$ odd electron-nucleon interaction Hamiltonian
- Development of size-extensive approach to calculation of enhancement factors (Coupled Cluster theory)
- Study of other diatomic molecules (in particular ThF⁺ (JILA, Boulder), WC)