In Search of Physics Beyond the Standard Model in Diatomic Molecules

Timo Fleig

Département de Physique Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III

France

April 22, 2015

Laboratoire de Chimie et Physique Quantiques

Université Paul Sabatier

The Team

Malaya K. Nayak

LCPQ, Toulouse, France BARC, Mumbai, India

Malika Denis

LCPQ, Toulouse, France

Thibaut Dochy

LCPQ, Toulouse, France

 $EDMe^{-}DM$

Open Questions at Large Scale and at Small Scale

- Matter-antimatter asymmetry of the universe¹
- Nature of **cold dark matter**
- Degree of \mathcal{CP} violation in nature²
- Detection/constraint of EDMs as a powerful probe of possible explanations/consequences³

¹M. Dine, A. Kusenko, *Rev. Mod. Phys.* **76** (2004) *1*

²G. C. Branco, R. G. Felipe, F. R. Joaquim, *Rev. Mod. Phys.* **84** (2012) *515*

³J. Engel, M. J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nuc. Phys. **71** (2013) 21

Electric Dipole Moments and Their Source Tree⁴

• EDMs are low-energy physics probes of high-energy physics symmetry breaking

⁴M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

The Fermion Electric Dipole Moment (*f*EDM) \vec{D}

 \vec{D} and \vec{J} (anti-)collinear, \leftarrow Pauli exclusion principle⁵

Implies violation of $Parity(\mathcal{P})$ and $Motion-Reversal(\mathcal{T})$ symmetries⁶

 $\mathcal{CPT} \Rightarrow$ connects with (\mathcal{CP}) violation

⁵L.R. Hunter, *Science* **252** (1991) *73*

⁶T.D. Lee, C.N. Yang, *BNL* **443** (1957) *T91*

An Aside:

What is a fundamental EDM, what is not ?

Transformation properties for a quantum system

Non-relativistic electric dipole energy

 $E_{\rm dip} = -\left\langle \Psi \left| \mathbf{D} \cdot \mathbf{E}_{\rm ext} \right| \Psi \right\rangle$

- EDM orthogonal to angular momentum and zero due to endover-end rotation

Potential energy due to a fermion EDM

$$E_{\rm EDM} = -d_e \left\langle \Psi \left| \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \right| \Psi \right\rangle$$

\mathcal{P} -odd	\mathcal{P} -even	\mathcal{P} -odd
\mathcal{T} -odd	\mathcal{T} -odd	\mathcal{T} -even

- EDM along angular momentum
- $d_e \gamma^0 \Sigma \neq \mathbf{0}$ in pure eigenstate

The induced fermion EDM

Standard Model Picture⁷

BSM Picture

• Three-loop \mathcal{CP} -odd contributions zero in the absence of gluonic corrections⁸

 $d_e^{SM} \leq 10^{-38}\,e\,\,\mathrm{cm}$

• MSSM ("naïve SUSY") prediction⁹: $d_e \leq 10^{-27} e \text{ cm}$

¹E.D. Commins, Adv At Mol Opt Phys **40** (1998) 1

⁸M. Pospelov, I.B. Khriplovich, Sov J Nuc Phys **53** (1991) 638

⁹J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049

Search for the Electron EDM

 d_e from an atomic/molecular many-body problem

- Unpaired e^- in a stationary atomic/molecular state
- Measurement of an EDM dependent energy difference (transition energy/frequency shift) $\Delta \epsilon$ of atomic/molecular quantum states.
- Theory determination of an **EDM effective electric field**¹⁰

¹⁰P.G.H. Sandars, J Phys B: At Mol Opt Phys **1** (1968) 499

Search for the Electron EDM

Atomic/molecular enhancement

• In the **non-relativistic limit** the EDM expectation value vanishes:

(Schiff's Theorem¹¹)

 Relativistic view leads to a non-zero value, essentially due to length contraction in the observer frame¹²

 $\left\langle \hat{H}_{\rm EDM} \right\rangle = 0$

• Scaling with nuclear charge Z, for alkali atoms¹³

 $R \propto Z^3 \, \alpha^2$

• Heavy atoms required. Typical values in practice:

Z > 50

¹¹L.I. Schiff, *Phys Rev* **132** (1963) *2194*

¹²E.D. Commins, J.D. Jackson, D.P. DeMille, Am J Phys **75** (2007) 532

¹³P.G.H. Sandars, *Phys Lett* **14** (1965) *194*

The eEDM in a molecular framework

Perturbative EDM operator

Single-particle \mathcal{P} - and \mathcal{T} -odd eEDM Hamiltonian¹⁴: $\hat{H}_{\rm EDM} = -\frac{d_e}{4}\gamma^0\gamma^5 \left(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu}\right)F_{\mu\nu}$ which comprises an electric and a "motional" part $\hat{H}_{\rm EDM} = -d_e\gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B}\right]$

Magnetic contribution does not enter to leading order¹⁵ Electric field contributions

$$\mathbf{E} = \mathbf{E}_{\mathsf{int}} + \mathbf{E}_{\mathsf{ext}}$$

with an internal nuclear and electronic contribution

$$\mathbf{E}_{\text{int}}(i) = \sum_{A=1}^{N} \frac{Ze \ (\vec{r_i} - \vec{r_A})}{||\vec{r_i} - \vec{r_A}||^3} - \sum_{j=1}^{n} \frac{e \ (\vec{r_i} - \vec{r_j})}{||\vec{r_i} - \vec{r_j}||^3}$$

¹⁵E. Lindroth, E. Lynn, P.G.H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

¹⁴E. Salpeter, *Phys Rev* **112** (1958) *1642*

The eEDM in a molecular framework

Effective EDM many-body operator

Theoretical framework is relativistic quantum mechanics, no QED contributions

Exact reformulation of interaction constant for a single-particle expectation value $^{16}\,$

 $\left\langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \right\rangle_{\psi^{(0)}} = \frac{2 \imath c d_e}{e \hbar} \left\langle \gamma^0 \gamma^5 \vec{p}^{\,2} \right\rangle_{\psi^{(0)}}$

Approximate effective expectation value in many-body system $-d_e \left\langle \sum_{j=1}^n \gamma^0(j) \, \mathbf{\Sigma}(j) \cdot \mathbf{E}(j) \right\rangle_{\psi^{(0)}} \approx \frac{2\iota c d_e}{e\hbar} \left\langle \sum_{j=1}^n \gamma^0(j) \gamma^5(j) \, \vec{p}(j)^2 \right\rangle_{\psi^{(0)}}$

 $\psi^{(0)}$ here is the atomic/molecular electronic wavefunction. How do we optimize accurate electronic wavefunctions ?

¹⁶E. Commins, *Adv At Mol Opt Phys* **40** (1999) *1*

Relativistic Generalized-Active-Space Configuration Interaction¹⁷ Number of electrons

• Basis of time-reversal paired four-spinors

SpinorbitalsGeneral spinors $\hat{K}\varphi_i \alpha = \varphi_i^* \beta$ $\hat{K}\phi_i = \phi_{\overline{i}}$ $\hat{K}\varphi_i^* \beta = -\varphi_i \alpha$ $\hat{K}\phi_{\overline{i}} = -\phi_i$

$$\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_i^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{m}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants

Coupled Cluster: Individual strings

 \otimes x: vertex weight y: arc weight

¹⁷S. Knecht, H.J.Aa. Jensen, TF, *J Chem Phys* **132** (2010) *014108* TF, H.J.Aa. Jensen, J. Olsen, L. Visscher, *J Chem Phys* **124** (2006) *104106*

Correlated Wavefunction Theory for ${\sf E}_{\rm eff}$

- Dirac-Coulomb Hamiltonian operator $\hat{H}^{DC} = \sum_{A} \sum_{i} \left[c(\vec{\alpha} \cdot \vec{p})_i + \beta_i m_0 c^2 + V_{iA} \right] + \sum_{i,j>i} \frac{1}{r_{ij}} \mathbb{1}_4 + \sum_{A,B>A} V_{AB}$
- All-electron Dirac-Coulomb Hartree-Fock (DCHF) calculation set of time-reversal paired 4-spinors $\hat{K}\varphi_i = \varphi_{\bar{i}}$ and $\hat{K}\varphi_{\bar{i}} = -\varphi_i$
- Expansion and variation¹⁸ in *n*-electron sector of Fock space $|\psi_k\rangle = \sum_{I=1}^{\dim \mathcal{F}^t(M,n)} c_{kI} \left| (S\overline{\mathcal{T}})_I \right\rangle$

Expectation values over relativistic Configuration Interaction wavefunctions¹⁹ $\left\langle \hat{H}_{\text{EDM}} \right\rangle_{\psi_k^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^t(M,n)} c_{kI}^* c_{kJ} \left\langle (\mathcal{S}\overline{\mathcal{T}})_I \right| \frac{2icd_e}{e\hbar} \sum_{j=1}^n \gamma^0(j) \gamma^5(j) \vec{p}(j) \,^2 \left| (\mathcal{S}\overline{\mathcal{T}})_J \right\rangle$

¹⁸S Knecht, H J Aa Jensen, TF, *J Chem Phys* **132** (2010) *014108*

¹⁹TF and M K Nayak, *Phys Rev A* **88** (2013) *032514*

Search for the Electron EDM

Why molecules?

Be an atom in a parity eigenstate $\hat{\mathcal{P}} |\psi_p\rangle = \prod_{i=1}^n \hat{p}(i) \hat{\mathcal{A}} |\varphi_a(1) \dots \varphi_m(n)\rangle$. Then $\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = \left\langle \psi_p | \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} \hat{H}_{\text{EDM}} \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} | \psi_p \right\rangle = -p^2 \left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle$ $= -\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = 0$

Parity eigenstates need to be mixed (polarization).

- 1. A perturbing laboratory E field is required to mix parity eigenstates. TI experiment²⁰ $E_{\rm eff} \approx 0.05 \left[\frac{{\rm GV}}{{
 m cm}}\right]$
- 2. Molecular fields: YbF²¹: $E_{\rm eff} \approx 26 \left[\frac{\rm GV}{\rm cm}\right]$, HgF²²: $E_{\rm eff} \approx 100 \left[\frac{\rm GV}{\rm cm}\right]$,

²⁰V.V. Flambaum, Sov J Nucl Phys **24** (1976) 199

²¹D.M. Kara, I.J. Smallman, J.J. Hudson, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, New J Phys 14 (2012) 103051

²²Dmitriev et al., *Phys Lett* **167A** (1992) *280*

The eEDM in a molecular framework

 $^{3}\Delta$ molecules 23

- One heavy nucleus (relativistic effect)
- One "science" electron (σ^1) one "spectroscopy" electron (δ^1)
- Large $E_{\rm eff}$ for σ^1 electron
- Deeply bound and strongly polar molecules (fluorides, oxides, (nitrides))
- Small Λ (Ω)-doublet splitting²⁴ (optimal polarization)
- Large rotational constant (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)

 \Rightarrow Low-lying $^3\Delta_1$ as "science" state

²³E. Meyer, J. Bohn, D.A. Deskevich, *Phys Rev A* **73** (2006) *062108*

²⁴TF, C.M. Marian, J Mol Spectrosc **178** (1996) 1

ThO

ACME Collaboration, Yale/Harvard, (DeMille/Doyle/Gabrielse groups)

Universe Colloquium, TUM München, April 22, 2015

Most Recent Measurement: ThO Molecule

ACME Collaboration, Harvard/Yale

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration*: J. Baron¹, W. C. Campbell², D. DeMille³, J. M. Doyle¹, G. Gabrielse¹, Y. V. Gurevich^{1,**}, P. W. Hess¹, N. R. Hutzler¹, E. Kirilov^{3,#}, I. Kozyryev^{3,†}, B. R. O'Leary³, C. D. Panda¹, M. F. Parsons¹, E. S. Petrik¹, B. Spaun¹, A. C. Vutha⁴, and A. D. West³

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilation with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable $(10^{-27}$ - 10^{-30} e cm) electron electric dipole moment (EDM, d_e), which is an asymmetric charge distribution along the spin (\vec{S}) . The EDM is also asymmetric under T. Using the polar molecule thorium monoxide (ThO), we measure $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29} e \text{ cm}$. This corresponds to an upper limit of $|d_e| < 8.7 \times 10^{-29} e \text{ cm}$ with 90 percent confidence, an order of magnitude improvement in sensitivity compared to the previous best limits. Our result constrains T-violating physics at the TeV energy scale.

The exceptionally high internal effective electric field (\mathcal{E}_{eff}) of heavy paytral atoms and molecules can be used to precisely probe

is prepared using optical pumping and state preparation lasers. Parallel electric $(\vec{\mathcal{E}})$ and magnetic $(\vec{\mathcal{B}})$ fields exert torques on the electric and magnetic dipole moments, causing the spin vector to precess in the xy plane. The precession angle is measured with a readout laser and fluorescence detection. A change in this angle as $\vec{\mathcal{E}}_{\text{eff}}$ is reversed is proportional to d_e .

Science 6168 (2014) 269

Electron Electric Dipole Moment and Hyperfine Interaction Constants for ThO

Timo $Fleig^1$ and Malaya K. Nayak²

¹Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France ²Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, India (Dated: June 10, 2014)

A recently implemented relativistic four-component configuration interaction approach to study \mathcal{P} - and \mathcal{T} -odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the $\Omega = 1$ first excited state of the ThO molecule. We obtain a value of $E_{\text{eff}} = 75.2 \left[\frac{\text{GV}}{\text{cm}}\right]$ with an estimated error bar of 3% and 10% smaller than a previously reported result [J. Chem. Phys., 139:221103, 2013]. Using the same wavefunction model we obtain an excitation energy of $T_v^{\Omega=1} = 5410 \text{ [cm}^{-1}$], in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant $A_{||}$ as an expectation value, resulting in $A_{||} = -1339 \text{ [MHz]}$ for the $\Omega = 1$ state in ThO. The smaller effective electric field increases the previously determined upper bound [Science, 343:269, 2014] on the electron electric dipole moment to $|d_e| < 9.7 \times 10^{-29} e \text{ cm}$ and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.

1401.2284v2 J Mol Spectrosc **300** (2014) 16

The eEDM in ThO ($\Omega = 1$)

Historical Development of eEDM Upper Bound²⁵

²⁵Sandars (1975), Commins, DeMille (2008)

eEDM Constraint on Beyond-Standard-Model Theories²⁶

Model	$ d_e [e\cdot cm]$
Standard model	$< 10^{-38}$
Left-right symmetric	$10^{-28} \dots 10^{-26}$
Lepton-flavor changing	$10^{-29} \dots 10^{-26}$
Multi-Higgs	$10^{-28} \dots 10^{-27}$
Supersymmetric	$\leq 10^{-25}$
Experimental limit (TI) ²⁷	$< 1.6 \cdot 10^{-27}$
Experimental limit (YbF) ²⁸	$< 10.5 \cdot 10^{-28}$
Experimental limit (ThO) ²⁹	$< 9.6 \cdot 10^{-29}$

²⁶Courtesy: DeMille (2005), Huliyar (2009)

²⁷B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

²⁸J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

²⁹D. DeMille, ICAP 2014, Washington D.C., ACME Collaboration, *Science* 6168 (2014) *269*, TF and M. K. Nayak, *J. Mol. Spectrosc.* **300** (2014) *16*, L. V. Skripnikov, A. N. Petrov, A. V. Titov, *J. Chem. Phys.* 139 (2013) *221103*, L. V. Skripnikov, A. V. Titov, *J. Chem. Phys.* 142 (2015) *024301*

Molecular (cat)ions HfF^+/ThF^+

JILA, Boulder, Colorado (Cornell group)

EDM Studies in Molecular Ions

as opposed to neutral molecules³⁰

- Valence isoelectronic with neutral contenders (ThO, WC, et al.)
- Sufficiently large value of E_{eff} Hope for very large value³¹ in ThF⁺ due to Z = 90
- Use of ion traps and rotating electric fields
 ⇒ Long interrogation times
- A related point: HfF⁺ electronic ground state: ${}^{1}\Sigma_{0}^{+}$ ThF⁺ electronic ground state³²: ${}^{3}\Delta_{1}$ or ${}^{1}\Sigma_{0}^{+}$

³⁰H. Loh, K.C. Cossel, M.C. Grau, K.-K. Ni, E.R. Meyer, J.L. Bohn, J. Ye, E.A. Cornell, *Science* **342** (2013) *1220*A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, *J Mol Spectrosc* **270**(2011) *1*

³¹E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

 ³²M. Denis, M.N. Pedersen, H.J.Aa. Jensen, A.S.P. Gomes, M.K. Nayak, S. Knecht, TF, New J Phys (2015) 7 (2015) 043005
 B. Barker, I.O. Antonov, M.C. Heaven, K.A. Peterson, J Chem Phys 136 (2012) 104305

The eEDM in a molecular framework

A Proposed Measurement³³ on HfF⁺

³³A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc 270 (2011) 1

Molecular Wavefunctions from CC and CI

	Th spinor distribution on spaces							
		Model	4f5s5p	5d	бѕбр	5f6d7s	7p7d8s8	p6f
IHFS	SCC	$\mathcal{I}^{\mathcal{CC}}$	frozen	frozen	Q	P_m	P_i	
		$\mathcal{II}^{\mathcal{CC}}$	frozen	Q	Q	P_m	P_i	
		III^{CC}	Q	Q	Q	P_m	P_i	
MR	CI	$\mathcal{I}^{\mathcal{CI}}$	frozen	Q-S	Q-S	P_m	Q - SD)
		${\cal II}^{{\cal CI}}$	frozen	Q - SD	Q - SD	P_m	Q - SD)
Model	Th F 2	${6s,6p\atop{2s,2p}}$	Th 7 s , $6d\delta$	Th $6d\pi$	Th $6d\sigma$,	$7p\pi$ T	h 7 $p\sigma$,8 s	$< 10 {\rm \ a.u}$
$\mathcal{III}^{\mathcal{CI},3}$	Q -	-SD	P_m	Q - SD	Q-S	D	Q - SD	Q - SD
$\mathcal{III}^{\mathcal{CI}+T,3}$	Q -	-SD	P_m	Q - SDT	C = Q - SI	DT Q	-SDT	Q - SDT
$\mathcal{III}^{\mathcal{CI},5}$	Q -	-SD	P_m	P_m	Q-S	$D \qquad C$	Q - SD	Q - SD
$\mathcal{III}^{\mathcal{CI},8}$	Q -	-SD	P_m	P_m	P_m	ζ	Q - SD	Q - SD
$\mathcal{III}^{\mathcal{CI},10}$	Q -	-SD	P_m	P_m	P_m		P_m	Q - SD
$\mathcal{IV}^{\mathcal{CI}}$	fr	ozen	P_m	P_m	P_m		P_m	Q - SD

Low-Lying Electronic States³⁴ of ThF⁺

			Electronic state energy				
Method	$Model^a$	Hamiltonian	$^{1}\Sigma_{0^{+}}^{+}$	$^{3}\Delta_{1}$	$^{3}\Delta_{2}$	$^{3}\Delta_{3}$	${}^{3}\Pi_{0^{-}}$
IHFSCC	$\mathcal{I}^{\mathcal{CC}}$	2c	285.29	0.00	1063.29	3096.14	5228.76
	$\mathcal{II}^{\mathcal{CC}}$	2c	27.89	0.00	1070.40	3166.36	4690.68
	$\mathcal{II}^{\mathcal{CC},\dagger}$	2c	42.16	0.00	1062.01	3146.00	4499.13
	$\mathcal{III}^{\mathcal{CC},\dagger}$	2c	15.25	0.00	1062.22	3149.47	4510.50
	$\mathcal{III}^{\mathcal{CC},\ddagger}$	2c	190.85	0.00	1048.27	3156.71	4123.14
	$\mathcal{III}^{\mathcal{CC}, \S}$	2c	0.00	108.26	1157.05	3235.93	4415.96
	$\mathcal{III}^{\mathcal{CC},*}$	2c	318.99	0.00	1038.94	3161.99	3841.17
MRCI	$\mathcal{I}^{\mathcal{CI}}$	2c	854.32	0.00	1154.40	3188.81	3387.74
	$\mathcal{II}^{\mathcal{CI}}$	2c	630.04	0.00	1166.86	2986.27	-
$CCSD(T) + SO^b$			500.7	0.0	889.5	2156.8	
$CCSDT+SO^b$			143.3	0.0	889.7	2157.1	
$CCSDT(Q) + SO^b$			0.0	65.5	955.3	2222.9	
$Experiment^b$			0.00	315.0(5)	1052.5(5)	3150(15)	3395(15)

³⁴*a*M. Denis, M.N. Pedersen, H.J.Aa. Jensen, A.S.P. Gomes, M.K. Nayak, S. Knecht, TF, New J Phys **7** (2015) 043005

^bB. Barker, I.O. Antonov, M.C. Heaven, K.A. Peterson, J Chem Phys **136** (2012) 104305

\mathcal{P}, \mathcal{T} -Odd Interactions in ThF⁺ ($\Omega = 1$)

Basis Sets

Basis set	$T_v [\mathrm{cm}^{-1}]$	$E_{\rm eff}[{\rm GV\over cm}]$	$A_{ }[MHz]$	$W_{P,T}[kHz]$
DZ	378	37.8	1824	51.90
TZ'	787	36.9	1836	50.73
QZ'	877	36.9	1830	50.77

Vertical excitation energy for $\Omega = 0^+$, electron EDM effective electric field, magnetic hyperfine interaction constant, and scalar-pseudoscalar electron-nucleon interaction constant for $\Omega = 1$ at an internuclear distance of $R = 3.779 \ a_0$ using basis sets with increasing cardinal number and the wavefunction model $IIII^{CI,5}$.

Magnetic hyperfine interaction constant:

$$A_{||} = \frac{\mu_A}{I\Omega} \left\langle \sum_{i=1}^n \left(\frac{\vec{\alpha_i} \times \vec{r_{iA}}}{r_{iA}^3} \right)_z \right\rangle_{\psi}$$

Scalar-pseudoscalar electron-nucleon interaction constant:

$$W_{P,T} = \frac{\imath}{\Omega} \frac{G_F}{\sqrt{2}} Z \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \right\rangle_{\psi}$$

The eEDM in ThF⁺ ($\Omega = 1$)

Active 4-Spinor Spaces

CI model(TZ basis)	$T_v [\mathrm{cm}^{-1}]$	$E_{\rm eff}[{\rm GV\over cm}]$	$A_{ }[MHz]$	$W_{P,T}[kHz]$
$\mathcal{IV}^{\mathcal{CI}}$	274	35.4	1749	49.44
$\mathcal{III}^{\mathcal{CI},3}$	1029	47.5	1842	65.78
$\mathcal{III}^{\mathcal{CI},5}$	787	36.9	1836	50.73
$\mathcal{III}^{\mathcal{CI},6}$	709	36.2	1836	49.90
$\mathcal{III}^{\mathcal{CI},8}$	598	35.6	1834	49.04
$\mathcal{III}^{\mathcal{CI},10}$	538	35.2	1833	48.35
$\mathcal{III}^{\mathcal{CI},12}$		35.1	1832	

Vertical excitation energy for $\Omega = 0^+$, electron EDM effective electric field, magnetic hyperfine interaction constant, and scalar-pseudoscalar electron-nucleon interaction constant for $\Omega = 1$ at an internuclear distance of $R = 3.779 a_0$ using the TZ' basis set, varying number of correlated electrons and varying active spinor spaces.

Large active space ⇒ shifts electron density from Th(s) to Th(p) and Th(d), reducing E_{eff}.

The eEDM in ThF⁺ ($\Omega = 1$)

Higher Excitations

CI model(DZ basis)	$T_v [\mathrm{cm}^{-1}]$	$E_{\rm eff}[{\rm GV\over cm}]$	$A_{ }[MHz]$	$W_{P,T}[kHz]$
$\mathcal{III}^{\mathcal{CI},3}$	654	47.0	1830	64.92
$\mathcal{III}^{\mathcal{CI},10}$	88	37.1	1832	51.06
$\mathcal{III}^{\mathcal{CI}+T,3}$	247	35.4	1834	48.64

Vertical excitation energy for $\Omega = 0^+$, electron EDM effective electric field, magnetic hyperfine interaction constant, and scalar-pseudoscalar electron-nucleon interaction constant for $\Omega = 1$ at an internuclear distance of $R = 3.779 a_0$ using the DZ basis set and varying maximum excitation rank.

• Active space accounts for important higher excitations

ThF⁺

Static Molecular Electric Dipole Moment

$^M\Lambda_\Omega$ State	$T_v [\mathrm{cm}^{-1}]$	$\left\langle {}^{M}\Lambda_{\Omega} \hat{D}_{z} ^{M}\Lambda_{\Omega} ight angle$ [D]
$^{1}\Sigma_{0}^{+}$	630	3.941
$^{3}\Delta_{1}$	0	4.029
$^{3}\Delta_{2}$	1167	3.970
$^{3}\Delta_{3}$	2986	4.034

Molecular static electric dipole moments $\langle {}^{M}\Lambda_{\Omega}|\hat{D}_{z}|{}^{M}\Lambda_{\Omega}\rangle$, with $\hat{\vec{D}}$ the electric dipole moment operator, using the TZ basis set and the CI model $\mathcal{II}^{\mathcal{CI}}$. The origin is at the center of mass, and the internuclear distance is $R = 3.779 \ [a_0]$ (F nucleus at $z\vec{e}_z$ with z < 0).

• Very large center-of-mass dipole moment Effectively polarizable, suggest large value of $E_{\rm eff}$

ThF⁺

Electric Transition Dipole Moments

$^M\Lambda_\Omega$ State	$T_v [\mathrm{cm}^{-1}]$	${}^{1}\Sigma_{0}^{+}$	$^{3}\Delta_{1}$	$^{3}\Delta_{2}$	$^{3}\Delta_{3}$	${}^{1}\Sigma_{0}({}^{3}\Pi_{0})$	$^{3}\Pi_{0}$	$^{1,3}\Pi_1(^3\Sigma_1)$	$^{3}\Pi_{0}(^{1}\Sigma_{0})$
$1\Sigma_0^+$	274	-4.004							
$^{3}\Delta_{1}$	0	0.012	-4.075						
$^{3}\Delta_{2}$	724	0.000	0.070	-4.022					
$^{3}\Delta_{3}$	2198	0.000	0.000	0.052	-4.075				
${}^{1}\Sigma_{0}({}^{3}\Pi_{0})$	6344	0.439	0.455	0.000	0.000	-3.752			
³ П0	6528	0.000	0.571	0.000	0.000	0.000	-2.116		
$^{1,3}\Pi_1(^{3}\Sigma_1)$	6639	0.868	0.142	0.218	0.000	0.197	0.000	-2.375	
$^{3}\Pi_{0}(^{1}\Sigma_{0})$	6747	0.003	0.391	0.000	0.000	0.929	0.000	0.094	-2.717
$^{1,3}\Delta_2(^{3}\Pi_2)$	7008	0.000	0.473	0.334	0.298	0.000	0.000	0.529	0.000
$3\Sigma_1$	7490	0.226	0.069	0.221	0.000	0.136	0.197	0.451	0.145
$^{1,3}\Pi_1$	7918	0.667	0.052	0.801	0.000	0.011	0.064	0.107	0.043
${}^{3}\Phi_{2}({}^{3}\Pi_{2})$	8245	0.000	1.338	0.234	0.272	0.000	0.000	0.134	0.000

Electric transition dipole moments $\left\| \left\langle {}^{M}\Lambda'_{\Omega} | \hat{\vec{D}} | {}^{M}\Lambda_{\Omega} \right\rangle \right\|$, with $\hat{\vec{D}}$ the electric dipole moment operator, and vertical transition energies for low-lying electronic states in [D] units using the TZ' basis set and the CI model $\mathcal{IV}^{C\mathcal{I}}$. The origin is at the center of mass, and the internuclear distance is $R = 3.779 \ [a_0]$. $\left({}^{M}\Lambda_{\Omega} \right)$ denotes a term contributing at least 10% to the state. ^{1,3} denotes cases where Λ -S coupling breaks down significantly according to the analysis of our spinor-based ω - ω coupled wavefunctions.

HfF⁺ and ThF⁺: E_{eff} in the $\Omega = 1$ science state³⁵

HfF ⁺		ThF ⁺	
Model	$\mid E_{\text{eff}} \left[\frac{\text{GV}}{\text{cm}} \right] \mid$	Model	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$
CAS-CI(10)	24.1		
MR-CISD(10)	22.4		
MR-CISD(20)	23.3	MR_3 -CISD(18)	47.5
MR-CISD+T(20)	23.7	MR_6 -CISD(18)	36.2
MR-CISD(34)	22.9	MR_{10} -CISD(18)	35.2
MR-CISD(34)+T	23.3	MR_3 -CISDT(18)	35.4
Estimate, Meyer et al. ³⁶	≈ 30	Meyer et al.	≈ 90
20 e ⁻ corr., Titov et al. ³⁷	24.2	$38 e^-$ corr., Titov et al. ³⁸	≈ 37.3

 (HfF^+)

Similar results with various methods System currently under exp. study (ThF^+)

Meyer's model inaccurate

CC and CI approaches yield similar results

³⁵ TF and M.K. Nayak, *Phys Rev A* **88** (2013) *032514*

M. Denis, M. K. Nørby, H. J. Aa. Jensen, A. S. P. Gomes, M.K. Nayak, S. Knecht, TF, New J Phys 7 (2015) 043005

³⁶E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

³⁷A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

³⁸L. V. Skripnikov, A.V. Titov, arXiv:1503.01001v1 (2015)

Nuclear Magnetic Quadrupole Moment

Constraining \mathcal{P}, \mathcal{T} -violating hadron physics

- Nuclear MQM has two possible sources³⁹:
 - 1. Intranuclear \mathcal{P} -, \mathcal{T} -odd interactions, described by QCD (\mathcal{CP})-violating parameter⁴⁰ $\tilde{\Theta}$,

 $M_0^{p,n}(\tilde{\Theta}) \approx 2 \times 10^{-29} \,\tilde{\Theta} \, e \, \mathrm{cm}^2$

M: valence nucleon MQM

- 2. Neutron/proton EDM (order of magnitude smaller)
- MQM is enhanced in non-spherical (deformed) nuclei⁴¹
- Enhancement⁴¹ of ≈ 12 in ¹⁸¹Ta, compared to $M_0^{p,n}$
- TaN is a " $^{3}\Delta$ molecule", experiments planned at ACME (Yale/Harvard)

³⁹V. V. Flambaum, D. DeMille, M. G. Kozlov, *Phys Rev Lett* **113** (2014) *103003*

⁴⁰R. J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, *Phys Lett* **88B** (1979) *123*

⁴¹V. V. Flambaum, *Phys Lett B* **320** (1994) *211*

⁴²M. Zhou, L. Andrews, J Phys Chem A **102** (1998) 9061; R. S. Ram, J. Liévin, P. F. Bernath, J Mol Spectrosc **215** (2002) 275

Molecular Nuclear Magnetic Quadrupole Moment Theory

Effective molecular Hamiltonian

$$\hat{H} = -\frac{W_M M}{2I(2I-1)} \mathbf{J}_{\mathbf{e}} \,\hat{\mathbf{T}} \,\mathbf{n}$$

with the components of the nuclear MQM $M_{i,k} = \frac{3M}{2I(2I-1)}T_{i,k} \qquad T_{i,k} = I_iI_k + I_kI_i - \frac{2}{3}\delta_{i,k}I(I+1),$

with the nuclear MQM interaction constant

$$W_M := \frac{3}{2\Omega} \left\langle \Psi_\Omega \left| \sum_{j=1}^n \left(\frac{\boldsymbol{\alpha}_j \times \mathbf{r}_{jA}}{r_{jA}^5} \right)_k (r_{jA})_k \right| \Psi_\Omega \right\rangle$$

Implementation for a many-electron linear molecule:

$$W_M = \frac{3}{2\Omega} \sum_{I,J=1}^{\dim \mathcal{F}^{\mathsf{t}}(\mathsf{M},\mathsf{N})} c_{kI}^* c_{kJ} \left\langle (\mathcal{S}\overline{\mathcal{T}})_I \right| \sum_{j=1}^n \left(\frac{\alpha_j \times \mathbf{r}_{jA}}{r_{jA}^5} \right)_z (r_{jA})_z \left| (\mathcal{S}\overline{\mathcal{T}})_J \right\rangle$$

Calculation via electric-field gradient with the help of

$$\left(\frac{\boldsymbol{\alpha} \times \mathbf{r}}{r^5}\right)_z r_z = \alpha_1 \frac{x_2 x_3}{r^5} - \alpha_2 \frac{x_1 x_3}{r^5}$$

Molecular Nuclear Magnetic Quadrupole Moment

Results for ^{181}TaN , $\Omega=1$

Cutoff/CI Model	$E_{eff}\left[rac{\mathrm{GV}}{\mathrm{cm}} ight]$	$A_{ }$ [MHz]	$W_{P,T}$ [kHz]	$W_M \; [\frac{10^{33} \text{Hz}}{e \text{cm}^2}]$
vTZ-30a.u./MR $_{12}$ -CISD (10)	30.1	3104	27.4	1.898
vTZ-30a.u./MR $^{+T}_{12}$ -CISD (10)	31.5	3053	28.7	1.94
Mosyagin <i>et al.</i> ⁴³ , Flambaum <i>et al.</i> ⁴⁴	25 (YbF)			≈ 1

 $\mu(^{181}\text{TaN}) = 2.35\mu_N \qquad I = \frac{7}{2}$

- EDM effective field (and $W_{P,T}$) sufficiently large
- NMQM interaction constant W_M significantly larger than earlier estimate

<u>Reason:</u>

- Estimate based on $W_M(\text{TaN}) \approx \frac{1}{2} W_M^{\sigma}(\text{YbF}) = 2.1 [\frac{10^{33} \text{Hz}}{e \text{ cm}^2}]$
- Spinor structures are very similar, and Z(Ta) > Z(Yb)

⁴³N. S. Mosyagin, M. G. Kozlov, A. V. Titov, *J Phys B* **31** (1998) *L763*

⁴⁴V. V. Flambaum, D. DeMille, M. G. Kozlov, *Phys Rev Lett* **113** (2014) *103003*

Outlook

Hyperfine interaction constants for experimentally known diatomic molecules (19*F* nucleus, I = 1/2, in HF⁺, CF, MgF, HfF⁺, ThF⁺)

States of other diatomic molecules (WC⁴³; Leanhart, Ann Arbor)

Nuclear MQM interactions for ThQ and ThF+

Implementation of nuclear Schiff moment interaction

Development of Coupled-Cluster response code for $\mathcal{P},\mathcal{T}\text{-}odd$ constants

1, 5; Mosyagin, A. E. Leanhardt, *Phys. Rev A* 87 (2013) *2013*

Relativistic Generalized-Active-Space Coupled Cluster

L. K. Sørensen, J. Olsen, TF, *J Chem Phys* **134** (2011) *214102* TF, L. K. Sørensen, J. Olsen, *Theo Chem Acc* **118,2** (2007) *347* J. Olsen, *J Chem Phys* **113** (2000) *7140*

- "State-Selective" (SS) GAS-CC Generalized "Oliphant/Adamowicz" Ansatz²¹
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \Phi_0 | \, \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains GAS-selected higher excitations $|\psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\Phi_0\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\overline{a}} \hat{\tau}_{\bar{i}}^{\overline{a}} + t_{\bar{i}}^{\overline{a}} \hat{\tau}_{\bar{i}}^{\overline{a}} + t_{\bar{i}}^{\overline{a}} \hat{\tau}_{\bar{i}}^{\overline{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

²¹N. Oliphant, L. Adamowicz J Chem Phys **94** (1991) 1229

Relativistic Generalized-Active-Space CC

Electronic Ground States 45

CC vector function

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \frac{1}{6} \left[\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \dots \right) \right| \Phi_0 \right\rangle$

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T} \right], \hat{T} \right], \hat{T} \right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t_{i'j'}^{a'b'} t_{i"j"}^{a"b"} a_a^{\dagger} a_b^{\dagger} \overline{a_c a_d a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{a}^{\dagger} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_{a}^{\dagger} a_{a}^{\dagger} a_{a}^{\dagger} a_{b}^{\dagger} a_{i'} a_{j'} a_{a}^{\dagger} a_$$

⁴⁵L. K. Sørensen, J. Olsen, TF, J Chem Phys **134** (2011) 214102
L. K. Sørensen, TF, J. Olsen, Z Phys Chem **224** (2010) 999

Relativistic Generalized-Active-Space CC

Excitation Energies⁴⁶

$$J_{\mu}^{CC} = \sum_{\nu} A_{\mu\nu} x_{\nu} = \sum_{\nu} \left\langle \mu_{\text{GAS}} \left[e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} \right] \Phi_{0} \right\rangle x_{\nu}$$
$$A_{\mu\nu} = \left\langle \mu \left| \left(\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] + \left[\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right], \hat{T} \right] + \frac{1}{2} \left[\left[\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right], \hat{T} \right], \hat{T} \right] \dots \right] \right| \Phi_{0} \right\rangle$$

Algorithm for Jacobian matrix elements⁴⁷

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T}\right], \hat{T}\right], \hat{T}\right]$

 \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t_{i'j'}^{a'b'} t_{i"j"}^{a"b"} a_a^{\dagger} a_b^{\dagger} a_c a_d a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{a'}^{\dagger} a_{b'}^{\dagger} a_{i'} a_{j'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger} a_{i'}^{\dagger} a_{b'}^{\dagger} a_{i'}^{\dagger} a_{i$$

⁴⁶M. Hubert, L. K. Sørensen, J. Olsen, TF, *Phys Rev A* **86** (2012) *012503*

- ⁴⁷L. K. Sørensen, J. Olsen, TF, J Chem Phys **134** (2011) 214102
 - L. K. Sørensen, TF, J. Olsen, Z Phys Chem 224 (2010) 999