Recent Progress on the Development of Relativistic Four-Component Electron Correlation Methods and their Applications in Spectroscopy and Fundamental Physics

Timo Fleig

Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III France

September 13, 2012

Motivation

Science with small heavy-element molecules

Ultracold molecular investigations¹ Photoassociation via excited states Astrophysics² Collision processes in stellar atmospheres

Actinide/transition-metal theoretical spectroscopy³ Electronic structure in general

Fundamental physics⁴

Search for the electron Electric Dipole Moment (eEDM)

¹J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur Phys J D **31** (2004) 149

²M. Asplund, N. Grevesse, A.J. Sauval, and P. Scott, Annu Rev Astron Astrophys **47** (2009) 481

³B.O. Roos, P.-Aa. Malmqvist, and L. Gagliardi, J Am Chem Soc 128 (2006) 17000

⁴A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, and E.A. Cornell, *arXiv:1008.2997v2* [physics.atom-ph] (2010)

1) Spinor-string based GAS Coupled Cluster

2) Spinor-string based GAS Configuration Interaction

Spinors and Strings

General principles of rigorous relativistic correlation methods

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{i}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e_y}\right)} \hat{K}_0 = -i\Sigma_y \hat{K}_0$

Double group symmetry and quaternion algebra

Spinor basis:

 $\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

Spinorbitals	General spinors
$\hat{K}\varphi_i\alpha=\varphi_i^*\beta$	$\hat{K}\phi_i = \phi_{\overline{i}}$
$\hat{K}\varphi_i^*\beta = -\varphi_i\alpha$	$\hat{K}\phi_{\overline{i}} = -\phi_i$

 \otimes x: vertex weight y: arc weight

Parameterization of the Wavefunction

Generalized Active Spaces

Relativistic Generalized-Active-Space CC

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys 134 (2011) 214102
T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc 118,2 (2007) 347
J. Olsen, J Chem Phys 113 (2000) 7140

- "State-Selective" (SS) GAS-CC
 Generalized "Oliphant/Adamowicz" Ansatz⁵
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains GAS-selected higher excitations $|\psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

^bN. Oliphant, L. Adamowicz J Chem Phys **94** (1991) 1229

Relativistic Generalized-Active-Space CC

Electronic Ground States ⁶

CC vector function

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \frac{1}{6} \left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right. \dots \right) \right| \operatorname{Ref} \right\rangle$

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\begin{bmatrix} \hat{H}, \hat{T} \end{bmatrix}, \hat{T} \end{bmatrix}, \hat{T} \right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

⁶L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102
L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem **224** (2010) 999

Relativistic Generalized-Active-Space CC⁷

Excitation Energies⁸

$$J_{\mu}^{CC} = \sum_{\nu} \left\langle \mu_{\text{GAS}} | e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} | \psi^{\text{Ref}} \right\rangle x_{\nu}$$

1. $|a\rangle = e^{\hat{T}_{\text{GAS}}} |\psi^{\text{Ref}}\rangle = \left(\sum_{k=0}^{\infty} \frac{1}{k!} \hat{T}_{\text{GAS}}^{k}\right) |\psi^{\text{Ref}}\rangle$

 $\hat{T}_{\text{GAS}} \ket{\psi^{\text{Ref}}}$ corresponds to calculating a sigma vector with amplitudes.

2.
$$|b\rangle = \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}}\right]|a\rangle = \left(\hat{H}\hat{\tau}_{\nu_{\text{GAS}}} - \hat{\tau}_{\nu_{\text{GAS}}}\hat{H}\right)|a\rangle$$
 (CI sigma vectors)

3.
$$|c\rangle = e^{-\hat{T}_{\text{GAS}}} |b\rangle = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \hat{T}_{\text{GAS}}^k\right) |b\rangle$$

4.
$$\Omega_{\mu_{\text{GAS}}} = \langle \mu_{\text{GAS}} | c \rangle = \langle \psi^{\text{Ref}} \left| \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}} \right| c \rangle$$

(CI transition density matrices)

Computational scaling:

Cl-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}

⁷M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

⁸K. Hald, P. Jørgensen, J. Olsen, and M. Jaszuński, J Chem Phys **115** (2001) 671

Series AsH, SbH, BiH

When is CC superior to GAS-CI?

• CC4₃ calculations consistently better than CAS-CISD⁹

⁹M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

DIRAC a European metalaboratory for the development of relativistic 4- and 2-

component quantum-physical and -chemical methodology

• KR-CI.

Kramers-Restricted GAS Configuration Interaction Program (released in DIRAC10/DIRAC11) Authors: S Knecht, T Fleig, J Olsen, HJAa Jensen

• KR-CC.

Kramers-Restricted GAS Coupled Cluster Program (not yet released)

Authors: LK Sørensen, J Olsen, M Hubert, T Fleig

A Recent Development

The Electron Electric Dipole Moment

REHE 2012, Corrientes, Argentina, September 13, 2012

Testing fundamental physics:

Current predictions for the eEDM¹⁰

¹⁰A.V. Titov, N.S. Mosyagin, A.N. Petrov, T.A. Isaev, D.P. DeMille, *Recent Advances in the Theory of Chemical and Physical Systems* (2006) *253-283*; courtesy: Huliyar (2009), DeMille (2005)

¹¹B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* **88** (2002) *071805/1*

¹²J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

Testing fundamental physics:

Implications of an *e*EDM \vec{D}

 \vec{D} aligned with \vec{J} due to projection theorem: $\left\langle \alpha', JM_J \left| \hat{V}_q \right| \alpha', JM_J \right\rangle = \frac{\left\langle \alpha', JM_J \right| \hat{J} \cdot \hat{\vec{V}} \left| \alpha', JM_J \right\rangle}{\hbar^2 J^2 (J+1)} \left\langle JM_J \left| \hat{J}_q \right| JM_J \right\rangle$

Implies combined violation of $Parity(\mathcal{P})$ and $Time-Reversal(\mathcal{T})$ symmetries¹³

The \mathcal{CPT} theorem remains valid

¹³E.D. Commins, Adv At Mol Opt Phys **40** (1998) 1

Essentials of the formalism

The pseudo-scalar \mathcal{PT} -odd eEDM Hamiltonian:

- Point of departure: Salpeter's¹⁴ modified Dirac equation: $\left[\left(p_{\mu} + \frac{e}{c}A_{\mu}\right)\gamma_{\mu} - \imath m_{0}c\right]\psi(\vec{r}) = \zeta\left(\frac{\imath e\hbar}{4m_{0}c^{2}}\right)\gamma^{5}\gamma_{\mu}\gamma_{\nu}F^{\mu\nu}\psi(\vec{r})$
- from which the eEDM operator can we written as an expectation value: $\left\langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \right\rangle_{\psi_H} = \frac{2 \iota c d_e}{e \hbar} \left\langle \gamma^0 \gamma^5 \vec{p}^{\,2} \right\rangle_{\psi_H}$
- Requires kinetic-energy integrals of the type: $\langle \psi^L | \vec{p}^2 | \psi^S \rangle$
- and therefore explicitly the Small-component wave functions.
- Implementation as 4c-Cl expectation values¹⁵.

¹⁴E. Salpeter, *Phys Rev* **112** (1958) *1642*

 $^{^{15}}$ T Fleig and M K Nayak, in preparation.

Some candidate molecules

- ThF⁺, HfF⁺ (Experiment¹⁶, Cornell group)
- WC (Experiment, Leanhart group, Michigan)
- ThO (DeMille group; Theory¹⁷, Meyer et al.)
- IH⁺ (Theory, Titov et al.¹⁸)

¹⁶A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc 270 (2011) 1 ¹⁷J. Paulovič, T. Nakajima, K. Hirao, R. Lindh, P.-Å. Malmqvist, J Chem Phys **119** (2003) 798

¹⁸T.A. Isaev, A.N. Petrov, N.S. Mosyagin, A.V. Titov, *Phys Rev Lett* **95** (2005) *163004*

IH⁺ as a candidate system

Correlation dependence of \mathcal{P}, \mathcal{T} -odd interaction constant W_d

Correlation dependence of \mathcal{P}, \mathcal{T} -odd interaction constant W_d

Results for W $_d$ in comparison¹⁹

E_{eff}	$W_d \; [10^{24} \frac{\text{Hz}}{\text{e} \cdot \text{cm}}]$		
Correlation model	Present work	Titov et al.	
0 e^- (HF)	0.007	0.010	
$7 e^-$	0.257	0.336	
7 e^- (+Triples)	0.251		
17 e^- (CV)	0.249		
17 e^- (CV,CC)	0.259		
25 e^- (CV)	0.259		
25 e^- (CV,CC)	0.265	0.336	

Theory differences:

- (+) Larger basis set
- (+) No effective core potentials
- (+) More rigorous electronic-structure model
- (-) No spin-other-orbit terms in Hamiltonian

- Valence electron correlation affects E_{eff} strongly.
- Outer-core correlations (CV or CC) have very small effect.
- Valence triple excitations lead to decrease of $\approx -2.3\%$.
- Present E_{eff} consistently smaller than reference values by Titov et al.

¹⁹T.A. Isaev, A.N. Petrov, N.S. Mosyagin, and A.V. Titov, *Phys Rev Lett* **95** (2005) *163004*

 $^{3}\Delta$ molecules

- Heavy nucleus (relativistic effect)
- One "science" electron (σ^1) , one "spectroscopy" electron (δ^1)
- Large E_{eff} for σ^1 electron

- Deeply bound molecule (fluorides)
- Small Λ -doublet splitting (experimental, technical reasons)
- Large rotational constant (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)
- $\bullet \; \Rightarrow \; \mbox{Low-lying} \; {}^3\!\Delta_1 \; \mbox{as "science" state}$

A Proposed Measurement²⁰ on HfF⁺

²⁰A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc **270** (2011) 1

HfF⁺ potential curves in RASCI approximation

REHE 2012, Corrientes, Argentina, September 13, 2012

HfF⁺ potential curves in RASCISD approximation

REHE 2012, Corrientes, Argentina, September 13, 2012

HfF⁺ spectroscopy; excitation energy and basis set

HfF⁺ spectroscopy; excitation energy and correlation model

	R_e [a.u.]		$T_e^{0-1} [cm^{-1}]$
Model	$\Omega = 0$	$\Omega = 1$	
SD4_CAS4in7	3.390	3.462	-3056
SD4_CAS4in7_SD8	3.554	3.597	-1176
SD8_CAS2in6	3.402	3.436	-1545
SD8_CAS2in6_SD10	3.505	3.556	-63
SD18_CAS2in6_SD20			
Titov: 20 e ^{$-$} corr. ²¹	3.366	3.413	1633
Experiment ²²			993

Correlation of Hf 5s, 5p shells plays an important role.

²¹A.N. Petrov, N.S. Mosyagin, A.V. Titov, *Phys Rev A* **79** (2009) *012505*

²²B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺: $E_{\rm eff}$ in the $\Omega = 1$ science state

Model	$E_{\text{eff}} \left[\frac{\text{GV}}{\text{cm}} \right]$
SD8_CAS2in6	24.77
SD8_CAS2in6_SD10	23.26
SDT8_CAS2in6_SD10	23.18
S18_CAS2in6_SD20	23.31
Titov: 20 e ⁻ corr. ²³	36.28
Estimate, Meyer et al. ²⁴	≈ 30

Theory differences:

- (+) No effective core potentials
- (+) More rigorous electronic-structure model
- (-) No spin-other-orbit terms in Hamiltonian

²³A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

²⁴E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

Ongoing Work

- Commutator-based GER CC Jacobian, non-relativistic version (with Mickael Hubert and Jeppe Olsen) Application to ScH → Poster!
- Commutator-based GER CC Jacobian, relativistic version (with Mickael Hubert and Lasse Sørensen)
- Electron EDM constants in other diatomic molecules (with Malaya K. Nayak)

Ongoing Work

 4-component Gaunt / Breit operator in correlated approaches (with Jessica Loras → Poster!)

Decoupling correlation and 2-electron spin-orbit terms ?

Acknowledgement/Collaboration

Malaya K. Nayak

Bhabha Research Institute, India

Stefan Knecht

Odense, Denmark

Mickael Hubert

LCPQ, Toulouse, France

Jessica Loras

LCPQ, Toulouse, France

Lasse K. Sørensen

Århus, Denmark

Jeppe Olsen

Århus, Denmark

Hans Jørgen Aa. Jensen

Odense, Denmark

The CI-Based CC Jacobian

Scaling Properties

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- $e^{-\hat{T}}$ increases excitation rank (just as $e^{\hat{T}}$) !
- $\Rightarrow \hat{H}e^{\hat{T}} \ket{\text{Ref}}$ required to be **inside** space of excitation manifold $\langle \mu |$
- \hat{H} may have de-excitation rank of 2
- Therefore: $\hat{H}e^{\hat{T}} |\text{Ref}\rangle$ CI problem with extended space!
- \Rightarrow e.g. CCSD requires a CISDTQ linear transformation.
- CI-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}
- Cl-based implementation, considering GAS: $O^{m+2}V^{m+2}o^{n-m}v^{n-m}$ Conventional CC, considering GAS: $O^mV^{m+2}o^{n-m}v^{n-m}$