Fundamental Physics with Two Radioactive Molecules

Timo Fleig

LCPQ, FeRMI Université Paul Sabatier Toulouse III

France

26 March 2024

Université Paul Sabatier

Outline

Hadron-sector searches: Schiff-moment interaction

Search for a lepton EDM: Electron EDM interaction

Hadron-sector searches: Tensor-pseudotensor interaction

EDMs and their possible sources: An overview

W. Cairncross, J. Ye, Nat. Rev. Phys. 1 (2019) 510

EDM Science

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039
T. F., L. V. Skripnikov, Symmetry 12 (2020) 498
T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012
T. F., Phys. Rev. A 96 (2017) 040502(R)
T. F., Phys. Rev. A 95 (2017) 022504
M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc, M. Hubert, T. F., *Phys. Rev. A* 108 (2023) 062815
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., Phys. Rev. A 109 (2024) 022807
T. F., Phys. Rev. A 99 (2019) 012515

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

EDM Science

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039
T. F., L. V. Skripnikov, Symmetry 12 (2020) 498
T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012
T. F., Phys. Rev. A 96 (2017) 040502(R)
T. F., Phys. Rev. A 95 (2017) 022504
M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc, M. Hubert, T. F., *Phys. Rev. A* 108 (2023) 062815
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., *Phys. Rev. A* **109** (2024) *022807*T. F., *Phys. Rev. A* **99** (2019) *012515*

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

Atomic and Molecular Correlated Wavefunctions¹ Hamiltonians

• Dirac-Coulomb Hamiltonian + external electric field (atoms)

$$\hat{H}^{\text{Dirac-Coulomb}} + \hat{H}^{\text{Int-Dipole}} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \frac{Z}{r_{i}} \mathbb{1}_{4} \right] + \sum_{i,j>j}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{i}^{n} \mathbf{r}_{i} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}$$

• Dirac-Coulomb Hamiltonian operator (molecules)

$$\hat{H}^{DC} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{A,B>A}^{N} V_{AB}$$

• Dirac-Coulomb-Gaunt² Hamiltonian operator (molecules)

$$\hat{H}^{DCG} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \left(\frac{1}{r_{ij}} \mathbb{1}_{4} - \frac{1}{2} \frac{\vec{\alpha}_{i} \vec{\alpha}_{j}}{r_{ij}} \right) + \sum_{A,B>A}^{N} V_{AB}$$

²A. Marc, T.F., in preparation

¹T. F., H.J.Å. Jensen, J. Olsen, L. Visscher, J Chem Phys **124** (2006) 104106

S. Knecht, H.J.Å. Jensen, T. F., J Chem Phys **132** (2010) 014108

Calculation of Properties Including \mathcal{P}, \mathcal{T} -Violating Effects³

Using String-Based CI Techniques

Solve CI problem $\Rightarrow \psi_k^{(0)}$; expectation value over relativistic Configuration Interaction wavefunction

$$\left\langle \hat{O} \right\rangle_{\psi_{k}^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^{\mathsf{t}}(\mathbf{M},\mathbf{n})} c_{kI}^{*} c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I}^{\dagger} \right| \hat{O} \right| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{J} \left| \right\rangle$$

Property operator \hat{O} in basis of Kramers-paired atomic/molecular spinors

$$\hat{O} = \sum_{i,j=1}^{P_u} o_{ij} a_i^{\dagger} a_j + \sum_{i=1}^{P_u} \sum_{j=P_u+1}^{P} o_{i\overline{j}} a_i^{\dagger} a_{\overline{j}} + \sum_{i=P_u+1}^{P} \sum_{j=1}^{P_u} o_{\overline{ij}} a_{\overline{i}}^{\dagger} a_j + \sum_{i,j=P_u+1}^{P} o_{\overline{ij}} a_{\overline{i}}^{\dagger} a_{\overline{j}}$$

First-term contribution to expectation value

$$O(\Psi_k)_1 = \sum_{I,J=1}^{\dim \mathcal{F}^{\dagger}(M,n)} c_{kI}^* c_{kJ} \sum_{i,j=1}^{P_u} o_{ij}$$

$$\langle \prod_{p=1}^{N_p} \prod_{\overline{p}=N_p+1}^{N_p+N_{\overline{p}}} a_{\overline{p}} a_p a_i^{\dagger} a_j \prod_{q=1}^{N_p+N_{\overline{p}}} \prod_{q=N_p+1}^{N_p+N_{\overline{p}}} a_q^{\dagger} a_{\overline{q}}^{\dagger} \mid \rangle$$

- ³S. Knecht, Dissertation, HHU Düsseldorf (2009)
- T. F., M.K. Nayak, Phys Rev A 88 (2013) 032514

Atomic EDM

in terms of underlying symmetry breaking

Electric dipole moment of an atom:⁴

 $d_a := -\lim_{E_{\text{ext}} \to 0} \left[\frac{\partial (\Delta \varepsilon_{\mathbb{P}T})}{\partial E_{\text{ext}}} \right] \qquad \Delta \varepsilon_{\mathbb{P}T} \text{ is some } P, T \text{-odd energy shift.}$

Sources are particle EDMs, nuclear MQM, nuclear Schiff moment, $\mathcal{T}\text{-}\mathsf{odd}$ contribution to weak interaction etc.

For some Hamiltonian $\hat{H}_{F\!\!/T} = \alpha \hat{O}_{F\!\!/T}$, we then have

$$d_a = -\lim_{E_{\text{ext}}\to 0} \frac{\partial}{\partial E_{\text{ext}}} \alpha \left\langle \hat{O}_{\not\!\!P} \not\!\!T \right\rangle_{\psi(E_{\text{ext}})}$$

Defining a general interaction constant as $R := \frac{d_a}{\alpha}$ the linear-regime atomic interaction constant is then:

⁴E.D. Commins, *Adv. Mol. Opt. Phys.* **40** (1999) *1*

Xe atom

Atomic interaction constant⁵ as implemented into $KRCI/DIRAC^6$

$$\alpha_{\rm SM} := \frac{\Delta \varepsilon_{\rm SM}}{S_z \, E_{\rm ext}} = \frac{-\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho(\mathbf{r}_j) \right\rangle_{\psi(E_{\rm ext})}}{E_{\rm ext}}$$

DCHF	$\left \alpha_{\rm SM} \left[10^{-17} \frac{e {\rm cm}}{e {\rm fm}^3} \right. \right.$	$]$ ε_{DCHF} [a.u.]
DZ-21s15p	-1.22	-7446.876435682
Dzuba <i>et al.</i> [5] (RPA, 2002)	0.38	-

- M. Hubert, T.F., Phys. Rev. A 106 (2022) 022817
- ⁶S. Knecht and H. J. Aa. Jensen, T.F., J. Chem. Phys. **132** (2010) 014108
- T. Saue et al., J. Chem. Phys. 152 (2020) 204104

⁵V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* **66** (2002) *021111*

Xe atom

Atomic interaction constant⁶:

$$\alpha_{\rm SM} := \frac{\Delta \varepsilon_{\rm SM}}{S_z \, E_{\rm ext}} = \frac{-\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho(\mathbf{r}_j) \right\rangle_{\psi(E_{\rm ext})}}{E_{\rm ext}}$$

DCHF	$lpha_{SM}$	$\left[10^{-17} \frac{e \mathrm{cm}}{e \mathrm{fm}^3}\right]$	ε_{DCHF} [a.u.]
DZ-21s15p		-1.22	-7446.876435682
TZ-29s22p		-0.38	-7446.895053545
Dzuba <i>et al.</i> [6] (RPA, 2002)		0.38	-

⁶V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* 66 (2002) 021111
M. Hubert, T.F., *Phys. Rev. A* 106 (2022) 022817

Xe atom

Atomic interaction constant⁶:

$$\alpha_{\rm SM} := \frac{\Delta \varepsilon_{\rm SM}}{S_z \, E_{\rm ext}} = \frac{-\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho(\mathbf{r}_j) \right\rangle_{\psi(E_{\rm ext})}}{E_{\rm ext}}$$

DCHF	$\alpha_{SM} \left[1 \right]$	$0^{-17} \frac{e \text{cm}}{e \text{fm}^3}$	ε_{DCHF} [a.u.]
DZ-21s15p	_	1.22	-7446.876435682
TZ-29s22p	(0.38	-7446.895053545
QZ-34s28p	0	.32	-7446.895409376
Dzuba <i>et al.</i> [6] (RPA, 2002)	0	.38	_

⁶V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* 66 (2002) 021111
M. Hubert, T.F., *Phys. Rev. A* 106 (2022) 022817

Xe atom

Atomic interaction constant⁶:

$$\alpha_{\rm SM} := \frac{\Delta \varepsilon_{\rm SM}}{S_z \, E_{\rm ext}} = \frac{-\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho(\mathbf{r}_j) \right\rangle_{\psi(E_{\rm ext})}}{E_{\rm ext}}$$

DCHF	$\alpha_{\rm SM} \left[10^{-17} \frac{e \rm cm}{e \rm fm^3} \right]$	ε_{DCHF} [a.u.]
DZ-21s15p	-1.22	-7446.876435682
TZ-29s22p	-0.38	-7446.895053545
QZ-34s28p	0.32	-7446.895409376
sp-densified QZ-67s55p	0.31	-7446.895379750
Dzuba <i>et al.</i> [6] (RPA, 2002)	0.38	-

"Even-tempered" densification:

$$\frac{\zeta_{n-1}}{\zeta_n} := \frac{\zeta_n}{\zeta_{n+1}} \Leftrightarrow \zeta_n = \sqrt{\zeta_{n-1} \, \zeta_{n+1}}$$

⁶V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* 66 (2002) 021111
M. Hubert, T.F., *Phys. Rev. A* 106 (2022) 022817

Xe atom

Atomic interaction constant⁶:

$$\alpha_{\rm SM} := \frac{\Delta \varepsilon_{\rm SM}}{S_z \, E_{\rm ext}} = \frac{-\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho(\mathbf{r}_j) \right\rangle_{\psi(E_{\rm ext})}}{E_{\rm ext}}$$

DCHF	$\alpha_{\text{SM}} \left[10^{-17} \frac{e \text{cm}}{e \text{fm}^3} \right]$	ε_{DCHF} [a.u.]
DZ-21s15p	-1.22	-7446.876435682
TZ-29s22p	-0.38	-7446.895053545
QZ-34s28p	0.32	-7446.895409376
sp-densified QZ-67s55p	0.31	-7446.895379750
sp-densified+1sp QZ-69s57p	0.37	-7446.895401869
Dzuba <i>et al.</i> [6] (RPA, 2002)	0.38	-

⁶V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* 66 (2002) 021111
M. Hubert, T.F., *Phys. Rev. A* 106 (2022) 022817

Xe atom

Atomic interaction constant⁶:

$$\alpha_{\rm SM} := \frac{\Delta \varepsilon_{\rm SM}}{S_z \, E_{\rm ext}} = \frac{-\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho(\mathbf{r}_j) \right\rangle_{\psi(E_{\rm ext})}}{E_{\rm ext}}$$

DCHF	$\alpha_{\rm SM} \left[10^{-17} \frac{e \rm cm}{e \rm fm^3} \right]$	ε _{DCHF} [a.u.]
DZ-21s15p	-1.22	-7446.876435682
TZ-29s22p	-0.38	-7446.895053545
QZ-34s28p	0.32	-7446.895409376
sp-densified QZ-67s55p	0.31	-7446.895379750
sp-densified+1sp QZ-69s57p	0.37	-7446.895401869
sp-densified+2sp QZ-71s59p	0.38	-7446.895401810
sp-densified+3sp QZ-73s61p	0.38	-7446.895401761
Dzuba <i>et al.</i> [6] (RPA, 2002)	0.38	-

⁶V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* 66 (2002) 021111
M. Hubert, T.F., *Phys. Rev. A* 106 (2022) 022817

Search for Hadron-Source EDM: Francium-Silver (FrAg)

Atomic Basis Sets / Hartree-Fock Theory

Molecular Schiff-moment interaction Hamiltonian⁷

$$W_{\mathsf{SM}}(A) := \frac{\Delta \varepsilon_{\mathsf{SM}}(A)}{S_z(A)} = -\frac{3}{B} \left\langle \sum_{j=1}^n \hat{z}_j \, \rho_A(\mathbf{r}_j) \right\rangle_{\psi}$$

as implemented into KRCI/DIRAC⁸

	CsLi $(R_e = 6.927 \text{ a.u.})$		FrAg ($R_e = 6$.190a.u.)
Basis	ε_{DCHF} [a.u.]	W_{SM} [a.u.]	<i>ɛ</i> _{DCHF} [a.u.]	W_{SM} [a.u.]
cvDZ	-7794.1925854	-10110	-29622.7980959	5946
cvTZ	-7794.2033064	-2849	-29622.8345496	28173
cvQZ	-7794.2038442	2098	-29622.8362766	29451
cvQZ+	-7794.2038394	2887	-29622.8354238	31350

⁷V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, *Phys. Rev. A* **66** (2002) *021111*

⁸M. Hubert, T.F., *Phys. Rev. A* **106** (2022) *022817*

Search for Hadron-Source EDM: Francium-Silver (FrAg)

Electron Correlation Effects

Basis/cutoff	$arepsilon_{CI}$ [a.u.]	W_{SM} [a.u.]
cvQZ+/DCHF	-29622.8354238	31350
$cvQZ+/SD2_2au$	-29622.8604657	30359
$cvQZ+/SD2_5au$	-29622.8605445	30355
$cvQZ+/SD2_8au$	-29622.8605500	30360
cvQZ+/SD10_8au	-29623.0196812	29980
$cvQZ+/SDT10_8au$	-29623.0260848	29909
cvQZ+/SD12_8au	-29623.1920759	30711
cvQZ+/SD20_8au	-29623.3371101	30127
cvQZ+/SD36_5au	-29623.7102434	30333
cvQZ+/SD36_8au	-29623.8379481	30239

- SD36 model includes Fr(7s, 6p, 6s, 5d) and Ag(5s, 4d, 4p) shells
- Excitations out of Fr(s, p) shells diminish W_{SM} .
- Excitations out of other shells increase $W_{\rm SM}$.

Search for Hadron-Source EDM: Francium-Silver (FrAg)

Comparison with other ${}^1\Sigma_0$ molecules

	Z (heavy)	EA (light) [eV]	W_{SM} [a.u.] (at respective R_e)
CsAg	55	1.304	3530 ⁹
FrLi	87	0.618	24414 ⁹
FrAg	87	1.304	30168 ± 2504^{9}
TIF	81	3.401	39967 ± 3600^{10}
			37192^{11}
			40539^{12}

- $\bullet\ \mbox{Cs}\longrightarrow\mbox{Fr}$ order of magnitude gain
- Li \longrightarrow Ag substantial gain
- TIF benefits from huge EA(F)

⁹A. Marc, M. Hubert, T. F., *Phys. Rev. A* **108** (2023) *062815*

¹⁰M. Hubert, T.F., *Phys. Rev. A* **106** (2022) *022817*

¹¹L. V. Skripnikov, N. S. Mosyagin, A. V. Titov, and V. V. Flambaum, *Phys. Chem. Chem. Phys.* 22 (2020) 18374

¹²V. V. Flambaum, V. A. Dzuba, and H. B. Tran Tan, *Phys. Rev. A* **101** (2020) *042501*

A. N. Petrov, N. S. Mosyagin, T. A. Isaev, A. V. Titov, V. F. Ezhov, E. Eliav, and U. Kaldor, *Phys. Rev. Lett.* **88** (2002) 073001

Search for Hadron-Source EDM: Francium-Silver (FrAg) Schiff moment in terms of QCD $\overline{\theta}$ and π -meson-nucleon CP-violating interaction constants¹³

$$\begin{split} S\left(^{223}\mathrm{Fr}\right) &\approx \left(-4.16g\overline{g}_{0} + 20.64g\overline{g}_{1} - 11.04g\overline{g}_{2}\right) \ e\mathrm{fm}^{3} \\ S\left(^{205}\mathrm{TI}\right) &\approx \left(0.13 \ g\overline{g}_{0} - 0.004 \ g\overline{g}_{1} - 0.27 \ g\overline{g}_{2}\right) \ e\mathrm{fm}^{3} \\ S\left(^{225}\mathrm{Ra}\right) &\approx \left(-2.6 \ g\overline{g}_{0} + 12.9 \ g\overline{g}_{1} - 6.9 \ g\overline{g}_{2}\right) \ e\mathrm{fm}^{3} \end{split}$$

$$\begin{split} S\left(^{223}\text{Fr}\right) &\approx -1.6\,\overline{\theta}e\,\,\text{fm}^3\\ S\left(^{205}\text{TI}\right) &\approx 0.02\,\overline{\theta}e\text{fm}^3\\ S\left(^{225}\text{Ra}\right) &\approx -\overline{\theta}e\text{fm}^3 \end{split}$$

 223 Fr orders of magnitude more sensitive than 205 Tl

¹³V. V. Flambaum, V. A. Dzuba, and H. B. Tran Tan, *Phys. Rev. A* **101** (2020) *042501*

V. A. Dzuba, V. V. Flambaum, Phys. Rev. A 101 (2020) 042504

Current World Records

In the presence of a non-zero EDM d, the system's Hamiltonian is $\hat{H} = -(\mu \mathbf{B} + d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|}$

- "Paramagnetic" systems: Precession measurement on HfF⁺ JILA group; Ye, Cornell¹⁴ measured $f = (-14.6 \pm 29.7) \ \mu$ Hz $\Rightarrow |d_e| \le 4.1 \times 10^{-30} e \text{ cm}$
- "Diamagnetic" systems: Precession measurement on Hg Seattle group; Heckel¹⁵ measured $|d_{Hg}| \leq 7.4 \times 10^{-30} e \text{ cm}$
- Neutron (n) EDM experiment PSI, Switzerland¹⁶ measured $|d_n| \le 1.8 \times 10^{-26} e$ cm

- ¹⁵ B. Graner *et al.*, Phys Rev Lett **116** (2016) *161601*
- ¹⁶ C. Abel *et al.*, Phys. Rev. Lett., **124** (2020) *081803*

¹⁴ T. S. Roussy, *et al.*, J. Ye, E. A. Cornell, Science **381** (2023) *46*

- ¹⁷T. F., *Phys. Rev. A* **96** (2017) *040502(R)*
- ¹⁸L. V. Skripnikov, J. Chem. Phys. **147** (2017) 021101

¹⁹T. S. Roussy, L. Caldwell, T. Wright, W. B. Cairncross, Y. Shagam, K. B. Ng, N. Schlossberger, S. Y. Park, A. Wang, J. Ye,

- E. A. Cornell, Science 381 (2023) 46
- 20 ACME Collaboration, Nature **562** (2018) 355

HfF⁺ Electronic Structure and eEDM Interaction Constant²¹ GAS-CI definitions

Expectation value in many-body system in accord with stratagem II^{21}

$$-\left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \boldsymbol{\Sigma}_{j} \cdot \mathbf{E}_{j} \right\rangle_{\psi^{(0)}} \approx \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \gamma_{j}^{5} \mathbf{p}_{j}^{2} \right\rangle_{\psi^{(0)}} := E_{\text{eff}}$$

Г		# of Kramers pairs	accumulated # of electrons min. max.
	Deleted	(164)	
• Basis: uncontracted vTZ Hf: $\{30s, 24p, 15d, 10f, 3g, 1h\}$	Virtual	118	34 34
F: $\{10s, 5p, 2d, 1f\}$	Hf: 6s, 5d	6	34-р 34
Dirac-Coulomb Hamiltonian	F: 2s, 2p	4	32-(m+n) 32
• Full $(SS **)$ integrals (EDM)	Hf: 5s, 5p F: 1s	5	24-m 24
	Hf: 4f	7	14–q 14
	Frozen core	(23)	

²¹T.F., *Phys. Rev. A* **96** (2017) 040502(R)

²¹E. Lindroth, E. Lynn, P.G.H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

EDM Science

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039
T. F., L. V. Skripnikov, Symmetry 12 (2020) 498
T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012
T. F., Phys. Rev. A 96 (2017) 040502(R)
T. F., Phys. Rev. A 95 (2017) 022504
M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc, M. Hubert, T. F., *Phys. Rev. A* 108 (2023) 062815
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., Phys. Rev. A 109 (2024) 022807
T. F., Phys. Rev. A 99 (2019) 012515

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

Search for the Electron EDM: Radium-Silver (RaAg)

in collaboration with

David DeMille University of Chicago

Olivier Grasdijk ARGONNE Labs / University of Chicago

Going Ultracold: From beams to traps

PHYSICAL REVIEW A, VOLUME 63, 023405

Loading and compressing Cs atoms in a very far-off-resonant light trap

D. J. Han, Marshall T. DePue, and David S. Weiss

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (Received 25 May 2000; published 12 January 2001)

We describe an experiment in which 3×10^7 Cs atoms are loaded into a 400 μ m crossed beam far-offresonant trap (FORT) that is only 2 μ K deep. A high-density sample is prepared in a magneto-optic trap, cooled in a three-dimensional far-off-resonant lattice (FORL), optically pumped into the lowest-energy state, adiabatically released from the FORL, magnetically levitated, and transferred to the final trap with a phasespace density of 10^{-3} . Spontaneous emission in the FORT is negligible, and we have compressed the atoms in the FORT to a spatial density of 2×10^{13} atoms/cm³. Evaporative cooling under these conditions proceeds rapidly.

• Estimated sensitivity of Cs EDM measurement in DLT²² is $|d_e| \approx 10^{-29} ecm$

Cs atom: $\Delta E = R E_{\text{ext}} d_e$ $E_{\text{int}} \approx 20 \left[\frac{\text{MV}}{\text{cm}}\right]$ Ultracold XY Molecule: $\Delta E = E_{\text{eff}} d_e$ $E_{\text{eff}} \approx 50 \left[\frac{\text{GV}}{\text{cm}}\right]$

• A factor of ≈ 2500 gain in sensitivity!

²²DLT: Dipole light trap; D. Weiss (Penn State), 2014: "Measuring the eEDM using laser-cooled Cs atoms in optical lattices"

S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Phys. Rev. Lett. 57 (1986) 314

C. Chin, V. Leiber, V. Vuletić, A.J. Kerman, S. Chu, Phys. Rev. A 63 (2001) 033401

Towards Ultracold DLT EDM Measurement²³

Picking the cherry

Target atom:Z(Ra) = 88 $\alpha_D(Ra) = 246 \pm 4 \text{ a.u.}^{24}$

Polarizing partner:

Alkali(-like) atoms: Li, Na, K, Rb, Cs, Fr; Cu, Ag, Au

	R_e [a.u.]	$B_e \ [\mathrm{cm}^{-1}]$	D[Debye]	EA [eV]	$E_{eff}\left[rac{\mathrm{GV}}{\mathrm{cm}} ight]$	$W_S \; [{\sf kHz}]$	$E_{\sf pol}\left[rac{ m kV}{ m cm} ight]$
RaLi	7.668	0.151	1.36	0.618	22.2	-59.5	13.3
RaNa	8.703	0.038	0.51	0.548	12.0	-32.2	8.90
RaK	10.37	0.017	0.39	0.501	5.44	-14.6	5.18
RaRb	10.75	0.008	0.36	0.486	5.01	-13.6	2.75
RaCs	11.25	0.006	0.46	0.472	4.52	-12.6	1.48
RaFr	11.26	0.004	0.24	0.486	3.44	-12.4	2.06
RaCu	6.050	0.033	4.30	1.236	67.0	-180.6	0.92
RaAg	6.241	0.021	4.76	1.304	63.9	-175.1	0.53
RaAu	5.836	0.017	5.71	2.309	50.4	-166.4	0.36

²³T. F., D. DeMille, New J. Phys. **23** (2021) 113039

²⁴P. Schwerdtfeger, J. K. Nagle, *Mol. Phys.* **117** (2019) *1200*

RaLi vs. RaAg²⁵

²⁵T. F., D. DeMille, New J. Phys. **23** (2021) 113039

"Building" RaAg in a DLT EDM Experiment

• Photoassociating ultracold atoms into ultracold molecules²⁶

1) Direct approach

2) Coupled-channel approach

- Does electronic spectrum allow for efficient energy transfer (remove binding energy without heating) ?
- Which states are candidates for photoassociation ?

²⁶L. D. Carr, D. DeMille, R. V. Krems, J. Ye, New J. Phys. **11** (2009) 055049

1) RaAg: Complete Spectrum up to $T \approx 5$ eV (TZ basis)

²⁶S. Kasahara, C. Fujiwara, N. Okada, H. Katô, M. Baba, *J. Chem. Phys.* **111** (1999) *8857*²⁷L. K. Sørensen, S. Knecht, T. F., C. M. Marian, *J. Phys. Chem A* **113** (2009) *12607*

1) RaAg: Relevant States $T \approx 5$ eV (TZ basis)

1) RaAg²⁹: E1 TDM $d_{XY}(R) = \left\langle \Psi_X | \sum_j q_j \hat{\mathbf{r}}_j | \Psi_Y \right\rangle(R)$

²⁹T. Fleig, O. Grasdijk, D. DeMille (2024)

RaAg

1) A Pathway To Assemble RaAg (X) from Trapped Ra-Ag Atom Pairs

Fundamental Physics with Radioactive Molecules, March 2024

Long-Range Theory

Van der Waals interaction potential for two neutral heteronuclear atoms:

$$V(R) = -\frac{C_{6}}{R^{6}} - \frac{C_{8}}{R^{8}} - \frac{C_{10}}{R^{10}} - \dots$$
Porsev formalism³⁰:

$$C_{6}(\Omega) = \sum_{j=|J_{A}-1|}^{J_{A}+1} \sum_{J=|J_{B}-1|}^{J_{B}+1} A_{jJ}(\Omega) X_{jJ}$$
with

$$A_{jJ}(\Omega) = \sum_{\mu mM_{J}} \left\{ (1 + \delta_{\mu 0}) \begin{pmatrix} J_{A} & 1 & j \\ -M_{J_{A}} & \mu & m_{j} \end{pmatrix} \begin{pmatrix} J_{B} & 1 & J \\ -M_{J_{B}} & -\mu & M_{j} \end{pmatrix} \right\}^{2}$$

$$\left(\begin{array}{c} j_{1} & j_{2} & j \\ m_{j_{1}} & m_{j_{2}} & m_{j} \end{array} \right) = \frac{\langle j_{1}j_{2}m_{j_{1}}m_{j_{2}}|j_{1}j_{2}j - m_{j} \rangle}{(-1)^{-j_{1}+j_{2}+m_{j}}\sqrt{2j+1}}$$

$$X_{jJ} = \sum_{\alpha_{l},\alpha_{k}} \frac{\left| \left\langle \alpha_{A} J_{A} \right| |\hat{T}^{(1)}| |\alpha_{l} J_{l} = j \right\rangle |^{2} \left| \left\langle \alpha_{B} J_{B} \right| |\hat{T}^{(1)}| |\alpha_{k} J_{k} = J \right\rangle |^{2}}{E_{l} - E_{A} + E_{k} - E_{B}}$$

$$\left\langle \alpha J || \hat{D} || \alpha' J' \right\rangle = \frac{\left| \left| \left\langle \alpha J M_{J} | \hat{D} | \alpha' J' M'_{J} \right\rangle \right| \right| \sqrt{2J+1}}{\langle J' 1 M'_{J} q | J' 1 J M_{J} \rangle}$$

³⁰S. G. Porsev, M. S. Safronova, A. Derevianko, and C. W. Clark, *Phys. Rev. A* 89 (2014) 022703

Long-Range Interactions

E1 Transitions in Earth-Alkaline and Alkali Test Systems

$\left\langle X\left(J=\frac{1}{2}\right) \hat{\boldsymbol{D}} l\left(J=\frac{1}{2}\right)\right\rangle$	and	$\left\langle X\left(J=\frac{1}{2}\right) \hat{\boldsymbol{D}} l\left(J=\frac{3}{2}\right)\right\rangle$	in [a.u.]
--	-----	--	-----------

Li		present		experiment ³⁰	literature
Excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
${}^2{P}_{1/2}(2p^1)$	3.3197	14909	0.2495	14903.66	
$^{2}{P}_{3/2}(2p^{1})$	4.6948	14910	0.4991	14904.00	$0.7470(^2P)^{-31}$
${}^2P_{1/2}(3p^1)$	0.1794	30916	0.0015	30925.38	
$^{2}{P}_{3/2}(3p^{1})$	0.2536	30917	0.0030	30925.38	$0.00482 (^2P)^{-32}$

$$\left|\left\langle X(J=0)||\hat{\boldsymbol{D}}||l(J=1)
ight
angle
ight|$$
 [a.u.]

Be		present		experiment ³⁰	literature
excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$^{-3}P_1(2s^12p^1)$	0.0002	21977	0.0000	21978.93	
$^{1}{P}_{1}(2s^{1}2p^{1})$	3.2615	42585	1.3760	42565.35	1.374 ³³
$^{1}{P}_{1}(2s^{1}3p^{1})$	0.2111	60347	0.0082	60187.34	0.0086 ³³

³⁰A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team, *NIST Atomic Spectra Database* (2019)

³¹Z.-C. Yan, M. Tambasco, and G. W. F. Drake, *Phys. Rev. A* 57 (1998) *1652*

³²L. Qu, Z. Wang, and B. Li, *Eur. Phys. J. D* **5** (1999) *173*

³³S. Nasiri, L. Adamowicz, and S. Bubin, J. Phys. Chem. Ref. Data **50** (2021) 043107

Long-Range Interactions

Earth-Alkali Atoms

$\left \left\langle X(J=0) \hat{\boldsymbol{D}} l(J=1) \right\rangle \right $ [a.u.]							
Са			present			experiment	
state	CI model	RME	\Deltaarepsilon [cm $^{-1}$]	f	RME	\Deltaarepsilon [cm $^{-1}$] $^{ m 34}$	f
$^{1}P_{1}(4p^{1})$ (3)	SDTQ_SD	4.98	25200	1.90	4.912^*	23652.304	$1.7332(7)^{35}$
$^{1}P_{1}(5p^{1})$ (10)	SDTQ_SD	0.23	43000	0.01		36731.615	
$^{1}P_{1}(6p^{1})(17)$	$SDTQ_SD$	0.93	52400	0.14		41679.008	

Dispersion coefficients for RaAg valence-isoelectronic systems:

	C_{6} [a.u.]		
System	present	literature	
BeLi $X^2\Sigma_{1/2}$	464	$478 \mathrm{a^{35}}$	
CaLi $X^2\Sigma_{1/2}$	1581	1689	
	1644^{*}		
$CaCa\ X(\Omega=0)$	2030*	$2080(7) b^{35}$	

³⁴A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team, NIST Atomic Spectra Database (2021)

³⁵(a) J. Jiang, Y. Cheng, and J. Mitroy, J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 134305
(b) O. Allard, C. Samuelis, A. Pashov, H. Knöckel, and E. Tiemann, Eur. Phys. J. D 26 (2003) 155

"Building" RaAg in a DLT EDM Experiment

• Photoassociating ultracold atoms into ultracold molecules³⁷

1) Direct approach

2) Coupled-channel approach

- Does electronic spectrum allow for efficient energy transfer (remove binding energy without heating) ?
- Which states are candidates for photoassociation ?

³⁷L. D. Carr, D. DeMille, R. V. Krems, J. Ye, New J. Phys. **11** (2009) 055049

2) RaAg: Limited Spectrum up to $T \approx 3$ eV (QZ basis)

Fundamental Physics with Radioactive Molecules, March 2024

eEDM Constraint on Beyond-Standard-Model Theories

Single-source interpretation (21??)

Fundamental Physics with Radioactive Molecules, March 2024

EDM Science

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039
T. F., L. V. Skripnikov, Symmetry 12 (2020) 498
T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012
T. F., Phys. Rev. A 96 (2017) 040502(R)
T. F., Phys. Rev. A 95 (2017) 022504
M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc, M. Hubert, T. F., *Phys. Rev. A* 108 (2023) 062815
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., Phys. Rev. A 109 (2024) 022807

T. F., Phys. Rev. A 99 (2019) 012515

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

EDMs and their possible sources: An overview

W. Cairncross, J. Ye, Nat. Rev. Phys. 1 (2019) 510

Tensor-Pseudotensor \mathcal{P} , \mathcal{T} -odd Nucleon-Electron Interaction

Effective Hamiltonian for a single electron³⁷ for Ne neutral weak current $\hat{H}_{\text{T-PT-ne}}^{\text{eff}} = \frac{iG_F}{\sqrt{2}} \sum_N C_T^N \rho_N(\mathbf{r}) \gamma^0 \sigma_{N\mu\nu} \gamma^5 \sigma^{\mu\nu}$

Using the identity

$$\sigma_{N\mu\nu}\gamma^5\sigma^{\mu\nu} = 2\gamma_N^0\boldsymbol{\gamma}_N\cdot\boldsymbol{\Sigma} + 2\gamma^0\boldsymbol{\Sigma}_N\cdot\boldsymbol{\gamma}$$

and $\langle \psi | \mathbf{\Sigma} | \psi \rangle = 0$ for closed-shell systems: $\hat{H}_{\text{T-PT-ne}}^{\text{eff}} = \frac{\imath G_F}{\sqrt{2}} \sum_N 2C_N^T \, \mathbf{\Sigma}_N \cdot \boldsymbol{\gamma} \rho_N(\mathbf{r})$

For nuclear state $|I, M_I = I\rangle$ isotope-specific many-electron Hamiltonian³⁸:

$$\hat{H}_{\text{T-PT-ne}}^{\text{eff}} = \imath \sqrt{2} G_F C_T^A \left\langle \Sigma \right\rangle_A \sum_{j=1}^n (\gamma_3)_j \rho(\mathbf{r}_j)$$

³⁷K. Yanase, N. Yoshinaga, K. Higashiyama, N. Yamanaka Phys. Rev. D 99 (2019) 075021

³⁸T. F., M. Jung *Phys. Rev. A* **103** (2021) *012807*

Molecular T-PT-ne Interaction Constant⁴⁰

Energy shift of state E in a molecule:

$$\Delta \varepsilon_E = \left\langle \psi_E^{(0)} \middle| \hat{H}_{\text{T-PT-ne}}^{\text{eff}} \middle| \psi_E^{(0)} \right\rangle = W_T C_T^A$$

It then follows that

$$W_T(X) = \sqrt{2}G_F \langle \Sigma \rangle_A \left\langle \psi_E^{(0)} \left| i \sum_{j=1}^n (\gamma_3)_j \rho_X(\mathbf{r}_j) \right| \psi_E^{(0)} \right\rangle$$

In atoms

$$d_a = C_T^A \, \alpha_{C_T}$$

where

$$\alpha_{C_T} := \frac{\left<\hat{H}_{\mathrm{T-PT-ne}}^{\mathrm{eff}}\right>_{\psi^{(0)}(E_{\mathrm{ext}})}}{E_{\mathrm{ext}}}$$

⁴⁰T. F., *Phys. Rev. A* **109** (2024) *022807*

W_T (TI) in TIF($^1\Sigma_0$) from Hartree-Fock theory⁴¹

model	$W_T(TI) \; [kHz \; \langle \Sigma angle_A]$	total energy
Hartree-Fock ⁴¹	-1.34	
Hartree-Fock ⁴²	-0.851	
Dirac-Coulomb HF ⁴³	-4.641	-20374.4108
cGHF-ZORA-wr ⁴⁴	-4.690	
DZ/DCHF	-4.601	-20374.41122770
TZ/DCHF	-4.673	-20374.46576781
QZ/DCHF	-4.684	-20374.47704191
QZ+dens+sp/DCHF	-4.684	-20374.47660904

⁴¹T. F., *Phys. Rev. A* **109** (2024) *022807*

⁴¹Converted EDM in terms of C_T from E. A. Hinds, C. E. Loving, and P. G. H. Sandars, *Phys. Lett. B* **62** (1976) 97 using the external electric field and interaction constant reported *ibidem*

⁴²Value reported in D. Cho, K. Sangster, and E. A. Hinds, *Phys. Rev. A* **44** (1991) *2783* which is the corrected result from Ref. P. V. Coveney and P. G. H. Sandars, *J. Phys. B: At. Mol. Opt. Phys.* **16** (1983) *3727*

⁴³H. M. Quiney, J. K. Lærdahl, T. Saue, and K. Fægri Jr., *Phys. Rev. A* 57 (1998) *920*

⁴⁴Value from Ref. K. Gaul, R. Berger, J. Chem. Phys. **152** (2020) 044101 with adapted sign, R = 3.93 a.u.

W_T (TI) in TIF($^1\Sigma_0$) from GAS-CI⁴⁶

	$ W_T(T $		
model	$\left[10^{-13}\langle\Sigma\rangle_A \text{ a.u.}\right]$	$[kHz\ \langle\Sigma angle_A]$	total energy
QZ/DCHF	-7.12	-4.68	-20374.47704191
QZ/SD4_6.5au	-6.40	-4.21	-20374.53183162
QZ/SDTQ4_6.5au	-6.33	-4.17	-20374.53321310
QZ/S4_SDTQ8_6.5au	-6.08	-4.00	-20374.61641168
QZ/S4_SDTQQ8_6.5au	-6.07	-4.00	-20374.61647310
QZ/SD8_6.5au	-6.47	-4.26	-20374.67877868
QZ/SDTQ8_6.5au	-6.12	-4.03	-20374.69523546
QZ/SD18_6.5au	-6.58	-4.33	-20374.98617776
QZ/SD20_6.5au	-6.61	-4.35	-20375.05000858
QZ/SD28_6.5au	-6.49	-4.27	-20375.17819744
QZ/SD28_18au	-6.59	-4.33	-20375.37322100
QZ/SD36_18au	-6.59	-4.34	-20375.38490094
Final	-6.25	-4.11	

⁴⁶T. F., *Phys. Rev. A* **109** (2024) *022807*

 W_T (TI) in TIF($^1\Sigma_0$) from Correlated Theory⁴⁷

⁴⁷T. F., *Phys. Rev. A* **109** (2024) *022807*

Schiff-Moment Interactions and Method Development

Mickaël Hubert, Lecturer

Schiff-moment interaction implementation Basis sets

Aurélien Marc, PhD Student Schiff-moment interaction calculations in molecules DCG-GASCI

Thanks for your attention !