Recent Progress on Relativistic General Excitation Rank Electron Correlation Methods

Timo Fleig

Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III

France

December 2, 2011

Laboratoire de Chimie et Physique Quantiques

Science with small heavy-element molecules

Ultracold molecular investigations¹ Photoassociation via excited states

Astrophysics²

Collision processes in stellar atmospheres

Actinide theoretical spectroscopy³

Electronic structure in general

Fundamental physics⁴

Search for the electron electric dipole moment

The electronic-structure problem for a general diatomic molecule remains unsolved.

¹J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur Phys J D **31** (2004) 149

²M. Asplund, N. Grevesse, A.J. Sauval, and P. Scott, Annu Rev Astron Astrophys **47** (2009) 481

³B.O. Roos, P.-Aa. Malmqvist, and L. Gagliardi, J Am Chem Soc 128 (2006) 17000

⁴A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, and E.A. Cornell, *arXiv:1008.2997v2* [physics.atom-ph] (2010)

1) State-of-the-art applications with established methods

2) Some **recent developments**: Generalized Active Space Coupled Cluster

Principal Approaches for Molecules

Four-Component Electronic-Structure Theory

The "empty-Dirac" picture

- Occupied positive-energy bound-state spinors Fermi vacuum state $|0\rangle$
- **Empty** continuum of negative-energy states
- Expectation value of parameterized state vector $\langle Ref|\hat{H}|Ref \rangle = \langle 0|e^{-\hat{\kappa}}\hat{H}e^{\hat{\kappa}}|0 \rangle$
- Approximation of general expectation value to first order: $\left\langle 0|e^{-\hat{\kappa}}\hat{H}^{DC}e^{\hat{\kappa}}|0\right\rangle \approx \left\langle 0|\left[\hat{H}^{DC},\hat{\kappa}\right]|0\right\rangle = \sum_{pq}\kappa_{pq}\left[\left\langle 0|\hat{H}^{DC}a_{p}^{\dagger}a_{q}|0\right\rangle - \left\langle 0|\hat{H}^{DC}a_{q}^{\dagger}a_{p}|0\right\rangle^{*}\right]$
- Parameterized Dirac-spinor transformations: $\hat{\kappa} = \sum_{pq} \left[\kappa_{p+q} + a^{\dagger}_{p+} a_{q+} + \kappa_{p+q} - a^{\dagger}_{p+} a_{q-} + \kappa_{p-q} + a^{\dagger}_{p-} a_{q+} + \kappa_{p-q-} a^{\dagger}_{p-} a_{q-} \right]$
- Green terms: minimization of energy w.r.t. rotations
- Red terms: maximization of energy w.r.t. rotations
 ⇒ minimax variation

Spinors and Strings

General principles of rigorous relativistic correlation methods

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{i}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e_y}\right)} \hat{K}_0 = -i\Sigma_y \hat{K}_0$

Double group symmetry and quaternion algebra

Spinor basis:

 $\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

Spinorbitals	General spinors
$\hat{K}\varphi_i\alpha=\varphi_i^*\beta$	$\hat{K}\phi_i = \phi_{\overline{i}}$
$\hat{K}\varphi_i^*\beta = -\varphi_i\alpha$	$\hat{K}\phi_{\overline{i}} = -\phi_i$

 \otimes x: vertex weight y: arc weight

Parameterization of the Wavefunction

Generalized Active Spaces

Methods in comparison

Chalcogen homonuclear and heteronuclear diatomics⁵

Vertical excitation energies among π^{*2} state manifold $\Lambda S \ States \ ^{3}\Sigma^{-}, \ ^{1}\Delta, \ ^{1}\Sigma^{+} \longrightarrow 0^{+}, \ 1, \ 2, \ 0^{+}, \ (\Omega)$

Splitting of 0^+ , 1 is a second-order spin-orbit effect Purely molecular spin-orbit splitting

Contenders: "Additive"⁶: *SO-DDCI3*, *SO-CASPT2* "Non-additive"⁷: *4c-IH-FSCC*, *4c-GASCI*

⁵J.-B. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue, F. Neese, H. Bolvin J Chem Phys 135 (2011) 114106

⁶F. Neese, J Chem Phys **119** (2003) 9428

P.-Aa. Malmqvist, B.O. Roos, B. Schimmelpfennig, Chem Phys Lett 357 (2002) 357

⁷L. Visscher, E. Eliav, U. Kaldor, *J Chem Phys* **115** (2001) *9720*

S. Knecht, H.J.Aa. Jensen, T. Fleig, J Chem Phys 132 (2010) 014108

Additive and non-additive methods in comparison

RAMET-II, Puri, India, 1 December 2011

Additive and non-additive methods in comparison

Comparison of Methods

Vertical electronic spectrum of I_3 ; Ω states⁸

- 2c-GASCI and SO-CASPT2 corrected for non-parallelity
- IH-FSCC shows smallest errors (also in closed-shell I_3^- system)
- Errors of 2c-GASCI < 0.05 eV

⁸A.S.P. Gomes, L. Visscher, H. Bolvin, T. Saue, S. Knecht, T. Fleig, E. Eliav, J Chem Phys **133** (2010) 064305

Methods in comparison

Conclusions in the light of evidence

Non-additive, spinor-based methods largely superior for excitation energies

4c-GASCI allows for balanced treatment of ground and excited states

CI not size extensive

Cl inefficient in treating higher excitations

Goal: More efficient spinor-based size-extensive electron correlation methods

Relativistic Generalized-Active-Space CC

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys 134 (2011) 214102
T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc 118,2 (2007) 347
J. Olsen, J Chem Phys 113 (2000) 7140

- "State-Selective" (SS) GAS-CC Generalized "Oliphant/Adamowicz" Ansatz⁹
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \Psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains GAS-selected higher excitations $|\psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\overline{a}} \hat{\tau}_{\bar{i}}^{\overline{a}} + t_{\bar{i}}^{\overline{a}} \hat{\tau}_{\bar{i}}^{\overline{a}} + t_{\bar{i}}^{\overline{a}} \hat{\tau}_{\bar{i}}^{\overline{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

⁹N. Oliphant, L. Adamowicz J Chem Phys **94** (1991) 1229

Relativistic Generalized-Active-Space CC

Electronic Ground States¹⁰

CC vector function

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \frac{1}{6} \left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right. \dots \right) \right| \operatorname{Ref} \right\rangle$

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\begin{bmatrix} \hat{H}, \hat{T} \end{bmatrix}, \hat{T} \end{bmatrix}, \hat{T} \right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t_{i'j'}^{a'b'} t_{i"j'}^{a"b"} a_a^{\dagger} a_b^{\dagger} a_c a_d^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger}$$

¹⁰L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102
L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem **224** (2010) 999

Relativistic Generalized-Active-Space CC¹¹

Excitation Energies¹²

$$J_{\mu}^{CC} = \sum_{\nu} \left\langle \mu_{\text{GAS}} | e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} | \psi^{\text{Ref}} \right\rangle x_{\nu}$$

1. $|a\rangle = e^{\hat{T}_{\text{GAS}}} |\psi^{\text{Ref}}\rangle = \left(\sum_{k=0}^{\infty} \frac{1}{k!} \hat{T}_{\text{GAS}}^{k}\right) |\psi^{\text{Ref}}\rangle$

 $\hat{T}_{\text{GAS}} \ket{\psi^{\text{Ref}}}$ corresponds to calculating a sigma vector with amplitudes.

2.
$$|b\rangle = \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}}\right] |a\rangle = \left(\hat{H}\hat{\tau}_{\nu_{\text{GAS}}} - \hat{\tau}_{\nu_{\text{GAS}}}\hat{H}\right) |a\rangle$$
 (CI sigma vectors)

3.
$$|c\rangle = e^{-\hat{T}_{\text{GAS}}} |b\rangle = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \hat{T}_{\text{GAS}}^k\right) |b\rangle$$

4.
$$\Omega_{\mu_{\text{GAS}}} = \langle \mu_{\text{GAS}} | c \rangle = \langle \psi^{\text{Ref}} \left| \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}} \right| c \rangle$$

(CI transition density matrices)

Computational scaling:

Cl-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}

¹¹M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **XXX** (2011) to be submitted.

¹²K Hald, P Jørgensen, J Olsen, and M Jaszuński, J Chem Phys **115** (2001) 671

A Simple (?) Test Case: Si Atom

• Closed-shell single-reference calculations

- CISD and CCSD exhibit huge (positive) errors
- Selected higher excitations give decisive correction

Test Case: Si Atom

Analysis of Fermi vacuum determinant

• Reference determinant built from j - j-coupled Pauli spinors:

$$|j(1), m_j(1); j(2), m_j(2)| = \left|\frac{1}{2}, \frac{1}{2}; \frac{1}{2}, -\frac{1}{2}\right| = -\sqrt{\frac{2}{3}} {}^3P_0 - \frac{1}{\sqrt{3}} {}^1S_0$$

- Significant admixture from one excited state
- Reference determinant is biased and unbalanced
- Single excitations represent some excited states:

$$\left|\frac{3}{2}, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}\right| = -\frac{1}{2}{}^{3}P_{1} - \frac{1}{2}{}^{3}P_{2} + \frac{1}{\sqrt{2}}{}^{1}D_{2}$$

• Double excitations add ${}^{1}S_{0}$ character:

$$\left|\frac{3}{2}, \frac{3}{2}; \frac{3}{2}, -\frac{3}{2}\right| = \frac{1}{\sqrt{3}}{}^{3}P_{2} + \frac{1}{\sqrt{6}}{}^{1}D_{2} - \frac{1}{\sqrt{6}}{}^{3}P_{0} + \frac{1}{\sqrt{3}}{}^{1}S_{0}$$

RAMET-II, Puri, India, 1 December 2011

Test Case: Si Atom

Understanding the first-order SO splitting

- Selected higher excitations give large correction, but
- $CC(4_2)$ not sufficiently accurate

Study of a Molecular Series

The pnictogen monohydrides

AsH, SbH, BiH

- Ground-state configuration $ns^2\sigma^2\pi^2$
- ω coupling picture for heavier elements
- $\Omega = 0: \pi_{1/2}^1 \pi_{-1/2}^1$ and $\pi_{3/2}^1 \pi_{-3/2}^1$ (ground state)
- $\Omega = 1 : \pi_{3/2}^1 \pi_{-1/2}^1$ (first excited state)
- Goal: Accurate description of the $\Omega=0/\Omega=1$ splitting 13

¹³M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* XXX (2011) to be submitted.

Series AsH, SbH, BiH

The strange behavior of CCSD

• Huge errors for As homologue

Series AsH, SbH, BiH

Spinors and the molecular field

- ω coupled spinors: $\pi_{1/2}$ has σ component artificially large for lighter systems
- True ground state is a perturbed ${}^{3}\Sigma^{-}$ wavefunction (lighter homologues)
- Requires double excitation to compensate \Rightarrow Bad description at CCSD level
- CC(4₂) corrects for this deficiency

Series AsH, SbH, BiH

When is CC superior to GAS-CI?

• CC 4_3 calculations consistently better than CAS-CISD

Convergence of GAS-CC models

AsH, SbH, BiH

- 4c-GASCI reliable method for excited-state calculations
- 4c-GASCI only practical as MR-SD model for demanding cases
- Higher accuracy through 4c-GASCC as (n_2) models in some cases
- $CC(n_3)$ is too expensive in general
- Simple closed-shell reference state not desirable in general
- Fermi-vacuum dependance is major obstacle in excited-state calculations

Ongoing Work

- Commutator-based GER CC Jacobian, non-relativistic version (with Mickael Hubert and Jeppe Olsen)
- Commutator-based GER CC Jacobian, relativistic version (with Mickael Hubert and Lasse Sørensen)
- 4-component Gaunt / Breit operator in correlated approaches (with Jessica Loras)

Acknowledgement/Collaboration

Mickael Hubert

Toulouse, France

Lasse K. Sørensen

Århus, Denmark

Stefan Knecht

Odense, Denmark

Jeppe Olsen

Århus, Denmark

Hans Jørgen Aa. Jensen

Odense, Denmark

Hélène Bolvin

Toulouse, France

Trond Saue

Toulouse, France

RAMET-II, Puri, India, 1 December 2011

DIRAC a European metalaboratory for the development of relativistic 4- and 2-

component quantum-physical and -chemical methodology

• KR-CI.

Kramers-Restricted GAS Configuration Interaction Program (released in DIRAC10/DIRAC11) Authors: S Knecht, T Fleig, J Olsen, HJAa Jensen

• KR-CC.

Kramers-Restricted GAS Coupled Cluster Program (not yet released) Authors: LK Sørensen, J Olsen, M. Hubert, T Fleig

The CI-Based CC Jacobian

Scaling Properties

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- $e^{-\hat{T}}$ increases excitation rank (just as $e^{\hat{T}}$) !
- $\Rightarrow \hat{H}e^{\hat{T}} \ket{\text{Ref}}$ required to be **inside** space of excitation manifold $\langle \mu |$
- \hat{H} may have de-excitation rank of 2
- Therefore: $\hat{H}e^{\hat{T}}|\text{Ref}\rangle$ CI problem with extended space!
- \Rightarrow e.g. CCSD requires a CISDTQ linear transformation.
- CI-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}
- Cl-based implementation, considering GAS: $O^{m+2}V^{m+2}o^{n-m}v^{n-m}$ Conventional CC, considering GAS: $O^mV^{m+2}o^{n-m}v^{n-m}$

I_3^- Molecular Ion

Different Methods in Comparison

