Relativistic Four-Component Electron Correlation Methods. Development and Applications in Spectroscopy and Fundamental Physics

Timo Fleig

Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III France

September 25, 2012

Motivation

Science with small heavy-element molecules

Ultracold molecular investigations¹ Photoassociation via excited states Astrophysics² Collision processes in stellar atmospheres

Actinide/transition-metal theoretical spectroscopy³ Electronic structure in general

Fundamental physics⁴

Search for the electron Electric Dipole Moment (eEDM)

¹J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur Phys J D **31** (2004) 149

²M. Asplund, N. Grevesse, A.J. Sauval, and P. Scott, Annu Rev Astron Astrophys 47 (2009) 481

³B.O. Roos, P.-Aa. Malmqvist, and L. Gagliardi, J Am Chem Soc 128 (2006) 17000

⁴A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, and E.A. Cornell, *arXiv:1008.2997v2* [physics.atom-ph] (2010)

1) General Introduction: Relativity and Electron Correlation

- 2) Spinor-string based GAS Coupled Cluster and Configuration Interaction
- 3) Electron-EDM \mathcal{P}, \mathcal{T} -odd Constants

Idealism and Pragmatism

• Quantum Electrodynamics (QED) is the most rigorous theoretical ground for atomic and molecular electronic structure

Less adapted to situations where electron interactions dominate and/or electron correlation effects are strong⁵

- "Filled-sea Fock-space" approaches do not seem to be a satisfactory option⁶
 Problems related to Negative-energy State (NES) correlations
- A viable and widely used alternative is the "Empty-Dirac" picture Usually in conjunction with a No-Virtual-Pair (NVP) approximation

⁵ W. Kutzelnigg, *Chem Phys* **395** (2012) *16*

⁶ W. Liu, *Phys Chem Chem Phys* **14** (2012) *35*

The Dirac Equation

Bi-spinor form with shifted energy

$$\begin{pmatrix} V\mathbf{1}_2 & c\boldsymbol{\sigma} \cdot \boldsymbol{p} \\ c\boldsymbol{\sigma} \cdot \boldsymbol{p} & (V-2mc^2)\mathbf{1}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{\psi}^L \\ \boldsymbol{\psi}^S \end{pmatrix} = E\begin{pmatrix} \boldsymbol{\psi}^L \\ \boldsymbol{\psi}^S \end{pmatrix}$$

gives rise to 4-component solutions with

$$\psi^L$$
 Large component 2-spinor

Small component 2-spinor

Kinetic balance condition⁷ for kinetic energy $(c\sigma \cdot p)^2$ \longrightarrow Additional high- ℓ basis set for ψ^S

⁷R. E. Stanton and S. Havriliak, J Chem Phys **84** (1981) 1910

Spectrum of the Dirac Hamiltonian

 48^{th} TC Symposium, Karlsruhe, Germany, September 25, 2012

Electron-electron interaction

Approximated low-frequency limit QED Hamiltonian

$$\hat{g}(1,2) = \frac{1}{r_{12}} \mathbf{1}_4 - \left\{ \frac{\boldsymbol{\alpha_1} \cdot \boldsymbol{\alpha_2}}{r_{12}} + \frac{(\boldsymbol{\alpha_1} \cdot \boldsymbol{\nabla_1})(\boldsymbol{\alpha_2} \cdot \boldsymbol{\nabla_2})r_{12}}{2} \right\} + \mathcal{O}\left(\alpha^3\right)$$

 $\begin{array}{l} \frac{1}{r_{12}} & \text{Coulomb term } (\rightarrow \text{Spin-same-orbit interaction}) \\ -\frac{\alpha_1 \cdot \alpha_2}{r_{12}} & \text{Gaunt term } (\rightarrow \text{Spin-other-orbit interaction}) \\ -\frac{(\alpha_1 \cdot \nabla_1)(\alpha_2 \cdot \nabla_2)r_{12}}{2} & \text{Gauge term (Coulomb-, Feynman gauge)} \\ \left\{ \dots \right\} & \text{Breit interaction} \\ \mathcal{O} \left(\alpha^3 \right) & \text{Higher-order terms, QED corrections} \end{array}$

Four-Component Electronic-Structure Theory

The "empty-Dirac" picture

- Occupied positive-energy bound-state spinors Fermi vacuum state $|0\rangle$
- **Empty** continuum of negative-energy states
- Expectation value of parameterized state vector $\langle Ref|\hat{H}|Ref \rangle = \langle 0|e^{-\hat{\kappa}}\hat{H}e^{\hat{\kappa}}|0 \rangle$
- Approximation of general expectation value to first order: $\left\langle 0|e^{-\hat{\kappa}}\hat{H}^{DC}e^{\hat{\kappa}}|0\right\rangle \approx \left\langle 0|\left[\hat{H}^{DC},\hat{\kappa}\right]|0\right\rangle = \sum_{pq}\kappa_{pq}\left[\left\langle 0|\hat{H}^{DC}a_{p}^{\dagger}a_{q}|0\right\rangle - \left\langle 0|\hat{H}^{DC}a_{q}^{\dagger}a_{p}|0\right\rangle^{*}\right]$
- Parameterized Dirac-spinor transformations: $\hat{\kappa} = \sum_{pq} \left[\kappa_{p+q} + a^{\dagger}_{p} + a_{q+} + \kappa_{p+q} - a^{\dagger}_{p} + a_{q-} + \kappa_{p-q} + a^{\dagger}_{p} - a_{q+} + \kappa_{p-q} - a^{\dagger}_{p} - a_{q-} \right]$
- Green terms: minimization of energy w.r.t. rotations
- Red terms: maximization of energy w.r.t. rotations
 ⇒ minimax variation

Four-Component Correlation Methods

... and why they are not more expensive than two-component ones

Integrals over positive-energy 4-spinors:

$$\begin{split} h_{mn}^{+} &= \left\langle \psi_{m}^{+} | \hat{h} | \psi_{n}^{+} \right\rangle = \left\langle \left(\psi_{m}^{L} - \psi_{m}^{S} \right) | \left(\hat{h}_{11} - \hat{h}_{12} - \hat{h}_{22} \right) | \left(\psi_{n}^{L} - \psi_{n}^{L} \right) \right\rangle \\ &= \left\langle \psi_{m}^{L} | \hat{h}_{11} | \psi_{n}^{L} \right\rangle + \left\langle \psi_{m}^{L} | \hat{h}_{12} | \psi_{n}^{S} \right\rangle + \left\langle \psi_{m}^{S} | \hat{h}_{21} | \psi_{n}^{L} \right\rangle + \left\langle \psi_{m}^{S} | \hat{h}_{22} | \psi_{n}^{S} \right\rangle \\ &= \sum_{J=1}^{N^{L}} \sum_{K=1}^{N^{L}} c_{mJ}^{L^{*}} \left\langle \phi_{J}^{L} | \hat{h}_{11} | \phi_{K}^{L} \right\rangle c_{nK}^{L} + \sum_{J=1}^{N^{L}} \sum_{K=1}^{N^{S}} c_{mJ}^{L^{*}} \left\langle \phi_{J}^{L} | \hat{h}_{12} | \phi_{K}^{S} \right\rangle c_{nK}^{S} \\ &+ \sum_{J=1}^{N^{S}} \sum_{K=1}^{N^{L}} c_{mJ}^{S^{*}} \left\langle \phi_{J}^{S} | \hat{h}_{21} | \phi_{K}^{L} \right\rangle c_{nK}^{L} + \sum_{J=1}^{N^{S}} \sum_{K=1}^{N^{S}} c_{mJ}^{S^{*}} \left\langle \phi_{J}^{S} | \hat{h}_{22} | \phi_{K}^{S} \right\rangle c_{nK}^{S} \end{split}$$

- Key: Four-component no-pair approximation
- $dim[\mathcal{F}^{4c}] = dim[\mathcal{F}^{2c}]$
- Direct comparison of 4- and 2-component Hamiltonians possible

Principal Approaches for Molecules

Spinors and Strings

General principles of rigorous relativistic correlation methods

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{i}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e_y}\right)} \hat{K}_0 = -i\Sigma_y \hat{K}_0$

Double group symmetry and quaternion algebra

Spinor basis:

 $\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

Spinorbitals	General spinors
$\hat{K}\varphi_i\alpha=\varphi_i^*\beta$	$\hat{K}\phi_i = \phi_{\overline{i}}$
$\hat{K}\varphi_i^*\beta = -\varphi_i\alpha$	$\hat{K}\phi_{\overline{i}} = -\phi_i$

 \otimes x: vertex weight y: arc weight

Parameterization of the Wavefunction

Generalized Active Spaces

Methods in comparison

Chalcogen homonuclear and heteronuclear diatomics⁸

Vertical excitation energies among π^{*2} state manifold $\Lambda S \ States \ ^{3}\Sigma^{-}, \ ^{1}\Delta, \ ^{1}\Sigma^{+} \longrightarrow 0^{+}, \ 1, \ 2, \ 0^{+}, \ (\Omega)$

Splitting of 0^+ , 1 is a second-order spin-orbit effect Purely molecular spin-orbit splitting

Contenders: "Additive"⁹: *SO-DDCI3*, *SO-CASPT2* "Non-additive"¹⁰: *4c-IH-FSCC*, *4c-GASCI*

⁸J.-B. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue, F. Neese, H. Bolvin J Chem Phys 135 (2011) 114106

⁹F. Neese, J Chem Phys **119** (2003) 9428

P.-Aa. Malmqvist, B.O. Roos, B. Schimmelpfennig, Chem Phys Lett 357 (2002) 357

¹⁰L. Visscher, E. Eliav, U. Kaldor, *J Chem Phys* **115** (2001) *9720*

S. Knecht, H.J.Aa. Jensen, T. Fleig, J Chem Phys 132 (2010) 014108

Additive and non-additive methods in comparison

48th TC Symposium, Karlsruhe, Germany, September 25, 2012

Additive and non-additive methods in comparison

 48^{th} TC Symposium, Karlsruhe, Germany, September 25, 2012

Comparison of Methods

Electronic spectrum of I_3 ; Ω states¹¹

- 2c-GASCI and SO-CASPT2 corrected for non-parallelity
- IH-FSCC shows smallest errors (also in closed-shell I_3^- system)
- Errors of 2c-GASCI $< 0.05~\rm{eV}$

¹¹A.S.P. Gomes, L. Visscher, H. Bolvin, T. Saue, S. Knecht, T. Fleig, E. Eliav, J Chem Phys 133 (2010) 064305

Methods in comparison

Conclusions in the light of evidence

Non-additive, spinor-based methods largely superior for excitation energies

4c-GASCI allows for balanced treatment of ground and excited states

CI not size extensive

Cl inefficient in treating higher excitations

Goal: More efficient spinor-based size-extensive electron correlation methods

Relativistic Generalized-Active-Space CC

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys 134 (2011) 214102
T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc 118,2 (2007) 347
J. Olsen, J Chem Phys 113 (2000) 7140

- "State-Selective" (SS) GAS-CC Generalized "Oliphant/Adamowicz" Ansatz¹²
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains GAS-selected higher excitations $|\psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

¹²N. Oliphant, L. Adamowicz J Chem Phys **94** (1991) 1229

48th TC Symposium, Karlsruhe, Germany, September 25, 2012

Relativistic Generalized-Active-Space CC

Electronic Ground States ¹³

CC vector function

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \frac{1}{6} \left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right. \dots \right) \right| \operatorname{Ref} \right\rangle$

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t_{i'j'}^{a'b'} t_{i"j'}^{a"b"} a_a^{\dagger} a_b^{\dagger} a_c a_d^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}$$

¹³L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102
L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem **224** (2010) 999

Relativistic Generalized-Active-Space CC¹⁴

Excitation Energies¹⁵

$$J_{\mu}^{CC} = \sum_{\nu} \left\langle \mu_{\text{GAS}} | e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} | \psi^{\text{Ref}} \right\rangle x_{\nu}$$

1. $|a\rangle = e^{\hat{T}_{\text{GAS}}} |\psi^{\text{Ref}}\rangle = \left(\sum_{k=0}^{\infty} \frac{1}{k!} \hat{T}_{\text{GAS}}^{k}\right) |\psi^{\text{Ref}}\rangle$

 $\hat{T}_{\text{GAS}} \ket{\psi^{\text{Ref}}}$ corresponds to calculating a sigma vector with amplitudes.

2.
$$|b\rangle = \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}}\right] |a\rangle = \left(\hat{H}\hat{\tau}_{\nu_{\text{GAS}}} - \hat{\tau}_{\nu_{\text{GAS}}}\hat{H}\right) |a\rangle$$
 (CI sigma vectors)

3.
$$|c\rangle = e^{-\hat{T}_{\text{GAS}}} |b\rangle = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \hat{T}_{\text{GAS}}^k\right) |b\rangle$$

4.
$$\Omega_{\mu_{\text{GAS}}} = \langle \mu_{\text{GAS}} | c \rangle = \langle \psi^{\text{Ref}} \left| \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}} \right| c \rangle$$

(CI transition density matrices)

Computational scaling:

Cl-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}

¹⁴M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

¹⁵K. Hald, P. Jørgensen, J. Olsen, and M. Jaszuński, J Chem Phys **115** (2001) 671

A Simple (?) Test Case: Si Atom

• Closed-shell single-reference calculations

- CISD and CCSD exhibit huge (positive) errors
- Selected higher excitations give decisive correction

Test Case: Si Atom

Analysis of Fermi vacuum determinant

• Reference determinant built from j - j-coupled Pauli spinors:

$$|j(1), m_j(1); j(2), m_j(2)| = \left|\frac{1}{2}, \frac{1}{2}; \frac{1}{2}, -\frac{1}{2}\right| = -\sqrt{\frac{2}{3}} {}^3P_0 - \frac{1}{\sqrt{3}} {}^1S_0$$

- Significant admixture from one excited state
- Reference determinant is biased and unbalanced
- Single excitations represent some excited states:

$$\left. \frac{3}{2}, \frac{1}{2}; \frac{1}{2}, \frac{1}{2} \right| = -\frac{1}{2} {}^{3}P_{1} - \frac{1}{2} {}^{3}P_{2} + \frac{1}{\sqrt{2}} {}^{1}D_{2}$$

• Double excitations add ${}^{1}S_{0}$ character:

$$\left|\frac{3}{2}, \frac{3}{2}; \frac{3}{2}, -\frac{3}{2}\right| = \frac{1}{\sqrt{3}}{}^{3}P_{2} + \frac{1}{\sqrt{6}}{}^{1}D_{2} - \frac{1}{\sqrt{6}}{}^{3}P_{0} + \frac{1}{\sqrt{3}}{}^{1}S_{0}$$

 48^{th} TC Symposium, Karlsruhe, Germany, September 25, 2012

Test Case: Si Atom

Understanding the first-order SO splitting

- Selected higher excitations give large correction, but
- $CC(4_2)$ not sufficiently accurate

Study of a Molecular Series

The pnictogen monohydrides

AsH, SbH, BiH

- Ground-state configuration $ns^2\sigma^2\pi^2$
- ω coupling picture for heavier elements
- $\Omega = 0: \pi_{1/2}^1 \pi_{-1/2}^1$ and $\pi_{3/2}^1 \pi_{-3/2}^1$ (ground state)
- $\Omega = 1 : \pi_{3/2}^1 \pi_{-1/2}^1$ (first excited state)
- Goal: Accurate description of the $\Omega=0/\Omega=1$ splitting 16

¹⁶M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

Series AsH, SbH, BiH

The strange behavior of CCSD

• Huge errors for As homologue

Series AsH, SbH, BiH

Spinors and the molecular field

- True ground state is a perturbed ${}^{3}\Sigma^{-}$ wavefunction (lighter homologues)
- Requires double excitation to compensate \Rightarrow Bad description at CCSD level
- $CC(4_2)$ corrects for this deficiency

Series AsH, SbH, BiH

When is CC superior to GAS-CI?

• CC4₃ calculations consistently better than CAS-CISD¹⁷

¹⁷M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

DIRAC a European metalaboratory for the development of relativistic 4- and 2-

component quantum-physical and -chemical methodology

• KR-CI.

Kramers-Restricted GAS Configuration Interaction Program (released in DIRAC10/DIRAC11) Authors: S Knecht, T Fleig, J Olsen, HJAa Jensen

• KR-CC.

Kramers-Restricted GAS Coupled Cluster Program (not yet released) Authors: LK Sørensen, J Olsen, M Hubert, T Fleig **A** Recent Development

The Electron Electric Dipole Moment

 48^{th} TC Symposium, Karlsruhe, Germany, September 25, 2012

Testing fundamental physics:

Current predictions for the eEDM¹⁸

¹⁸A.V. Titov, N.S. Mosyagin, A.N. Petrov, T.A. Isaev, D.P. DeMille, *Recent Advances in the Theory of Chemical and Physical Systems* (2006) *253-283*; courtesy: Huliyar (2009), DeMille (2005)

¹⁹B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* **88** (2002) *071805/1*

²⁰J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

Testing fundamental physics:

Implications of an *e*EDM \vec{D}

 \vec{D} aligned with \vec{J} due to projection theorem: $\left\langle \alpha', JM_J \left| \hat{V}_q \right| \alpha', JM_J \right\rangle = \frac{\left\langle \alpha', JM_J \right| \hat{J} \cdot \hat{\vec{V}} \left| \alpha', JM_J \right\rangle}{\hbar^2 J^2 (J+1)} \left\langle JM_J \left| \hat{J}_q \right| JM_J \right\rangle$

Implies violation of $Parity(\mathcal{P})$ and $Time-Reversal(\mathcal{T})$ symmetries²¹

The \mathcal{CPT} theorem remains valid

²¹E.D. Commins, *Adv At Mol Opt Phys* **40** (1998) *1*

Essentials of the formalism

The pseudo-scalar \mathcal{PT} -odd eEDM Hamiltonian:

• Point of departure: Salpeter's²² modified Dirac equation:

$$\left[\left(p_{\mu} + \frac{e}{c}A_{\mu}\right)\gamma^{\mu} - \imath m_{0}c\right]\psi(\vec{r}) = \zeta\left(\frac{\imath e\hbar}{4m_{0}c^{2}}\right)\gamma^{5}\gamma_{\mu}\gamma_{\nu}F^{\mu\nu}\psi(\vec{r})$$

- from which the eEDM operator can we written as an expectation value: $\left\langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \right\rangle_{\psi_H} = \frac{2 \iota c d_e}{e \hbar} \left\langle \gamma^0 \gamma^5 \vec{p}^{\,2} \right\rangle_{\psi_H}$
- Requires kinetic-energy integrals of the type: $\langle \psi^L | \vec{p}^2 | \psi^S \rangle$
- and therefore explicitly the Small-component wave functions.
- Implementation as 4c-Cl expectation values²³.

²²E. Salpeter, *Phys Rev* **112** (1958) *1642*

 $^{^{23}}$ T Fleig and M K Nayak, in preparation.

Some candidate molecules

- ThF⁺, HfF⁺ (Experiment²⁴, Cornell group)
- WC (Experiment, Leanhart group, Michigan)
- ThO (DeMille group; Theory²⁵, Meyer et al.)
- IH⁺ (Theory, Titov et al.²⁶)

²⁴A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc 270 (2011) 1
²⁵J. Paulovič, T. Nakajima, K. Hirao, R. Lindh, P.-Å. Malmqvist, J Chem Phys 119 (2003) 798

²⁶T.A. Isaev, A.N. Petrov, N.S. Mosyagin, A.V. Titov, *Phys Rev Lett* **95** (2005) *163004*

IH⁺ as a candidate system

 48^{th} TC Symposium, Karlsruhe, Germany, September 25, 2012

Correlation dependence of \mathcal{P}, \mathcal{T} -odd interaction constant W_d

Correlation dependence of \mathcal{P}, \mathcal{T} -odd interaction constant W_d

Results for W $_d$ in comparison²⁷

E_{eff}	$W_d \left[10^{24} \frac{\text{Hz}}{\text{e} \cdot \text{cm}}\right]$		
Correlation model	Present work	Titov et al.	
0 e^- (HF)	0.007	0.010	
$7 e^-$	0.257	0.336	
7 e^- (+Triples)	0.251		
17 e^- (CV)	0.249		
17 e^- (CV,CC)	0.259		
25 e^- (CV)	0.259		
25 e^- (CV,CC)	0.265	0.336	

Theory differences:

- (+) Larger basis set
- (+) No effective core potentials
- (+) More rigorous electronic-structure model
- (-) No spin-other-orbit terms in Hamiltonian

- Valence electron correlation affects E_{eff} strongly.
- Outer-core correlations (CV or CC) have very small effect.
- Valence triple excitations lead to decrease of $\approx -2.3\%$.
- Present E_{eff} consistently smaller than reference values by Titov et al.

²⁷T.A. Isaev, A.N. Petrov, N.S. Mosyagin, and A.V. Titov, *Phys Rev Lett* **95** (2005) *163004*

 $^{3}\Delta$ molecules

- Heavy nucleus (relativistic effect)
- One "science" electron (σ^1) , one "spectroscopy" electron (δ^1)
- Large E_{eff} for σ^1 electron

- Deeply bound molecule (fluorides)
- Small Λ -doublet splitting (experimental, technical reasons)
- Large rotational constant (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)
- $\bullet \; \Rightarrow \; \mbox{Low-lying} \; {}^3\!\Delta_1 \; \mbox{as "science" state}$

A Proposed Measurement²⁸ on HfF⁺

²⁸A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc **270** (2011) 1

HfF⁺ potential curves in RASCI approximation

 $\Omega = 0 \ (\mathrm{Hf}^{2+}6s^2), \quad \Omega = 1 \ (\mathrm{Hf}^{2+}6s^15d^1)$

 48^{th} TC Symposium, Karlsruhe, Germany, September 25, 2012

HfF⁺ potential curves in RASCISD approximation

48th TC Symposium, Karlsruhe, Germany, September 25, 2012

HfF⁺ spectroscopy; excitation energy and basis set

48th TC Symposium, Karlsruhe, Germany, September 25, 2012

HfF⁺ spectroscopy; excitation energy and correlation model

	R_e [a.u.]		$T_e^{0-1} [cm^{-1}]$
Model	$\Omega = 0$	$\Omega = 1$	
SD4_CAS4in7	3.390	3.462	-3056
SD4_CAS4in7_SD8	3.554	3.597	-1176
SD8_CAS2in6	3.402	3.436	-1545
SD8_CAS2in6_SD10	3.505	3.556	-63
SD18_CAS2in6_SD20	3.401	3.438	385
SD10_SDT8_CAS2in6_SD20	?	?	$\approx +150$
Titov: 20 e ⁻ corr. ²⁹	3.366	3.413	1633
Experiment ³⁰			993

Correlation of Hf 5s, 5p shells plays an important role.

²⁹A.N. Petrov, N.S. Mosyagin, A.V. Titov, *Phys Rev A* **79** (2009) *012505*

³⁰B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺: $E_{\rm eff}$ in the $\Omega = 1$ science state

Model	$E_{\text{eff}} \left[\frac{\text{GV}}{\text{cm}} \right]$
SD8_CAS2in6	24.77
SD8_CAS2in6_SD10	23.26
SDT8_CAS2in6_SD10	23.18
S18_CAS2in6_SD20	23.31
Titov: 20 e ⁻ corr. ³¹	36.28
Estimate, Meyer et al. ³²	≈ 30

Theory differences:

- (+) No effective core potentials
- (+) More rigorous electronic-structure model
- (-) No spin-other-orbit terms in Hamiltonian

³¹A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

³²E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

Ongoing Work

- Commutator-based GER CC Jacobian, non-relativistic version (with Mickael Hubert and Jeppe Olsen)
- Commutator-based GER CC Jacobian, relativistic version (with Mickael Hubert and Lasse Sørensen)
- Electron EDM constants in other diatomic molecules (with Malaya K. Nayak and Stefan Knecht)

Ongoing Work

• 4-component Gaunt / Breit operator in correlated approaches (with Jessica Loras

Decoupling correlation and 2-electron spin-orbit terms ?

48th TC Symposium, Karlsruhe, Germany, September 25, 2012

Acknowledgement/Collaboration

Malaya K. Nayak

Bhabha Research Institute, India

Stefan Knecht

Odense, Denmark

Mickael Hubert

LCPQ, Toulouse, France

Jessica Loras

LCPQ, Toulouse, France

Lasse K. Sørensen

Århus, Denmark

Jeppe Olsen

Århus, Denmark

Hans Jørgen Aa. Jensen

Odense, Denmark

The CI-Based CC Jacobian

Scaling Properties

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- $e^{-\hat{T}}$ increases excitation rank (just as $e^{\hat{T}}$) !
- $\Rightarrow \hat{H}e^{\hat{T}} \ket{\text{Ref}}$ required to be **inside** space of excitation manifold $\langle \mu |$
- \hat{H} may have de-excitation rank of 2
- Therefore: $\hat{H}e^{\hat{T}} |\text{Ref}\rangle$ CI problem with extended space!
- \Rightarrow e.g. CCSD requires a CISDTQ linear transformation.
- CI-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}
- CI-based implementation, considering GAS: $O^{m+2}V^{m+2}o^{n-m}v^{n-m}$ Conventional CC, considering GAS: $O^mV^{m+2}o^{n-m}v^{n-m}$