Linear-Response Relativistic Coupled Cluster: A Jacobian for General-Order Energy Calculations

Lasse K. Sørensen, Jeppe Olsen, Mickael Hubert, Timo Fleig

September 28, 2010

Motivation

In general:

Rigorous and efficient relativistic correlation methods *Goal: Accurate electronic structure of small systems*

Many-body method:

Relativistic Configuration Interaction approaches

Easy to implement, widely applicable MR CI straightforward to obtain Slow convergence with excitation level

Relativistic Coupled Cluster approaches

Harder to devise, more difficult to apply MR CC not straightforward to obtain Faster convergence with excitation level

Rigorous Relativistic Many-Body Approaches¹

Relativistic GAS-CI²

GAS Ansatz, 4- or 2-spinors $\left|\Psi^{\text{GASCI}}
ight
angle = \hat{T}_{ ext{GAS}}^{ ext{rel}} \left|\Psi^{ ext{Ref}}
ight
angle$

 $\hat{T}_{\text{GAS}}^{\text{rel}}$ General excitation level in Kramers-paired spinors

Relativistic GAS Coupled Cluster³

Generalized-Active-Space Ansatz

 $\begin{aligned} \left| \Psi^{\text{GASCC}} \right\rangle &= e^{\hat{T}_{\text{GAS}}^{\text{rel}}} \left| \Psi^{\text{Ref}} \right\rangle \\ &= exp(\sum t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) \left| \Psi^{\text{Ref}} \right\rangle \end{aligned}$

Hamiltonians based on Dirac theory

4- and 2-component operators, e.g.

 $\hat{H}^{\rm rel} = \hat{H}^{\rm Dirac} + \hat{H}^{\rm Coulomb}$

 ¹T. Fleig, "Relativistic String-Based Electron Correlation Methods" (2010) in "Challenges and Advances in Computational Chemistry and Physics, Vol. 10", Eds. Barysz, Ishikawa
 ²S. Knecht, H.J.Aa. Jensen, T. Fleig, J Chem Phys 132 (2010) 014108

³L.K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem **224** (2010) 999

Spinors and Strings

```
How do we parameterize \hat{T}_{\mathrm{GAS}}^{\mathrm{rel}}?
```

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{i}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e}_y\right)} \hat{K}_0 = -i\Sigma_y \hat{K}_0$ $\begin{array}{cc} \mbox{Spinorbitals} & \mbox{General spinors} \\ \hline \hat{K}\varphi_i\,\alpha = \varphi_i^*\,\beta & \hat{K}\phi_i = \phi_{\overline{i}} \\ \hat{K}\varphi_i^*\,\beta = -\varphi_i\,\alpha & \hat{K}\phi_{\overline{i}} = -\phi_i \end{array}$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{m}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

 \otimes x: vertex weight y: arc weight

Relativistic CI and CC

How do we parameterize $\hat{T}_{\text{GAS}}^{\text{rel}}$?

Relativistic Correlation Methods

Generalized Active Space Coupled Cluster

J. Olsen, J Chem Phys **113** (2000) 7140 T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc **118,2** (2007) 347

L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999

- "State-Selective" (SS) GAS-CC Simulation (SR-MRCC) of true multi-reference CC
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \Psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GASSCC}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains "internal" higher excitations $|\Psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\Psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

Excited States in Coupled Cluster Theory

The CC Jacobian

• CI Theory : $\left|\psi^{\mathrm{CI}}
ight
angle=\hat{\mathrm{T}}\left|\psi^{\mathrm{Ref}}
ight
angle$

CI Schrödinger equation for ground state : $\hat{H} |\psi^{CI}\rangle = \hat{H}\hat{T} |\psi^{Ref}\rangle = E_0\hat{T} |\psi^{Ref}\rangle$ $(\hat{H} - E_0)\hat{T} |\psi^{Ref}\rangle = 0$ CI coefficient equations : $\Omega^{CI}_{\mu} = \langle \psi_{\mu} | (\hat{H} - E_0)\hat{T} |\psi^{Ref}\rangle$ CI Jacobian: $\frac{\partial}{\partial c_{\nu}}\Omega^{CI}_{\mu} = \langle \psi_{\mu} | (\hat{H} - E_0)\hat{\tau}_{\nu} |\psi^{Ref}\rangle = \langle \psi_{\mu} | \hat{H} |\psi_{\nu}\rangle - E_0\delta_{\mu\nu}$ Diagonalisation yields CI excitation energies

• CC theory : $|\psi^{CC}\rangle = e^{\hat{T}} |\psi^{Ref}\rangle$ CC amplitude equations : $\Omega^{CC}_{\mu} = \langle \psi_{\mu} | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \psi^{Ref} \rangle$ CC Jacobian: $\frac{\partial}{\partial t_{\nu}} \Omega^{CC}_{\mu} = \langle \psi_{\mu} | e^{-\hat{T}} [\hat{H}, \hat{\tau}_{\nu}] e^{\hat{T}} | \psi^{Ref} \rangle$

Diagonalisation yields CC excitation energies

The CC Jacobian at General Excitation Level

A CI-Based Algorithm ⁴

$$A_{\mu\nu} = \frac{\partial \Omega_{\mu}}{\partial t_{\nu}} = \left\langle \mu_{\text{GAS}} | e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} | \psi^{\text{Ref}} \right\rangle$$

1.
$$|a\rangle = e^{\hat{T}_{\text{GAS}}} |\Psi^{\text{Ref}}\rangle = \left(\sum_{n=0}^{\infty} \frac{1}{n!} \hat{T}_{\text{GAS}}^{n}\right) |\Psi^{\text{Ref}}\rangle$$

The step $\hat{T}_{\text{GAS}} |\Psi^{\text{Ref}}\rangle$ corresponds to calculating a sigma vector with amplitudes.

2.
$$|b\rangle = \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}}\right] |a\rangle = \left(\hat{H}\hat{\tau}_{\nu_{\text{GAS}}} - \hat{\tau}_{\nu_{\text{GAS}}}\hat{H}\right) |a\rangle$$
 (CI sigma vectors)

3.
$$|c\rangle = e^{-\hat{T}_{\text{GAS}}} |b\rangle = \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \hat{T}_{\text{GAS}}^n\right) |b\rangle$$

4. $\Omega_{\mu_{\text{GAS}}} = \langle \mu_{\text{GAS}} | c \rangle = \langle \Psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}} | c \rangle$ (CI transition density matrices)

⁴K Hald, P Jørgensen, J Olsen, and M Jaszuński, J Chem Phys **115** (2001) 671

The CI-Based CC Jacobian

Scaling Properties

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- $e^{-\hat{T}}$ increases excitation rank (just as $e^{\hat{T}}$) !
- $\Rightarrow \hat{H}e^{\hat{T}} \ket{\text{Ref}}$ required to be **inside** space of excitation manifold $\langle \mu |$
- \hat{H} may have de-excitation rank of 2
- Therefore: $\hat{H}e^{\hat{T}}|\text{Ref}\rangle$ CI problem with extended space!
- \Rightarrow e.g. CCSD requires a CISDTQ linear transformation.
- CI-based implementation $O^{n+2}V^{n+2}$ Conventional CC: O^nV^{n+2}
- CI-based implementation, considering GAS: $O^{m+2}V^{m+2}o^{n-m}v^{n-m}$ Conventional CC, considering GAS: $O^mV^{m+2}o^{n-m}v^{n-m}$

Relativistic GAS-CC

Two routes in comparison

CI-based CC vector function

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- 1. $|a\rangle = e^{\hat{T}} |\text{Ref}\rangle = \left(\sum_{n=0} \frac{1}{n!} \hat{T}^n\right) |\text{Ref}\rangle$
- 2. $|b
 angle=\hat{H}\,|a
 angle$ (CI sigma vectors)
- 3. $|c\rangle = e^{-\hat{T}} |b\rangle = \left(\sum_{n=0} \frac{(-1)^n}{n!} \hat{T}^n\right) |b\rangle$
- 4. $\Omega_{\mu} = \langle \mu | c \rangle = \left\langle \operatorname{Ref} \left| \hat{\tau}_{\mu}^{\dagger} \right| c \right\rangle$ (CI density matrices)
- T. Fleig, L. K. Sørensen, J. Olsen, *Theo Chem Acc* **118,2**(2007) *347*

CI-based linear response (LR) function

Commutator-based CC vector function $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \dots \right) \right| \operatorname{Ref} \right\rangle$

- \circlearrowright Loop over rel. excitation class of \hat{H}
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T}\right], \hat{T}\right], \hat{T}$
 - \circlearrowright Loop over rel. excitation types \hat{T}_i of \hat{T} operators
 - ! Check for coupling with $\langle \mu |$
 - Yes? Contract with integrals
 - \swarrow End loop
- $\not _ End \ loop$
- L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999

Commutator-based LR function

 $A_{\mu\nu} = \left\langle \mu \left| e^{-\hat{T}} \left[\hat{H}, \hat{\tau}_{\nu} \right] e^{\hat{T}} \right| \operatorname{Ref} \right\rangle \qquad \left\langle \mu \left| \left(\left[\hat{H}, \hat{\tau}_{\nu} \right], \hat{T} \right] + \frac{1}{2} \left[\left[\left[\hat{H}, \hat{\tau}_{\nu} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right\rangle \right\rangle$

Properties of the implementation:

- Very general approach
- Increased "N-scaling": $O^{n+2}V^{n+2}$
- General approach, currently some limitations
- Conventional "N-scaling": $O^n V^{n+2}$

A Test Case Study on $XH, X \in \{N, P, As, Sb, Bi\}^{\text{\tiny evolution}}$

Spin-orbit splitting of $^3\Sigma^-$ ground state into $\Omega=0^+/1$

- Ground-state configuration $n\sigma^2\pi^2$
- ω - ω coupling picture for heavier elements
- $\Omega = 0: \pi_{1/2}^1 \pi_{-1/2}^1$ and $\pi_{3/2}^1 \pi_{-3/2}^1$ (ground state)
- $\Omega = 1 : \pi_{3/2}^1 \pi_{-1/2}^1$ (first excited state)

A Test Case Study on $XH, X \in \{N, P, As, Sb, Bi\}^{\text{biostorie de Chime et Physique Quantiques}}$

Spin-orbit splitting of $^3\Sigma^-$ ground state into $\Omega=0^+/1$

Technical notes

- CI-driven CC and LRCC
- Dyall TZ basis + valence correlating functions / cc-pVTZ Dunning for H
- Dirac-Coulomb Hamiltonian \hat{H}^{DC}
- closed-shell and open-shell (os) DCHF spinors, 6 active electrons correlated

Spin-orbit splitting of	$(^{3}\Sigma^{-})$	ground state	into $\Omega = 0^{-1}$	$^{+}/1$
-------------------------	--------------------	--------------	------------------------	----------

Method	$\Delta_{SO} \ [{ m cm}^{-1}]$	# CC amplitudes
CCSD-2au	-1043.7	14.415
CCSD-4au	-1069.9	30.375
CCSD-100au	-1070.6	69.360
CCSD-баи(QZ)	-1072.8	82.140
CCSD-10au(QZ)	-1072.3	132.540
$CC(4_2)$ -4au	476.0	103.855
$osCC(4_2)$ -4au	555.0	103.855
$CC(4_2)$ -6au(QZ)	434.4	284.496
$CC(4_3)$ -4au	598.9	1.640.159
$osCC(4_3)$ -4au	575.0	1.640.159
CCSDT-4au	484.7	1.205.175
CCSDTQ-4au	641.4	20.370.585
CCSDTQ5-4au	644.8	152.218.389
Exp.	654.97	

• CCSD is qualitatively wrong

- Ground state has large contribution of double excitation $\pi_{3/2}^1 \pi_{-3/2}^1$
- $\bullet\,$ Double excitation to too low order in CCSD \rightarrow failure

Spin-orbit splitting of $(^3\Sigma^-)$ ground state into $\Omega=0^+/1$

Method	$\Delta_{SO} \; [{ m cm}^{-1}]$	# CC amplitudes
CCSD-2au	-1043.7	14.415
CCSD-4au	-1069.9	30.375
CCSD-100au	-1070.6	69.360
CCSD-6au(QZ)	-1072.8	82.140
CCSD-10au(QZ)	-1072.3	132.540
$CC(4_2)$ -4au	476.0	103.855
$osCC(4_2)$ -4au	555.0	103.855
$CC(4_2)$ -6au(QZ)	434.4	284.496
$CC(4_3)$ -4au	598.9	1.640.159
$osCC(4_3)$ -4au	575.0	1.640.159
CCSDT-4au	484.7	1.205.175
CCSDTQ-4au	641.4	20.370.585
CCSDTQ5-4au	644.8	152.218.389
Exp.	654.97	

- $CC(4_2)$ corrects for the deficiency
- Active space including $\pi_{1/2}$ and $\pi_{3/2}$
- Simulation of presence of second reference function \rightarrow qual. correct

Spin-orbit splitting of $(^{3}\Sigma^{-})$ ground state into $\Omega = 0^{+}/1$

Method	$\Delta_{SO} \; [{ m cm}^{-1}]$	# CC amplitudes
CCSD-2au	-1043.7	14.415
CCSD-4au	-1069.9	30.375
CCSD-100au	-1070.6	69.360
CCSD-6au(QZ)	-1072.8	82.140
CCSD-10au(QZ)	-1072.3	132.540
$CC(4_2)$ -4au	476.0	103.855
$osCC(4_2)$ -4au	555.0	103.855
$CC(4_2)$ -6au(QZ)	434.4	284.496
$CC(4_3)$ -4au	598.9	1.640.159
$osCC(4_3)$ -4au	575.0	1.640.159
CCSDT-4au	484.7	1.205.175
CCSDTQ-4au	641.4	20.370.585
CCSDTQ5-4au	644.8	152.218.389
Exp.	654.97	

• $CC(4_2)$ on open-shell DCHF gives large improvement

- Yields more realistic reference orbitals
- Loses importance with higher external excitations

Spin-orbit splitting of $(^3\Sigma^-)$ ground state into $\Omega=0^+/1$

Method	$\Delta_{SO} \ [{ m cm}^{-1}]$	# CC amplitudes
CCSD-2au	-1043.7	14.415
CCSD-4au	-1069.9	30.375
CCSD-100au	-1070.6	69.360
CCSD-баи(QZ)	-1072.8	82.140
CCSD-10au(QZ)	-1072.3	132.540
$CC(4_2)$ -4au	476.0	103.855
$osCC(4_2)$ -4au	555.0	103.855
$CC(4_2)$ -6au(QZ)	434.4	284.496
$CC(4_3)$ -4au	598.9	1.640.159
$osCC(4_3)$ -4au	575.0	1.640.159
CCSDT-4au	484.7	1.205.175
CCSDTQ-4au	641.4	20.370.585
CCSDTQ5-4au	644.8	152.218.389
Exp.	654.97	

- Systematic improvement towards exact value
- Along series $CC(4_2)$ CCSDT $CC(4_3)$ CCSDTQ CCSDTQ5

A Test Case Study on $\rm XH, X \in \{Bi\}$

Spin-orbit splitting of $(^3\Sigma^-)$ ground state into $\Omega=0^+/1$

Method	$\Delta_{SO} \; [{ m cm}^{-1}]$	# CC amplitudes / CI coefficients
CCSD-2au	4177	14.415
CCSD-5au	4230	47.040
CCSD-20au	4241	96.000
$CC(4_2)$ -5au	4756	161.880
CCSDT-5au	4682	2.203.575
GAS-CISD ⁵	4514	1.832.846
GAS-CISDTQ ⁵	4683	305.307.941
Exp.	4917 ⁶	

• CCSD result qualitatively correct

- quasi-single reference case
- transition to strongly relativistic 6th row evident

⁵S Knecht, HJAa Jensen, T Fleig, J Chem Phys (2010) 014108

⁶Huber and Herzberg, NIST Chemistry Webbook

A Test Case Study on $XH, X \in \{Bi\}$

Spin-orbit splitting of $(^3\Sigma^-)$ ground state into $\Omega=0^+/1$

Method	$\Delta_{SO} \; [{ m cm}^{-1}]$	# CC amplitudes / CI coefficients
CCSD-2au	4177	14.415
CCSD-5au	4230	47.040
CCSD-20au	4241	96.000
$CC(4_2)$ -5au	4756	161.880
CCSDT-5au	4682	2.203.575
GAS-CISD ⁵	4514	1.832.846
$GAS-CISDTQ^5$	4683	305.307.941
Exp.	4917 ⁶	

• $CC(4_2)$ gives large correction

• Efficient handling of important higher excitations

⁵S Knecht, HJAa Jensen, T Fleig, J Chem Phys (2010) 014108

⁶Huber and Herzberg, NIST Chemistry Webbook

A Test Case Study on $XH, X \in \{Bi\}$

Spin-orbit splitting of $(^{3}\Sigma^{-})$ ground state into $\Omega = 0^{+}/1$

Method	$\Delta_{SO} \; [{ m cm}^{-1}]$	# CC amplitudes / CI coefficients
CCSD-2au	4177	14.415
CCSD-5au	4230	47.040
CCSD-20au	4241	96.000
$CC(4_2)$ -5au	4756	161.880
CCSDT-5au	4682	2.203.575
GAS-CISD ⁵	4514	1.832.846
GAS-CISDTQ ⁵	4683	305.307.941
Exp.	4917 ⁶	

• CC outperforms CI

• Remaining errors: Basis set, Bi 5d correlation, Gaunt interaction

⁵S Knecht, HJAa Jensen, T Fleig, J Chem Phys (2010) 014108

⁶Huber and Herzberg, NIST Chemistry Webbook

Application of GAS-CC

BiH: Spectral constants of $0^+(^3\Sigma^-)$ ground state

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys (2010) to be submitted.

	CC model	R_e [Å]	$\omega_e [{ m cm}^{-1}]$
• Setup:	CCSD 6	1.822	1694
	GASCCSD (6in5)	1.826	1676
Unc. cc-pCVTZ (Bi) / cc-pVTZ (H)	CCSD(T) 6	1.824	1685
$[30s26p17d13f1g] \ / \ [5s2p1d]$	CCSDT 6	1.824	1681
Cutoff virtual spinors: 5.6 a.u.	CCSDTQ 6	1.825	1681
Direc Coulomb Homiltonian (no 500)	CCSD 16	1.792	1726
Dirac-Coulomb Hamiltonian (no 500)	CCSD(T) 16	1.793	1709
$\sigma_{1/2}$, $\pi_{1/2}$, $\pi_{3/2}$ occupied	CCSDT 16	1.793	1709
, , , ,	Exp. ⁸	1.809	1700

- R_e , ω_e : outer-core (5d) correlation > Higher excitations
- CCSDT 16 feasible for complete potential curves
- Alternative: GASCCSD (6in5) active-space model

⁸Diode laser / IR Spectroscopy, Bernath et al. (1991), Urban et al. (1989)

DIRAC a European metalaboratory for the development of relativistic 4- and 2-

component quantum-physical and -chemical methodology

• KR-CI.

Kramers-Restricted GAS Configuration Interaction Program (released in DIRAC10) Authors: S Knecht, T Fleig, J Olsen, HJAa Jensen

• KR-CC.

Kramers-Restricted GAS Coupled Cluster Program (not yet released) Authors: LK Sørensen, J Olsen, T Fleig

Acknowledgement/Collaboration

Lasse K. Sørensen

Århus, Denmark

Jeppe Olsen

Århus, Denmark

Mickael Hubert

Toulouse, France

Stefan Knecht

Strasbourg, France