Halogen-Containing Molecules Studied with Cutting-Edge Relativistic Correlation Methods

Timo Fleig

Theoretical and Computational Chemistry Heinrich Heine University Düsseldorf

March 23, 2007

I. Introduction

The Problem

Quantum-chemical study of Br_2 double photoionization

Process: Br₂ $\xrightarrow{h\nu}$ Br₂²⁺, various ionization types Double photon ionization spectra recorded (e.g. for I₂²⁺)¹ by TOF-PEPECO

Goals:

¹D. Edvardsson, A. Danielsson, L. Karlsson, J.H.D. Eland, Chem Phys **324** (2006) *674*

II. Relativistic Methodology

General Aspects

• Electron Correlation: *Multi-reference* approaches, Coupled Cluster and Configuration Interaction models

• Basis set expansion: *Uncontracted* one-particle basis sets

Hamiltonian: *4-Component* Relativistic Hamil-tonian

Various models in direct comparison

II. Relativistic Methodology

Hamiltonians

Spinors:

- Rigorous treatment of spin-orbit interaction
- Shorter correlation expansions²

⁵M. Ilias, H.J.Aa. Jensen, Implementation in DIRAC package, to be published.

²T. Fleig, J. Olsen, L. Visscher, J Chem Phys **119** (2003) 2963

⁴K.G. Dyall, J Chem Phys **100** (1994) 2118

II. Relativistic Methodology^{5 6 7 8 9 10} : Overview^{UNIVERSITAT}

LUCI* Multi–Reference Electron Correlation Programs in DIRAC

- ⁵T. Fleig, L. Visscher, Chem Phys **311** (2005) *113*
- ⁶T. Fleig, J. Olsen, L. Visscher, J Chem Phys **119** (2003) *2963*
- ⁷J Thyssen, H. J. Aa. Jensen, T. Fleig, J Chem Phys (2006) submitted, under revision.
- ⁸T. Fleig, H. J. Aa. Jensen, J. Olsen, L. Visscher, J Chem Phys **124,10** (2006) *104106*
- ⁹T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc (2007), DOI 10.1007/s00214-007-0265-y.
- ¹⁰L. K. Sørensen, T. Fleig, J. Olsen, Chem Phys Lett (2007), to be submitted.

II. Relativistic Methodology

The Multi-Reference Coupled Cluster Approach

State-Selective (SS) GAS MRCC Method¹¹

- Extended excitation manifold $\begin{aligned} \langle \mu_{\mathrm{MR}} | &= \langle \mathrm{RHF} | \, \hat{\tau}_{0}^{\dagger} \\ \langle \mu_{\mathrm{SSCC}} | &= \langle \mu_{\mathrm{MR}} | \left\{ \hat{\tau}_{\mu_{1}}^{\dagger}, \hat{\tau}_{\mu_{2}}^{\dagger}, \dots, \hat{\tau}_{\mu_{N}}^{\dagger} \right\} \end{aligned}$
- Higher excitations included, e.g. in MRCCSD $\langle \mu_{\text{SSCCSD}} | = \langle \mu_{\text{MR}} | \{ \hat{\tau}^{\dagger}_{\mu_1}, \hat{\tau}^{\dagger}_{\mu_2} \}$ contains some Q excitations
- GAS expansion (formally) replaces single-determinant reference $|SSCC\rangle = e^{\sum_{\mu} t^{i}_{\mu} \hat{\tau}^{i}_{\mu}} |GAS\rangle$
- ¹¹J. Olsen, J Chem Phys **113** (2000) 7140

Features of HBr

T. Fleig, L. K. Sørensen, J. Olsen, Theo. Chem. Acc. (2007) DOI 10.1007/s00214-007-0265-y

Problem:

- Influence of SO interaction on ground-state spectral constants
- Molecular dissociation with/without multi-reference Ansatz
- Effect of higher excitations (than CC doubles)

Setup

- Uncontracted cc-pVDZ/cc-pVTZ basis sets, cutoff 10 a.u.
- Dirac-Coulomb/Spinfree Hamiltonian
- Correlated orbitals: $\sigma_{sp}, 2\pi, \sigma_{sp}^*$ (6 el.), + Br 4s (8 el.)
- CCSD (6/8), Single Reference (SR) and Multi Reference (MR) CI/CC
- MR space: CAS 6/8 in 4 orbitals/Kramers pairs

Features of HBr

Method	R_{e} [Å]	$\omega_e ~[{ m cm}^{-1}]$	$D_e \; [eV]$		
DZ SOF CCSD (6)	1.4148	2705.7	4.19		
DZ SOF MRCISD (6)	1.4164	2693.7	3.86		
DZ SOF MRCCSD (6)	1.4162	2691.1	3.88		
DZ SO CCSD (6)	1.4153	2697.8	4.05	Some basis set dependence	
DZ SO CCSDT (6)	1.4159	2690.8	3.74		
DZ SO MRCISD (6)	1.4173	2678.7	3.72	CC correlation:	
DZ SO MRCCSD (6)	1.4173	2685.2	3.73		
TZ SOF MRCISD (6)	1.4145	2675.1	4.04	Bond length: -0.004 Å	
TZ SOF MRCCSD (6)	1.4148	2675.1	4.05		
TZ SO MRCISD (6)	1.4151	2668.4	3.90	Frequency: $\pm 17 \text{ cm}^{-1}$	
TZ SO MRCCSD (6)	1.4154	2668.0	3.90		
TZ SOF MRCISD (8)	1.4180	2641.4	3.90		
TZ SOF MRCCSD (8)	1.4192	2637.1	3.90	$D_e: +0.05 \text{ eV}$	
TZ SOF CCSDT (8)	1.4178	2647.3	3.96	Two broming stoms?	
TZ SO MRCISD (8)	1.4187	2634.9	3.77	Two promine atoms :	
TZ SO MRCCSD (8)	1.4192	2635.9			
TZ SOF CCSDT (18)	1.4142	2663.9	4.01		
Exp. ¹²	1.4144	2649.0	3.92		

Ground State of \mbox{Br}_2

		R_e [a.u.]	$\omega_e \; [{ m cm}^{-1}]$
DZ SO MRCI	(CV 4s CAS)	4.447	282.7
TZ SOF MRCI	(CV 4s CAS)	4.375	308.0
TZ SO MRCI	(CV 4s CAS)	4.380	306.3
TZ SOF MRCI	(CV 3d,4s CAS)	4.359	311.4
TZ SOF MRCC	(CV 3d,4s CAS)	4.356	315.8
TZ SOF MRCC	(CC 3d,4s CAS)	4.357	312.7
ANO-RCC SOF MRCC	(CV 3d,4s CAS)	4.319	326.8
Experiment		4.311	325.3

Some important conclusions:

- DC Hamiltonian is precise
- SOC has small influence (closed shell state)
- Core correlation has moderate effect
- Basis set error surpasses all

Spectrum of the Br_2^{2+} cation; qualitatively

DCHF: 4p averaged

aDZ basis set

Valence excited-state manifolds:

 $\pi_g^2:$ 0g,2g,1g,0g

 $\pi_u^1 \pi_g^1$: 0u,0u,1u,1u,2u,2u,3u,...

 $\pi_g^1 \sigma_u^1:$ 0u,0u,...

. . .

 $\pi_u^1 \sigma_u^1$: 0g,0g,1g,1g,1g,2g,2g,3g,...

$$^{-1.54}$$
 \rightarrow σ_{u}

4s

Br_2^{2+} : Basis set effects

 Br_2^{2+} : Basis set effects, 4c spin-orbit free

MRCI, CAS8in6, SD8

	T_v [eV]], 2.28105 Å
Λ S state	aDZ	ANO-RCC
$^{3}\Sigma_{u}^{+}$	3.31	3.31
$^{3}\Pi_{u}$	2.70	2.87
$^{3}\Delta_{u}$	1.62	1.63
$^{1}\Sigma_{u}^{+}$	1.47	1.49
$^{1}\Sigma_{g}^{+}$	0.76	0.77
$^{1}\Delta_{g}$	0.43	0.46
$^{3}\Sigma_{g}^{-}$	0.00	0.00

Some important conclusions:

- Most errors < 0.03 eV
- Spin-orbit interaction:

 1^{st} order: ${}^{3}\Delta_{3,2,1}$, ${}^{3}\Pi_{2,1,0}$: $\approx 0.5 \text{ eV}$ 2^{nd} order: ${}^{1}\Delta_{2}$, ${}^{3}\Sigma_{1,0}$: $\approx 0.2 \text{ eV}$

• A smaller basis set suffices for (vertical) excitation energies

Br $_{2}^{2+}$: **Correlation effects**

DÜSSELDORI

Br_2^{2+} : Differential correlation errors

Br_2^{2+} : Correlation effects, aTZ basis

Br_2^{2+} : 2-Electron SOO terms

IV. Results

Br_2^{2+} : Vertical spectrum, CAS 8in6 SD

$T_v \; [{ m eV}]$	Omega/Symm.	Configuration(s)	lonization type
2.994	2u	$0.87\pi_{g3/2}^1\sigma_u^1 - 0.26\pi_{u1/2}^1\pi_{u3/2}^1\pi_{g1/2}^1\sigma_u^1$	
2.781	1u	$-0.71\pi^1_{g1/2}\sigma^1_u+0.46\pi^1_{g3/2}\sigma^1_u$	
2.658	Ou	$(0.62 + 0.62)\pi^1_{g1/2}\sigma^1_u$	
2.657	Ou	$(-0.62 + 0.62)\pi^1_{g1/2}\sigma^1_u$	
2.133	1u	$(0.90-0.32)\pi^1_{u1/2}\pi^1_{g1/2}$	В
2.112	Ou	$(0.66 + 0.66) \pi^1_{u1/2} \pi^1_{g1/2}$	В
1.854	1u	$0.65\pi^1_{u3/2}\pi^1_{g1/2} + 0.66\pi^1_{u1/2}\pi^1_{g3/2}$	В
1.774	2u	$0.68\pi^1_{u1/2}\pi^1_{g3/2} - 0.67\pi^1_{u3/2}\pi^1_{g1/2}$	В
1.418	3u	$0.96\pi^1_{u3/2}\pi^1_{g3/2}$	В
1.365	Ou	$(0.67 \pm 0.67) \pi^1_{u3/2} \pi^1_{g3/2}$	В
1.059	Og	$0.81\pi_{g3/2}^2+0.33\pi_{g1/2}^2$	А
0.622	2g	$0.89\pi^1_{g1/2}\pi^1_{g3/2} - 0.32\pi^1_{u1/2}\pi^1_{u3/2}\pi^2_{g1/2}\pi^2_{g3/2}$	А
0.149	1g	$(0.87 \pm 0.31) \pi^1_{g1/2} \pi^1_{g3/2}$	А
0.000	Og	$0.84\pi_{g1/2}^2 - 0.37\pi_{g3/2}^2 - 0.23\pi_{u1/2}^2\pi_{g1/2}^2\pi_{g3/2}^2$	А

IV. Results

\mathbf{Br}_2^{2+} : Double Ionization Types

Neutral ground-state configuration:

 $\sigma_g^2 \pi_u^4 \pi_g^4$

Removed electrons	Cation configuration	Туре
$-\sigma_g^1 - \pi_u^1$	$\sigma_g^1 \pi_u^3 \pi_g^4$	Е
$-\pi_u^2$	$\sigma_g^2 \pi_u^2 \pi_g^4$	D
$-\sigma_g^1 - \pi_g^1$	$\sigma_g^1\pi_u^4\pi_g^3$	С
$-\pi_g^1-\pi_u^1$	$\sigma_g^2 \pi_u^3 \pi_g^3$	В
$-\pi_g^2$	$\sigma_g^2 \pi_u^4 \pi_g^2$	А

- No further excitation; can be observed experimentally
- Types B,C,D,E yield only excited states of dication

Br_2^{2+} : Experimental Photoionization of Br_2

Greyscale image of the electron pair map at 30.4 nm (40.814 eV) John H. D. Eland, Oxford, U.K.

IV. Results

Br_2^{2+} : Experiment Meets Theory

IV. Results

Thanks !

David Edvardsson, Oxford/Örebro

John H. D. Eland, Oxford

Lasse K. Sørensen, Düsseldorf

Jeppe Olsen, Århus

Deutsche Forschungsgemeinschaft FL 356/1 FL 356/2-1 FL 356/2-2 (SPP 1145) FL 356/3-1