Coupled-cluster study of model systems: the nucleic acid bases and their dimers

Timo Fleig

Theoretical and Computational Chemistry Heinrich Heine University Düsseldorf

April 16, 2007

Outline

- I. Introduction and Motivation
- II. Results for nucleic acid bases
- III. Accuracy of RI-CC2

One-particle basis sets The CC hierarchy: correlation errors

IV. Results for nucleic acid base dimers

I. Introduction

Ab-initio Electronic-Structure Studies

Introduction

Overview of Current Activities

• Rigorous study of monomer units (structures, excited states)

T Fleig, S Knecht, C Hättig, J. Phys. Chem. A 2007, accepted.

- Dimer studies at calibrated computational level Investigation of CT/proton transfer processes
- 1-Methylthymine: Simulation of solvation effects

M Etinski, T Fleig, with K. Kleinermanns

• Method development: Parallel large-scale MRCI

S Knecht, T Fleig, Chem. Phys. Lett. 2007, in preparation.

• Interfacing LUCITA to TURBOMOLE $\longrightarrow \mathsf{RI}$ approximation

I. Introduction

The Accuracy of Quantum-Chemical Models

• Electron Correlation:

Increasing rigor of treatment Hartree-Fock, MP2, CC2 *Coupled Cluster* approaches Study of model hierarchies

- Basis set expansion: *Correlation-consistent* one-particle basis sets SV(P), cc-pVTZ, aug-cc-pVXZ (X=D,T,Q)
- Hamiltonian:

Non-relativistic Hamiltonian

→ Various approaches in direct comparison

• Basis sets:

 $\begin{array}{l} {\rm aDZ} \rightarrow {\rm aTZ} \rightarrow {\rm aQZ} \\ {\rm Bond} \ \ {\rm contraction} \ \approx \\ -0.015 \ {\rm \AA} \end{array}$

SV(P) error ≈ 0.02 Å

- $\begin{array}{rrr} {\sf XZ} & \rightarrow & {\sf aXZ} & \approx \\ +0.005 \ {\rm \AA} & \end{array}$
- <u>Correlation:</u>

 $\begin{array}{l} {\sf HF} \rightarrow {\sf MP2} \approx {\sf CC2} \\ {\sf Bond} \ \ {\sf stretching} \ \approx \\ +0.004 \ldots + 0.04 \ {\sf \AA} \end{array}$

Nucleic acid base monomers

Excited states (RI-CC2/aug-cc-pVTZ)

 1^{st} SFB 663 Symposium, Bad Münstereifel, Apr. 16-18, 2007

Other methods and experiment

9H-Adenine

Excitation	$TD\operatorname{-}DFT^1$	$CASSCF/CASPT2^2$	DFT/MRCI ³	RI-CC2	Exp. ⁴	$Exp.^{E_{0-0}5}$
$n-\pi^*$	5.04	6.15	5.01	5.12		4.40
$\pi-\pi^*$	5.09	5.13	4.90	5.25	4.98	4.48
$\pi-\pi^*$		5.20	5.04	5.25		

- TD-DFT/B3LYP performs well for monomer units
- CASSCF/CASPT2 suffers from limited active spaces
- Comparable (gas-phase) experiments are rare (vertical excitation)

¹A L Sobolewski, W Domcke, *Eur. Phys. J. D* **2002**, *20*, 369

²M P Fülscher, L Serrano-Andrés, B O Roos, J. Am. Chem. Soc. **1997**, 119, 6168

³C M Marian, J. Chem. Phys. 2005, 122, 104314

⁴L B Clark, G G Peschel, J. I. Tinoco, J. Phys. Chem. **1965**, 69, 3615

⁵N J Kim, G Jeong, Y S Kim, J Sung, S K Kim, Y D Park, J. Chem. Phys. **2000**, 113, 10051

Comparison with Experiment

NA base	State (transition)	RI-CC2 T_v [eV]	Experimental
Adenine	$S_1 \ (n-\pi^*)$	5.12	4.40 ⁶
	$S_2~(\pi-\pi^*)$	5.25	4.48^{6} 4.98^{7}
Thymine	$S_1 \ (n-\pi^*)$	4.82	
	$S_2 \; (\pi - \pi^*)$	5.20	4.8^8 4.7^9
Guanine	$S_1 \; (\pi - \pi^*)$	4.98	$4.4 - 4.5^{10}$
Cytosine	$S_1 \; (\pi - \pi^*)$	4.66	4.28^{7}
Uracil	$S_1 \; (n - \pi^*)$	4.80	
	$S_2 \; (\pi - \pi^*)$	5.35	5.08^{7}

 ${}^{6}E_{0-0}$, vibration corrected; N J Kim, G Jeong, Y S Kim, J Sung, S K Kim, Y D Park, J. Chem. Phys. **2000**, 113, 10051

⁷Vapor phase; L B Clark, G G Peschel, J. I. Tinoco, J. Phys. Chem. **1965**, 69, 3615

⁸1,3-Dimethyluracil; L B Clark, G G Peschel, J. I. Tinoco, J. Phys. Chem. **1965**, 69, 3615

⁹In water and TMP; L B Clark, G G Peschel, J. I. Tinoco, J. Phys. Chem. **1965**, 69, 3615

¹⁰In: M P Fülscher, L Serrano-Andrés, B O Roos, J. Am. Chem. Soc. **1997**, 119, 6168

Nucleic acid base monomers

Excited states (Uracil, Basis sets)

1st SFB 663 Symposium, Bad Münstereifel, Apr. 16-18, 2007

Correlation-Consistent Basis Sets

Some basic features:

- Generalized contraction for occupied orbitals
- Optimized primitives to maximize correlation contribution (CISD)
- cc-pVTZ: 2s 2p 2d 1f primitives
- Construction: Valence-correlated ground states of atoms !
- Excited states: Diffuse electron distributions
- aug-cc-pVTZ: + 1s 1p 1d 1f diffuse primitives
- cc-pVDZ sets do not have sufficient flexibility to describe excited states accurately

III. Analysis

Effect of augmenting functions

Uracil excited states, vertical RI-CC2/(aug-)cc-pVTZ

$$\Delta \mathsf{E}_{T_v} = \mathsf{E}_{T_v}^{cc-pVTZ} {-} \mathsf{E}_{T_v}^{aug-cc-pVTZ}$$

State	$\Delta E_{\mathrm{T}_{\mathrm{v}}}$ [eV]
n π^*	-0.09
$\pi\pi^*$	-0.14
${\sf n}\pi^*$	-0.14
$\pi\pi^*$	-0.16
${\sf n}\pi^*$	-0.16
$\pi\pi^*$	-0.31

- $\bullet\,$ Mean deviation of $-0.17~{\rm eV}$
- Error increases with excitation energy
- Independent of character of state

- Explanation via orbitals involved in excitations
- Analysis of lowest $n\pi^*$ and highest $\pi\pi^*$ states

III. Analysis

Effect of augmenting functions

Electron density for involved π^* orbital (contour value 0.01):

 $\langle r^2 \rangle - \langle r \rangle^2 = 12.6$ 35.1 13.7 34.8

- Involved π^* are most compact virtual orbitals (aug-cc-pVTZ)
- Diffuse functions play significant role for excited states !

Some Conclusions on Basis Sets

- SV(P) sets not suited for the description of excited states
- The cc-pVXZ series is significantly less accurate than series aug-cc-pVXZ
- aug-cc-pVXZ sets open for access to Rydberg states
- Wrong order of excited states using too small basis sets (guanine)
- Augmentation increases computational effort significantly.

Nucleic acid base monomers

Excited states (Uracil, Electron Correlation)

1st SFB 663 Symposium, Bad Münstereifel, Apr. 16-18, 2007

The CC Hierarchy

O Christiansen, H Koch, P Jørgensen, Chem. Phys. Lett. **1995**, 243, 409-418. C Hättig, F Weigend, J. Chem. Phys. **2000**, 113, 5154-5161.

CC2
$$\left\langle \mu_2 \left| \hat{H} + \left[\hat{F}, \hat{T}_2 \right] \right| \operatorname{Ref} \right\rangle = 0$$

CCSD
$$\left\langle \mu_2 \left| \hat{H} + \left[\hat{H}, \hat{T}_2 \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T}_2 \right], \hat{T}_2 \right] \right| \operatorname{Ref} \right\rangle = 0$$

CC3
$$\left\langle \mu_3 \left| \left[\hat{F}, \hat{T}_3 \right] + \left[\hat{H}, \hat{T}_2 \right] \right| \operatorname{Ref} \right\rangle = 0$$

CSDT

CCSDT

Scaling of the models with system size N :					
CC2	CCSD	CC3	CCSDT		
N^5	N^6	N^7	N^8		

- $\hat{F} + \hat{V}^t$

 \longrightarrow response theory for excited states

- Reduced scaling essential for large-scale applications
- Accuracy?

The Coupled Cluster Hierarchy

H Koch, O Christiansen, P Jørgensen, J Olsen, Chem. Phys. Lett. 1995, 244, 75-82.

Fig. 1. The percent deviation from FCI excitation energies for the single replacement dominant excitation in Ne (O), BH (\times) and CH₂ (\Box).

- Relative errors in small molecules
- (aug)-cc-pVDZ basis set
- Largest CC2 errors 0.04 eV
- CCSD consistently better than CC2
- CC3 close to exact values

The Coupled Cluster Hierarchy

- Errors decrease systematically (for correlated models)
- Errors may be positive or negative (different correlation cases)

The NA Bases: Uracil

T Fleig, S Knecht, C Hättig, J. Phys. Chem. A 2007, accepted.

Is this fortuitous or systematic?

A comparison: Benzene

O Christiansen et al., J. Chem. Phys. 1996, 105, 6921-6939.

State	CC2	CCSD	CC3	t_1
$1^1 B_{2u} (\pi \pi^*)$	5.27	5.19	5.08	86%
$1^1 B_{1u} (\pi \pi^*)$	6.56	6.59	6.54	93%
$1^1 E_{1u} (\pi \pi^*)$	7.01	7.17	7.13	93%
$2^1 E_{2g} (\pi \pi^*)$	8.97	9.17	8.41	66%

- CC2 is accurate for singly-excited states
- Deviations between models are smaller
- Oscillatory behavior

Nucleic acid base dimers

- Exploit knowledge from calbration studies
- Identify CT states in spectra
- Ground-state structures (C₁, frozen core); vertical excited-state calculations

Test: DFT performance

Adenine-Thymine (AT) base pair, Watson-Crick structure

					RI-CO	C2, TZVP	
6		(SVVVV), TZV		State	System	Character	T_v [eV]
State	System	Character	I v [eV]	S.		<i>~</i> π*	<u> </u>
S_1	A→T	$\pi - \pi^*$	3.30	S_1	$AI \rightarrow I$	$m = \pi$	0.12
S	$\Lambda \longrightarrow T$	$n = \pi^*$	3 7/	S_2	$A \rightarrow A$	$\pi-\pi^{*}$	5.26
02 C		n - n	0.14	S_3	$A \rightarrow A$	$\pi-\pi^*$	5.31
\mathbf{S}_3	$I \longrightarrow I$	$n-\pi^*$	4.21	0	$\Delta \longrightarrow \Delta$	$\pi = \pi^*$	
S_4	$T \rightarrow A$	$\pi-\pi^*$	4.33	S_4		<i>// //</i> *	5.41
Sr	$\Delta \longrightarrow \Delta$	$n=\pi^*$	4.37		$I \longrightarrow I$	$\pi - \pi^{-1}$	
O_{0}		<i>10 1</i> *	4.50	S_5	$A \rightarrow A$	$n-\pi^*$	5.46
\mathfrak{S}_6	$I \rightarrow I(A)$	$\pi - \pi$	4.52	$\mathbf{S}_{\boldsymbol{\epsilon}}$	$A \longrightarrow A$	$n-\pi^*$	5.96
S_7	$A \rightarrow A$	$\pi-\pi^*$	4.53	\sim_0		*	C 17
S_{\circ}	$AT \rightarrow T$	$n/\sigma - \pi^*$	4.59	\mathfrak{D}_7	$A \rightarrow I$	$\pi - \pi$	0.17
		*	4.61	S_8	$AT \rightarrow T$	$n-\pi^*$	6.31
59	$A \rightarrow I$	$\pi - \pi$	4.01	S_9	$AT \rightarrow A$	$n-\pi^*$	6.51

- DFT: Low-lying CT states, physically incorrect
- CC2: Spectrum corresponds to qualitative expectations

Adenine-Thymine: Structure and excited states WC structure, opt. RI-CC2, aug-cc-pVDZ

				Ť
	RI-CC2, a	ug-cc-pVDZ	0	RI-CC2, cc-pVDZ ¹¹
State	Excitation Type	Character (CT)	T_{v} [eV]	T_{v} [eV]
S_1	$T \rightarrow T / A \rightarrow T$	$n-\pi^{*}$ (20 %)	4.81	5.13
S_2	$T \rightarrow T$	$\pi-\pi^*$	4.94	5.37
S_3	$A \rightarrow A$	$\pi-\pi^*$	5.05	5.25
S_4	A→A	$\pi-\pi^*$	5.05	5.45
\mathbf{S}_5	A→A	$\pi - Ryd$	5.29	
S_6	$A \rightarrow A / A \rightarrow T$	$n-\pi^{*}$ (20 %)	5.31	5.51
S_7	$T \rightarrow T$	$\pi - Ryd$	5.47	
${ m S}_8$	$A \rightarrow A$	$\pi - Ryd$	5.71	
S_9	$A \rightarrow A / A \rightarrow T$	$\pi-\pi^{*}~(40~\%)$	5.71	6.26
S_{12}	$T \rightarrow T / A \rightarrow T$	$\pi-\pi^{*}~($ 45 %)	5.91	6.42

¹¹S Perun, A L Sobolewski, W Domcke, J. Phys. Chem. A **2006**, 110, 9031-9038

Guanine-Cytosine: Structure and excited states

WC structure, opt. RI-CC2, aug-cc-pVDZ

	RI-CC2	2, aug-cc-pVDZ		
State	Excitation Type	Character (CT contr.)	T_{v} [eV]	
S_1	$G \rightarrow G/G \rightarrow C$	$\pi-\pi^{*}~($ 35 % $)$	4.61	
S_2	$C \rightarrow C$	$\pi-\pi^*$	4.77	
S_3	$G{\rightarrow}G$	$\pi - Ryd$	4.77	• Strong CI mixing
S_4	$G \rightarrow G/G \rightarrow C$	$\pi-\pi^{*}~($ 35 % $)$	5.03	
S_5	$G \rightarrow G/G \rightarrow C$	$\pi - Ryd$ (40 %)	5.18	 Difficult
S_6	$G{\rightarrow}G$	$\pi-\pi^*$	5.20	designation
S_7	$C \rightarrow C$	$\pi-\pi^*$	5.22	
S_8	$C \rightarrow C / G \rightarrow C$	$n-\pi^{*}$ (20 %)	5.27	
S_9	$G \rightarrow G/G \rightarrow C$	$\pi - Ryd$ (50 %)	5.41	

. . .

IV. Results

Investigation of an excited-state process.

RI-CC2/cc-pVDZ optimized structures:

• Trends by adding water molecules to form a solvation shell

Final Conclusions

- CC2 correlation treatment appears to be very accurate Errors $<<0.4~\rm eV$
- CC2 applicable for larger molecules
- Description of excited states: Selection of basis set is a crucial issue (aug) leads to significant corrections
- In present case (NA bases and dimers): Favorable error cancellation
 Basis set: too low; Correlation: too high!
- Advocated model: RI-CC2/aug-cc-pVDZ

Thanks !

- Stefan Knecht (Düsseldorf)
- Christof Hättig (Bochum)
- Ove Christiansen (Aarhus)

I. Introduction and Motivation

Charge-Transfer Problem (in DFT)

Zinc-Bacteriochlorin-Bacteriochlorin complex

A Dreuw, M Head-Gordon, J. Am. Chem. Soc. 2004, 126, 4007-4016

(TDDFT, BLYP functional, 6-31G*):

Excitation energies [eV]						
	ZnB	Monoi	mers			
State	Full	Model	Transition	Theory	Exp.	
S_1	1.33	1.32	$ZnBC \rightarrow BC$			
S_2	1.46	1.47	$BC \to ZnBC$			
S_3	1.86	1.90	$BC \to ZnBC$			
${ m S}_4$	1.94	1.96	$ZnBC\toBC$			
S_5	2.05	2.07	$\pi-\pi^*$ ZnBC	2.07	1.65	
S_6	2.09	2.12	$\pi-\pi^*$ BC	2.10	1.6	
S_7	2.38	2.40	$\pi-\pi^*$ BC	2.39	2.3	
S_8	2.42	2.46	$\pi-\pi^*$ ZnBC	2.44	2.2	
S_9	2.43	2.42	$ZnBC\toBC$			

 \Rightarrow Spectrum ist qualitatively wrong !

I. Introduction and Motivation

Charge-Transfer Problem (in DFT)

Problem 1: Problem 2: excitation energies CT states exhibit wrong asymptotic СТ are considerably too small behavior 3.0 **Electronic spectrum** .,H DFT expected CIS Ε R 2.0 half-E-E(4.0A) (eV) and-half 1.0 **B3LYP** LB94 **SVWN** 0.0

Monomer excitation Charge-transfer excitation

- 1. A Dreuw, M Head-Gordon, Chem. Rev. 2005, 105, 4009-4037
- 2. A Dreuw, M Head-Gordon, J. Am. Chem. Soc. 2004, 126, 4007-4016
- 3. A Dreuw, J L Weisman, M Head-Gordon, J. Chem. Phys. 2003, 119, 2943-2946

4.0

5.0

6.0

7.0

R (Ang)

8.0

9.0

10.0

1st SFB 663 Symposium, Bad Münstereifel, Apr. 16-18, 2007