Relativistic Multi-Reference Electron Correlation Methods

Development and Application

Timo Fleig

Theoretical and Computational Chemistry Heinrich Heine University Düsseldorf

September 10, 2007

hunsel hun DÜSSELDORF

Acknowledgements

Lasse K. Sørensen

Jeppe Olsen (Aarhus)

Stefan Knecht

Hans Jørgen Aa. Jensen (Odense)

I. Motivation

Electronic structure studies

Systems: Small molecules with heavy atoms

Small actinide compounds

"Ultracold" molecules

(Rb-Cs)⁺; J.M. Sage et al., Phys Rev Lett (2005)

I. Introduction

Wave-Function Methods: Controlled Accuracy

¹R. E. Stanton and S. Havriliak, J Chem Phys **84** (1981) 1910

Electron Correlation: Rigorous many-particle theories, here Coupled Cluster model General-order expansions

• Hamiltonian: 4-Component Relativistic Hamiltonian

• Basis set expansion: *Large* one-particle basis sets: Typical angular momenta s p d f g h(i)

 \longrightarrow Additional high- ℓ basis set for ψ^S

I. General Motivation

... for New Methodology

- Many open shells (d, f elements)
 - → Multi-reference methods (flexibility)
 - → Universal applicability !
- High density of states is typical
 - \rightarrow Rigorous approaches (SOC *a priori*)
- High reliability / systematic improvements
 - → Series of approximations (CCSD,CCSDT,CCSDTQ,...)
- Many electrons to correlate
 - → Efficient large-scale techniques

Electron correlation problem is of major concern.

II. 4-/2-Component Relativistic Methodology

Quantum chemistry program package

- H J Aa Jensen, Odense
- **T Saue**, Strasbourg
- L Visscher, Amsterdam

- K Fægri, Oslo
- T Fleig, Düsseldorf
- U Kaldor, E Eliav, Tel Aviv
- P Norman, Linköping

II. 4-/2-Component Relativistic Methodology

Hamiltonians

Spinors:

- Rigorous treatment of spin-orbit interaction
- Shorter correlation expansions²

²T. Fleig, J. Olsen, L. Visscher, J Chem Phys **119** (2003) 2963

³K.G. Dyall, J Chem Phys **100** (1994) 2118

⁴M. Ilias, T. Saue, J Chem Phys **126** (2007) 064102

H.J.Aa. Jensen, M. Ilias, unpublished.

II. 4-/2-Component Methodology^{5 6 7 8 9 10}

Relativistic Multi–Reference Electron Correlation Programs in DIRAC

Soerensen, Fleig, Olsen

- ⁵T. Fleig, L. Visscher, Chem Phys **311** (2005) *113*
- ⁶T. Fleig, J. Olsen, L. Visscher, J Chem Phys **119** (2003) *2963*
- ⁷J Thyssen, H. J. Aa. Jensen, T. Fleig, J Chem Phys (2007) submitted.
- ⁸T. Fleig, H. J. Aa. Jensen, J. Olsen, L. Visscher, J Chem Phys **124,10** (2006) *104106*
- ⁹T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc **118,2** (2007) 347
- ¹⁰S. Knecht, H. J. Aa. Jensen, T. Fleig, J Comput Phys (2007), submitted.

II. Relativistic Formalism

Time-Reversal Symmetry

General concept: Kramers-paired spinors

One-particle functions:

$$\begin{split} \hat{K} \left| \Psi \right\rangle &= \left\{ \prod_{i=1}^{n} \hat{K}(i) \right\} a_{1\beta}^{\dagger} a_{2\beta}^{\dagger} \dots a_{i\beta}^{\dagger} \dots a_{n\beta}^{\dagger} \left| \right. \rangle \\ &= \pm a_{1\beta}^{\dagger} (\pm) a_{2\beta}^{\dagger} \dots (\pm) a_{i\beta}^{\dagger} \dots (\pm) a_{n\beta}^{\dagger} \left| \right. \rangle \\ &\text{ with } \hat{K}(i) a_{i\beta}^{\dagger} = \pm a_{i\beta}^{\dagger}, \text{ as } \hat{K}^{2} = (-1)^{n} \end{split}$$

• Determinant decomposed into

1 unbarred (Kramers up) string $a_i^{\dagger}a_j^{\dagger}a_k^{\dagger}\dots$

1 barred (Kramers down) string $a_{\overline{l}}^{\dagger}a_{\overline{m}}^{\dagger}a_{\overline{n}}^{\dagger}\dots$

• Auxiliary quantum number M_K

Many-particle state M_K $a_i^{\dagger} \mid \rangle$ $+\frac{1}{2}$ $a_j^{\dagger} a_k^{\dagger} \mid \rangle$ -1etc.etc.

 $\begin{array}{ll} +\frac{1}{2} & \text{Labelling of operators, e.g.} \\ -1 & a_{\overline{i}}^{\dagger}a_{\overline{j}}^{\dagger}, a_{k}a_{\overline{l}}, \ \Delta M_{K}=-1 \end{array}$

II. Relativistic Formalism

Generalized Active Spaces

- \Rightarrow Mapping of excitation classes
- \Rightarrow Couplings depend on occupation blocks

II. Relativistic Formalism

Excitation Classes

Dirac-Coulomb Hamiltonian:		operator	integral class	Kramers flip type
\hat{H}_{DC}		$a_i^\dagger a_j$	h_{ij}	$\Delta M_K = 0$
20	$\sum \begin{bmatrix} \mathbf{k} & \hat{\mathbf{v}}^{\dagger} + 1 \begin{pmatrix} \mathbf{k} & \hat{\mathbf{v}}^{\dagger} + \mathbf{k} & \hat{\mathbf{v}}^{\dagger} \end{pmatrix} \end{bmatrix}$	$a^{\dagger}_{\overline{i}}a_{\overline{j}}$	$h_{\overline{ij}}$	$\Delta M_K = 0$
=	$\sum_{ij} \left[n_{ij} \boldsymbol{\Lambda}_{ij}^{\dagger} + \frac{1}{2} \left(n_{\bar{i}j} \boldsymbol{\Lambda}_{\bar{i}j}^{\dagger} + n_{i\bar{j}} \boldsymbol{\Lambda}_{i\bar{j}}^{\dagger} \right) \right]$	$a_i^\dagger a_k^\dagger a_l a_j$	(ij kl)	$\Delta M_K = 0$
	$+\frac{1}{2}\sum_{i,j,kl}\left[(ij kl)x_{ijkl}^{++}+(\overline{i}j kl)x_{\overline{i}jkl}^{++}\right]$	$a_i^\dagger a_{\overline{k}}^{\overline{\dagger}} a_l a_{\overline{j}}$	$(i\overline{j} \overline{k}l)$	$\Delta M_K = 0$
		• • •	•••	• • •
	$+(i\overline{j} kl)x_{i\overline{j}kl}^{++}$	$a_i^\dagger a_{\overline{j}}$	$h_{i\overline{j}}$	$\Delta M_K = +1$
	$+\frac{1}{4}\sum_{i}(\bar{i}i k\bar{l})x_{-}^{++}$	$a_{\overline{i}}^{\dagger}a_{j}$	$h_{ar{i}j}$	$\Delta M_K = -1$
	$4 \sum_{ijkl} (3j)^{ijkl} ijkl$	$a_i^\dagger a_k^\dagger a_l a_{\overline{j}}$	$(i\overline{j} kl)$	$\Delta M_K = +1$
	$+\frac{1}{8}\sum_{i,j,\bar{k}\bar{l}}\left[(\bar{i}j \bar{k}l)x^{++}_{\bar{i}j\bar{k}\bar{l}} + (i\bar{j} k\bar{l})x^{++}_{i\bar{j}k\bar{l}}\right]$	$a_i^\dagger a_k^\dagger a_{\overline{l}} a_{\overline{j}}$	$(i\overline{j} k\overline{l})$	$\Delta M_K = +2$
	ijkl - ijm ijm	•••		

II. General Coupled-Cluster Theory Notation

CC parameterization:

$$|CC\rangle = \left[\prod_{AI} \left(1 + t_{I}^{A} \hat{\tau}_{I}^{A}\right)\right] \left[\prod_{\substack{A > B \\ I > J}} \left(1 + t_{IJ}^{AB} \hat{\tau}_{IJ}^{AB}\right)\right] \cdot \dots |\text{HF}\rangle$$

$$= e^{\left(\sum_{AI} t_{I}^{A} \hat{\tau}_{I}^{A} + \sum_{\substack{A > B \\ I > J}} t_{IJ}^{AB} \hat{\tau}_{IJ}^{AB} + \dots\right)} |\text{HF}\rangle = e^{\hat{T}} |\text{HF}\rangle$$
In practical terms: $\hat{T} = \sum_{i}^{N} \hat{T}_{i}$

Definition of a model theory, e.g. CCSDT:

$$\hat{T} = \sum_{i}^{3} \hat{T}_{i} \implies e^{\hat{T}} |\mathrm{HF}\rangle = e^{\hat{T}_{1} + \hat{T}_{2} + \hat{T}_{3}} |\mathrm{HF}\rangle$$
$$\langle \mu_{\mathrm{CCSDT}} | = \langle \mathrm{HF} | \left\{ \hat{\tau}_{\mu_{1}}^{\dagger}, \hat{\tau}_{\mu_{2}}^{\dagger}, \hat{\tau}_{\mu_{3}}^{\dagger} \right\}$$

II. Relativistic Methodology

The Multi-Reference Coupled Cluster Approach

State-Selective (SS) GAS MRCC Method¹¹

- Extended excitation manifold $\begin{aligned} \langle \mu_{\mathrm{MR}} | &= \langle \mathrm{RHF} | \, \hat{\tau}_{0}^{\dagger} \\ \langle \mu_{\mathrm{SSCC}} | &= \langle \mu_{\mathrm{MR}} | \left\{ \hat{\tau}_{\mu_{1}}^{\dagger}, \hat{\tau}_{\mu_{2}}^{\dagger}, \dots, \hat{\tau}_{\mu_{N}}^{\dagger} \right\} \end{aligned}$
- Higher excitations included, e.g. in MRCCSD $\langle \mu_{\text{SSCCSD}} | = \langle \mu_{\text{MR}} | \{ \hat{\tau}^{\dagger}_{\mu_1}, \hat{\tau}^{\dagger}_{\mu_2} \}$ contains some Q excitations
- GAS expansion (formally) replaces single-determinant reference $|SSCC\rangle = e^{\sum_{\mu} t^{i}_{\mu} \hat{\tau}^{i}_{\mu}} |GAS\rangle$
- ¹¹J. Olsen, J Chem Phys **113** (2000) 7140

II. Kramers-Unrestricted MRCC Implementation

Relativistic excitation operators

• Generalization of cluster operators:

$$\begin{split} \hat{T}_1 &= \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\} \\ \hat{T}_2 &= \sum_{\substack{i < j \\ a < b}} \left\{ t_{ij}^{ab} \hat{\tau}_{ij}^{ab} + t_{\bar{i}j}^{ab} \hat{\tau}_{\bar{i}j}^{ab} \dots + t_{\bar{i}j}^{\bar{a}b} \hat{\tau}_{\bar{i}j}^{\bar{a}b} \dots \right\} \qquad \text{with } \hat{\tau}_{\bar{i}}^a := \hat{a}_a^{\dagger} \hat{a}_{\bar{i}} \\ \hat{T}_3 &= \dots \end{split}$$

- Implications:
 - $\varphi_i, \varphi_a \dots$ spinorbitals: \equiv inclusion of spin-orbit interaction
 - General case: *Kramers-paired* spinors
 - No Kramers restriction at many-particle level

→ Kramers contamination

II. Kramers-Unrestricted MRCC Implementation DUSSELDORF

CI-expansion based evaluation of the CC vector function

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

1. $|a\rangle = e^{\hat{T}} |\text{Ref}\rangle = \left(\sum_{n=0} \frac{1}{n!} \hat{T}^n\right) |\text{Ref}\rangle$

2. $|b\rangle = \hat{H} |a\rangle$ (CI sigma vectors)

3.
$$|c\rangle = e^{-\hat{T}} |b\rangle = \left(\sum_{n=0} \frac{(-1)^n}{n!} \hat{T}^n\right) |b\rangle$$

4. $\Omega_{\mu} = \langle \mu | c \rangle = \langle \text{Ref} | \hat{\tau}^{\dagger}_{\mu} | c \rangle$ (CI density matrices)

Implementation via 4-component CI code:

LUCIAREL CI

¹²T. Fleig, J. Olsen, L. Visscher, J Chem Phys **119** (2003) 2963

II. Ingredients for Steps 2 and 4

Rel. CI Technology

with
$$A_{i\overline{j}k\overline{l}}^{\mathcal{T}\overline{\mathcal{T}},\mathcal{S}\overline{\mathcal{S}}} = \left\langle \mathcal{T}^{\dagger}, \overline{\mathcal{T}}^{\dagger} | a_{i}^{\dagger}a_{k}^{\dagger}a_{\overline{l}}a_{\overline{j}}| \mathcal{S}^{\dagger}, \overline{\mathcal{S}}^{\dagger} \right\rangle$$

Calculation of σ vectors	(Transition) density matrices
Example: $=^{+2}(\mathcal{T}^{\dagger}\overline{\mathcal{T}}^{\dagger})$ $\sum \sum (i\overline{i} h\overline{l}) \wedge \mathcal{T}\overline{\mathcal{T}}, S\overline{S} \cap \mathcal{S}$	Example:
$\sigma^{+}(1 + 1) = \sum_{ijkl} \sum_{\mathcal{S},\overline{\mathcal{S}}} (ij \kappa l) A_{i\overline{j}k\overline{l}} C_{\mathcal{S},\overline{\mathcal{S}}}$	$\rho_2(i\overline{j}k\overline{l}) = \sum_{\mathcal{T},\overline{\mathcal{T}}} \sum_{\mathcal{S},\overline{\mathcal{S}}} C_{\mathcal{T},\overline{\mathcal{T}}} A_{i\overline{j}k\overline{l}}^{\mathcal{T}\overline{\mathcal{T}},\mathcal{S}\overline{\mathcal{S}}} C_{\mathcal{S},\overline{\mathcal{S}}}$
Contraction with integrals	Contraction with coefficients

Input: Integrals Output: σ vector Input: Left coefficient vector Output: Density matrices

- Handling of general operators possible
- Concise code for various tasks (Cl¹³, MCSCF¹⁴, CC)

¹³T. Fleig, J. Olsen, L. Visscher, J Chem Phys **119** (2003) 2963

¹⁴T. Fleig, H.J.Aa. Jensen, J. Olsen, L. Visscher, J Chem Phys **124** (2006) 104106

II. Kramers-Unrestricted MRCC Implementation

Steps 1,2

1. Expansion
$$|a\rangle = \left(\sum_{n=0}^{\infty} \frac{1}{n!} \hat{T}^n\right) |\text{Ref}\rangle$$

$$= |\text{Ref}\rangle + \hat{T} |\text{Ref}\rangle + \frac{1}{2} \hat{T} \left\{ \hat{T} |\text{Ref}\rangle \right\} + \frac{1}{6} \dots$$

("sigma vector" expansion) with current iteration's (k) amplitudes $t_{\mu}^{(k)}$ truncated at excitation level N + 2 if $\langle \mu_N |$ is projection manifold.

2. Sigma vector $|b\rangle = \hat{H} |a\rangle$ linear transformation

Sample partition (for $M_K = +2$, 2-particle):

$$\hat{H}^{(M_{K}=+2)}|a\rangle = \sigma^{+2}(\mathcal{T}^{\dagger},\overline{\mathcal{T}^{\dagger}}) = \sum_{\substack{i\geq k\\l\geq j}}\sum_{\mathcal{S}}\left\langle \mathcal{T}^{\dagger}|a_{\bar{i}}^{\dagger}a_{k}^{\dagger}|\mathcal{S}^{\dagger}\right\rangle \sum_{\overline{\mathcal{S}}}\left\langle \overline{\mathcal{T}}^{\dagger}|a_{\overline{i}}a_{\overline{j}}|\overline{\mathcal{S}}^{\dagger}\right\rangle$$
$$\cdot \left[\left(i\overline{j}|k\overline{l}\right) - \left(k\overline{j}|i\overline{l}\right)\right]C_{\mathcal{S},\overline{\mathcal{S}}}$$

II. Kramers-Unrestricted MRCC Implementation DUSSELDORE

Steps 3,4

3. Expansion
$$|c\rangle = \left(-\sum_{n=0}^{\infty} \frac{1}{n!} \hat{T}^n\right) |b\rangle$$

= $|b\rangle - \hat{T} |b\rangle + \frac{1}{2} \hat{T} \left\{\hat{T} |b\rangle\right\} - \frac{1}{6} \dots$

with current iteration's (k) amplitudes $t_{\mu}^{(k)}$ truncation considering excitation manifold.

4. Transition densities

$$\begin{split} \Omega_{\mu} &= \langle \mu | c \rangle = \left< \operatorname{Ref} \left| \hat{\tau}_{\mu}^{\dagger} \right| c \right> \\ C_{\mathcal{T},\overline{\mathcal{T}}} \text{ is a unit vector.} \end{split}$$

Transition density matrices $\rho_2(i\overline{j}k\overline{l}) = \sum_{\mathcal{T},\overline{\mathcal{T}}} \sum_{\mathcal{S},\overline{\mathcal{S}}} C_{\mathcal{T},\overline{\mathcal{T}}} A_{i\overline{j}k\overline{l}}^{\mathcal{T}\overline{\mathcal{T}},\mathcal{S}\overline{\mathcal{S}}} C_{\mathcal{S},\overline{\mathcal{S}}}$ Contraction with coefficients

II. CI-Based MRCC Algorithm

Efficiency ?

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- $e^{-\hat{T}}$ never decreases excitation rank (just as $e^{\hat{T}}$) !
- $\Rightarrow \hat{H}e^{\hat{T}} \ket{\text{Ref}}$ required to be **inside** space of excitation manifold $\langle \mu |$
- \hat{H} may have de-excitation rank of 2
- Therefore: $\hat{H}e^{\hat{T}} |\text{Ref}\rangle$ CI problem with extended space!
- \Rightarrow e.g. CCSD requires a CISDTQ linear transformation.
- Initial implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}

Test case HBr

T. Fleig, L. K. Sørensen, J. Olsen, Theo. Chem. Acc. 118 (2007) 347

Problem:

- Influence of SO interaction on ground-state spectral constants
- Molecular dissociation with/without multi-reference Ansatz
- Effect of higher excitations (than CC doubles)

Setup

- Uncontracted cc-pVDZ/cc-pVTZ basis sets, cutoff 10 a.u.
- Dirac-Coulomb/Spinfree Hamiltonian
- Correlated orbitals: $\sigma_{sp}, 2\pi, \sigma^*_{sp}$ (6 el.), + Br 4s (8 el.)
- CCSD (6/8), Single Reference (SR) and Multi Reference (MR) CI/CC
- MR space: CAS 6/8 in 4 orbitals/Kramers pairs

Application to HBr

SAMQCP 2007 Torun, 09/02-09/06, 2007

Application to HBr							
Method	R_{e} [Å]	$\omega_e \; [{ m cm}^{-1}]$	$D_e \; [eV]$				
DZ SOF CCSD (6)	1.4148	2705.7	4.19	-			
DZ SOF MRCISD (6)	1.4164	2693.7	3.86				
DZ SOF MRCCSD (6)	1.4162	2691.1	3.88				
DZ SO CCSD (6)	1.4153	2697.8	4.05				
DZ SO CCSDT (6)	1.4159	2690.8	3.74				
DZ SO MRCISD (6)	1.4173	2678.7	3.72	$SR \longrightarrow MR:$			
DZ SO MRCCSD (6)	1.4173	2685.2	3.73				
TZ SOF MRCISD (6)	1.4145	2675.1	4.04	Rond length: <u>+0.002</u> Å			
TZ SOF MRCCSD (6)	1.4148	2675.1	4.05				
TZ SO MRCISD (6)	1.4151	2668.4	3.90	– 1			
TZ SO MRCCSD (6)	1.4154	2668.0	3.90	Frequency: -13 cm^{-1}			
TZ SOF MRCISD (8)	1.4180	2641.4	3.90	-			
TZ SOF MRCCSD (8)	1.4192	2637.1	3.90	$D_e: -0.3 \text{ eV}$			
TZ SOF CCSDT (8)	1.4178	2647.3	3.96				
TZ SO MRCISD (8)	1.4187	2634.9	3.77				
TZ SO MRCCSD (8)	1.4193	2630.6	3.76				
TZ SOF CCSDT (18)	1.4142	2663.9	4.01	-			
TZ SOF CCSDT (18) $+\Delta_{SO}$	1.4143	2657.4	3.87				
Exp. (Huber, Herzberg 1979)	1.4144	2649.0	3.92	-			

Application to HBr							
Method	$\mid R_{e} \ [Å]$	$\omega_e \; [{ m cm}^{-1}]$	$D_e \; [eV]$				
DZ SOF CCSD (6)	1.4148	2705.7	4.19	-			
DZ SOF MRCISD (6)	1.4164	2693.7	3.86				
DZ SOF MRCCSD (6)	1.4162	2691.1	3.88				
DZ SO CCSD (6)	1.4153	2697.8	4.05				
DZ SO CCSDT (6)	1.4159	2690.8	3.74				
DZ SO MRCISD (6)	1.4173	2678.7	3.72	SOC:			
DZ SO MRCCSD (6)	1.4173	2685.2	3.73				
TZ SOF MRCISD (6)	1.4145	2675.1	4.04	Bond length: +0.0005 Å			
TZ SOF MRCCSD (6)	1.4148	2675.1	4.05				
TZ SO MRCISD (6)	1.4151	2668.4	3.90	- _1			
TZ SO MRCCSD (6)	1.4154	2668.0	3.90	Frequency: -7 cm^{-1}			
TZ SOF MRCISD (8)	1.4180	2641.4	3.90				
TZ SOF MRCCSD (8)	1.4192	2637.1	3.90	$D_e: -0.15 \text{ eV}$			
TZ SOF CCSDT (8)	1.4178	2647.3	3.96				
TZ SO MRCISD (8)	1.4187	2634.9	3.77				
TZ SO MRCCSD (8)	1.4193	2630.6	3.76	_			
TZ SOF CCSDT (18)	1.4142	2663.9	4.01				
TZ SOF CCSDT (18) $+\Delta_{SO}$	1.4143	2657.4	3.87				
Exp. (Huber, Herzberg 1979)	1.4144	2649.0	3.92	-			

Application to HBr						
Method	R_{e} [Å]	$\omega_e \; [{ m cm}^{-1}]$	$D_e \; [eV]$			
DZ SOF CCSD (6)	1.4148	2705.7	4.19	-		
DZ SOF MRCISD (6)	1.4164	2693.7	3.86			
DZ SOF MRCCSD (6)	1.4162	2691.1	3.88			
DZ SO CCSD (6)	1.4153	2697.8	4.05			
DZ SO CCSDT (6)	1.4159	2690.8	3.74			
DZ SO MRCISD (6)	1.4173	2678.7	3.72			
DZ SO MRCCSD (6)	1.4173	2685.2	3.73	_		
TZ SOF MRCISD (6)	1.4145	2675.1	4.04	$MRCI \longrightarrow MRCC^{\cdot}$		
TZ SOF MRCCSD (6)	1.4148	2675.1	4.05			
TZ SO MRCISD (6)	1.4151	2668.4	3.90			
TZ SO MRCCSD (6)	1.4154	2668.0	3.90	Very similar.		
TZ SOF MRCISD (8)	1.4180	2641.4	3.90			
TZ SOF MRCCSD (8)	1.4192	2637.1	3.90			
TZ SOF CCSDT (8)	1.4178	2647.3	3.96			
TZ SO MRCISD (8)	1.4187	2634.9	3.77			
TZ SO MRCCSD (8)	1.4193	2630.6	3.76	_		
TZ SOF CCSDT (18)	1.4142	2663.9	4.01	-		
TZ SOF CCSDT (18) $+\Delta_{SO}$	1.4143	2657.4	3.87	_		
Exp. (Huber, Herzberg 1979)	1.4144	2649.0	3.92	-		

Application to HBr							
Method	R_e [Å]	$\omega_e \; [{ m cm}^{-1}]$	$D_e \; [eV]$				
DZ SOF CCSD (6)	1.4148	2705.7	4.19	-			
DZ SOF MRCISD (6)	1.4164	2693.7	3.86				
DZ SOF MRCCSD (6)	1.4162	2691.1	3.88				
DZ SO CCSD (6)	1.4153	2697.8	4.05				
DZ SO CCSDT (6)	1.4159	2690.8	3.74				
DZ SO MRCISD (6)	1.4173	2678.7	3.72	CC correlation:			
DZ SO MRCCSD (6)	1.4173	2685.2	3.73				
TZ SOF MRCISD (6)	1.4145	2675.1	4.04	Rond length: <u>-0.004</u> Å			
TZ SOF MRCCSD (6)	1.4148	2675.1	4.05				
TZ SO MRCISD (6)	1.4151	2668.4	3.90	– 1			
TZ SO MRCCSD (6)	1.4154	2668.0	3.90	Frequency: $+17 \text{ cm}^{-1}$			
TZ SOF MRCISD (8)	1.4180	2641.4	3.90	-			
TZ SOF MRCCSD (8)	1.4192	2637.1	3.90	$D_e: +0.05 \text{ eV}$			
TZ SOF CCSDT (8)	1.4178	2647.3	3.96	C			
TZ SO MRCISD (8)	1.4187	2634.9	3.77				
TZ SO MRCCSD (8)	1.4193	2630.6	3.76				
TZ SOF CCSDT (18)	1.4142	2663.9	4.01				
TZ SOF CCSDT (18) $+\Delta_{SO}$	1.4143	2657.4	3.87				
Exp. (Huber, Herzberg 1979)	1.4144	2649.0	3.92	-			

Application to HBr								
Method	$ R_{e}[Å] $	$\omega_e \; [{ m cm}^{-1}]$	$D_e \; [eV]$					
DZ SOF CCSD (6)	1.4148	2705.7	4.19	-				
DZ SOF MRCISD (6)	1.4164	2693.7	3.86					
DZ SOF MRCCSD (6)	1.4162	2691.1	3.88					
DZ SO CCSD (6)	1.4153	2697.8	4.05					
DZ SO CCSDT (6)	1.4159	2690.8	3.74	$CC \operatorname{corr.} + \operatorname{spin-orbit} \operatorname{shift}$.				
DZ SO MRCISD (6)	1.4173	2678.7	3.72					
DZ SO MRCCSD (6)	1.4173	2685.2	3.73	Deviation from exp.:				
TZ SOF MRCISD (6)	1.4145	2675.1	4.04					
TZ SOF MRCCSD (6)	1.4148	2675.1	4.05	Rond longth: 0,0001 Å				
TZ SO MRCISD (6)	1.4151	2668.4	3.90	Donu length. -0.0001 A				
TZ SO MRCCSD (6)	1.4154	2668.0	3.90	1				
TZ SOF MRCISD (8)	1.4180	2641.4	3.90	Frequency: $+8.4 \text{ cm}^{-1}$				
TZ SOF MRCCSD (8)	1.4192	2637.1	3.90					
TZ SOF CCSDT (8)	1.4178	2647.3	3.96	$D_{\rm e}: -0.05 \text{ eV}$				
TZ SO MRCISD (8)	1.4187	2634.9	3.77					
TZ SO MRCCSD (8)	1.4193	2630.6	3.76					
TZ SOF CCSDT (18)	1.4142	2663.9	4.01					
TZ SOF CCSDT (18) $+\Delta_{SO}$	1.4143	2657.4	3.87					
Exp. (Huber, Herzberg 1979)	1.4144	$2\overline{649.0}$	3.92	-				

III. Spin-Orbit Free MRCC

Other Applications

T. Fleig, D. Edvardsson, S. T. Banks, J. H. D. Eland, Chem. Phys. xxx (2007) xxx in press.

Br₂ double photoionization; benchmarks

Method	Correlation	R_e [Å]	$\omega_e \ { m cm}^{-1}$
DZ SO MRCI	$CV\ 4s\ CAS$	2.353	282.7
TZ SOF MRCI	$CV\;4s\;CAS$	2.315	308.0
TZ SO MRCI	$CV\;4s\;CAS$	2.318	306.3
TZ SOF MRCI	$CV\; 3d, 4s\; CAS$	2.307	311.4
TZ SOF MRCC	$CV\; 3d, 4s\; CAS$	2.305	315.8
TZ SOF MRCC	$CC \ 3d, 4s \ CAS$	2.306	312.7
ANO-RCC SOF MRCC	$CV\ 3d, 4s\ CAS$	2.286	326.8
Exp.		2.281	325.3

CsLi molecule; complete PECs including T

see Poster Lasse K. Sørensen

IV. Initial Application

Ground state of UH Molecule

K. Balasubramanian, W. J. Siekhaus, W. McLean II, J. Chem. Phys. 119,12 (2003) 5889

IV. SO CI application to UH

Valence Kramers pairs

7s, 5f, 6d U shells close in energy

Averaging in full valence space

Many unpaired electrons (3,5 ?)

Lower state manifold: $7s^1$, $5f^3$, $6d^1$

SOC lifts λs picture

IV. SO CI Application to UH

Vertical electronic spectrum

Commutator-Based CC Vector Function

J. Olsen, *unpublished*.

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] + \frac{1}{6} \left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right] + \frac{1}{24} \left[\left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right] \right\rangle \right| \operatorname{Ref} \right\rangle$

 \circlearrowright Loop over excitation class of \hat{H}

 \circlearrowright Loop over commutator type, e.g. $\left[\begin{bmatrix} \hat{H}, \hat{T} \end{bmatrix}, \hat{T} \end{bmatrix}, \hat{T} \right]$

 \circlearrowright Loop over excitation types \hat{T}_i of occurring \hat{T} operators

! Check for coupling with $\langle \mu |$

Yes? Contract with integrals

- Modular form: Replaces CI-driven vector function
- Relativistic generalization: Modify \hat{H} excitation classes, \hat{T}_i excitation types
- Introduce real/imaginary handling

Kramers-Restricted Formulation

- General open-shell case: $\begin{bmatrix} \hat{K}, \hat{T} \end{bmatrix} \neq 0$
- Condition on amplitudes from unlinked amplitude equation $\left\langle \mu \left| \hat{K} e^{\hat{T}} \right| \mathrm{HF} \right\rangle = \left\langle \mu \left| e^{\hat{T}} \right| \overline{\mathrm{HF}} \right\rangle \Rightarrow \left\langle \mu \left| \left[\hat{K}, e^{\hat{T}} \right] \right| \mathrm{HF} \right\rangle = 0$
- Evaluation delivers amplitude conditions

$$t_{i}^{a} = t_{\overline{i}}^{\overline{a}*} \qquad t_{i}^{\overline{a}} = -t_{\overline{i}}^{a*}$$

$$t_{ij}^{ab} = t_{\overline{ij}}^{\overline{ab}*} \qquad t_{\overline{ij}}^{ab} = -t_{\overline{ij}}^{\overline{ab}*} \qquad \dots$$

$$t_{ijk}^{abc} = t_{\overline{ijk}}^{\overline{abc}*} \qquad \dots$$

$$\dots$$

Even number of bars: Kramers barring, + sign

Odd number of bars: Kramers barring, – sign

- \Rightarrow Removal of Kramers contamination (analogy: spin contamination)
- \Rightarrow Reduction of free parameters (analogy: spin restriction¹⁵)

¹⁵P G Szalay and J Gauss, J Chem Phys **107** (1997) 9028

Kramers-Adapted Formulation

- Use of generalized \hat{E} operators from non-relativistic theory
 - $$\begin{split} \hat{E}_{pq}^{+} &:= p^{\dagger}q + \overline{p}^{\dagger}\overline{q} & \hat{E}_{pq}^{-} &:= i\left(p^{\dagger}q \overline{p}^{\dagger}\overline{q}\right) \\ \hat{E}_{\overline{p}q}^{+} &:= \overline{p}^{\dagger}q p^{\dagger}\overline{q} & \hat{E}_{\overline{p}q}^{-} &:= i\left(\overline{p}^{\dagger}q + p^{\dagger}\overline{q}\right) \\ \hat{E}_{p\overline{q}}^{+} &:= p^{\dagger}\overline{q} \overline{p}^{\dagger}q & \hat{E}_{p\overline{q}}^{-} &:= i\left(p^{\dagger}\overline{q} + \overline{p}^{\dagger}q\right) \\ \end{split}$$
 which fulfill $\left[\hat{K}, \hat{E}^{\pm}\right] = 0$
- One-particle operator now splits into

$$\operatorname{Re}(\hat{W}) = \sum_{pq} \operatorname{Re}(W_{pq})\hat{E}_{pq}^{+} + \operatorname{Re}(W_{\overline{p}q})\hat{E}_{\overline{p}q}^{+}$$
$$\operatorname{Im}(\hat{W}) = -i\sum_{pq} \operatorname{Im}(W_{pq})\hat{E}_{pq}^{-} + \operatorname{Im}(W_{\overline{p}q})\hat{E}_{\overline{p}q}^{-}$$

• Express \hat{T}, \hat{H} in terms of \hat{E}^{\pm} operators:

$$\hat{T}_1 = \sum_{ia} \left\{ \operatorname{Re}(t_i^a) \hat{E}_{ai}^+ + \operatorname{Re}(t_i^{\overline{a}}) \hat{E}_{\overline{a}i}^+ - \imath \operatorname{Im}(t_i^a) \hat{E}_{ai}^- - \imath \operatorname{Im}(t_i^{\overline{a}}) \hat{E}_{\overline{a}i}^- \right\}$$

Kramers-Adapted Formulation

- $\hat{T}_2 = T_2(\hat{e}^{++}, \hat{e}^{+-}, \hat{e}^{--})$ etc.
- $\hat{H} = \hat{H}\left(\hat{E}^{\pm}, \hat{e}^{++}, \hat{e}^{+-}, \hat{e}^{--}\right)$
- $\left[\hat{T}_{\mu},\hat{T}_{\nu}\right]$ no longer commuting !
- $\Rightarrow \Omega_{\mu} = \left\langle \mu \left| e^{\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$ truncates only after 8th-order commutator (CCSD) 10th-order commutator (CCSDT)

Feasible implementation of Kramers symmetry

General contraction codes¹⁶

- Non-commuting model theories
- Truncation of higher-order commutators
- Internal contraction for reduction

¹⁶J. Olsen, unpublished.

Thanks for your attention!

Deutsche Forschungsgemeinschaft (German Research Foundation) FL 356/1 FL 356/2-1 FL 356/2-2 (SPP 1145) FL 356/3-1

IV. Rel. SIGMA/DENSITY Algorithm

I. Specific Motivation

Multi-Reference Problem

Uranium dimer:¹⁷

- Electronic ground state: $|\text{MR}\rangle = \sum_{k=1}^{n} c_k |D_k\rangle \neq |\text{HF}\rangle$
- Bond-breaking (dissociation)

i

Several leading configurations

- $$\begin{split} \Psi &= 0.782 (7 s \sigma_g)^2 (6 d \pi_u)^4 (6 d \sigma_g)^1 (6 d \delta_g)^1 (5 f \delta_g)^1 (5 f \pi_u)^1 (5 f \varphi_u)^1 (5 f \varphi_g)^1 \\ &+ 0.596 (7 s \sigma_g)^2 (6 d \pi_u)^4 (6 d \sigma_g)^1 (6 d \delta_g)^1 (5 f \delta_u)^1 (5 f \pi_g)^1 (5 f \varphi_u)^1 (5 f \varphi_g)^1 \\ &+ \text{small terms} \end{split}$$
- Requirement: Multi-reference Coupled Cluster approaches

¹⁷L. Gagliardi, B. O. Roos, Nature **433** (2005) 848