Low-Energy Probes of Charge-Parity Violation and the Search for New Physics

Timo Fleig

LCPQ, FeRMI Université Paul Sabatier Toulouse III

France

5 December 2023

Université Paul Sabatier

Outline

The search for New Physics in EDMs: The big picture

From particle physics to a fermion EDM

atomic physics of EDMs

Search for a lepton EDM: Electron EDM in RaAg

Hadron-sector searches: Tensor-pseudotensor interaction in TIF

Energy Content and Baryon Asymmetry of the Universe (BAU)¹

Dark energy: Why accelerated expansion? Cosmological constant?

Dark matter: Particle (LSP, axion)? Modification of gravity?

Ordinary matter: Existence contradicts SM prediction!

Evidence for the BAU:

 $Y_B = \frac{n_B - \overline{n}_B}{S} \approx \frac{n_B}{S} = \begin{cases} (7.3 \pm 2.5) \times 10^{-11} & \text{Big-Bang Nucleosynthesis (BBN)}^2\\ (9.2 \pm 1.1) \times 10^{-11} & (\text{WMAP, exp.})^3\\ (8.59 \pm 0.11) \times 10^{-11} & (\text{Planck, exp.})^4 \end{cases}$

- ²S. Eidelman *et al.*, *Rev. Part. Phys. Phys. Lett. B* **592** (2004) 1
- ³D. N. Spergel *et al.*, *Astron. J. Suppl.* **148** (2003) *175*
- ⁴P. A. R. Ade *et al.*, Astron. Astrophys. **571** (2013) A16

¹G. A. White, A Pedagogical Introduction to Electroweak Baryogenesis Morgan & Clay (2016) 1

Explaining the Matter Content of the Universe?

Antimatter is not hidden in a pocket.⁵

(CP)-Violation **required** to explain BAU.⁶ ("Sakharov conditions")

Matter-antimatter dissymmetry known from heavy meson decays⁷

$$K_L \longrightarrow \begin{cases} \pi^+ + e^- + \overline{\nu}_e & (-) \\ \pi^- + e^+ + \nu_e & (+) \end{cases}$$
$$\delta = \frac{N^+ - N^-}{N^+ + N^-} \approx 3 \times 10^{-3}$$

Built into SM through CKM formalism.⁸

However, not enough to explain BAU. (Leptogenesis⁹, Electroweak baryogenesis¹⁰

- ⁵A.G. Cohen, A. De Rújula, S.L. Glashow, *Astrophys J* **495** (1998) *539*
- ⁶A. D. Sakharov, *JETP Lett.* **5** (1967) *24*
- ⁷S. Gjesdal et al., *Phys Lett* **52B** (1974) *113*
- F. Wilczek (1980)
- ⁸C. Cabibbo, *Phys Rev Lett* **10** (1963) *531*
- M. Kobayashi, K. Maskawa, Prog Theor Phys 49 (1973) 652
- ⁹S. Davidson, E. Nardi, Y. Nir, *Phys Rep* **466** (2008) *105*
- ¹⁰D.E. Morrissey, M.J. Ramsey-Musolf, New J Phys **14** (2012) 125003

 $(\mathcal{CP})\text{-}\text{Violation}$ and the (\mathcal{CPT}) Theorem^{11}

$$(\underline{CP}) \xrightarrow{CPT} (\underline{T})$$

EDMs violate \mathcal{T} symmetry

 $^{^{11}}$ W. Pauli, Niels Bohr and the Development of Physics (1955) 30

EDMs and their possible sources: An overview

W. Cairncross, J. Ye, Nat. Rev. Phys. 1 (2019) 510

Standard-Model Prediction of the Electron EDM

Summed three-loop diagrams¹² $\Rightarrow d_e = 0$

Interactions with virtual particles including \mathcal{CP} -violation

 \Rightarrow fermion EDM

The SM eEDM is extremely small: $d_e \approx 10^{-35} e \text{cm}$

¹²M.É. Pospelov, I.B. Khriplovich, Yad. Fiz. **53** (1991) 1030

Y. Ema, T. Gao, M.É. Pospelov, Phys. Rev. Lett. 129 (2022) 231801

 $^{13} {\rm https://www.pourlascience.fr/sd/physique-particules/lelectron-met-a-mal-des-theories-au-dela-du-modele-standard-15089.php}$

Beyond the Standard Model Predictions of eEDM

 χ : chargino, neutralino \tilde{f}'_i : supersymmetry (s)-fermion $\epsilon^{\mu}(q)$: photon

Chargino $(\tilde{\chi}_{1,2}^{\pm})$, neutralino $(\tilde{\chi}_{1,2,3,4}^{0})$ or gluino (\tilde{g}^{a}) fermion/sfermion interaction Lagrangian:

 $\mathcal{L}_{\gamma f \tilde{f}'} = g_{Lij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_L f\right) \tilde{f}'^*_i + g_{Rij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_R f\right) \tilde{f}'^*_j + h.c.$

One-loop fermion EDM:¹⁴

$$\left(\frac{d_{f}^{E}}{e}\right)^{\chi} = \frac{m\chi_{i}}{16\pi^{2}m_{\tilde{f}'_{j}}^{2}}\mathcal{I}m\left[\left(g_{Rij}^{\chi f\tilde{f}'_{j}}\right)^{*}g_{Lij}^{\chi f\tilde{f}'_{j}}\right] \left[Q_{\chi}A\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right) + Q_{\tilde{f}'_{j}}B\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right)\right]$$

MSSM prediction: $d_e \le 10^{-27} \, e \, \, \mathrm{cm}$

¹⁴J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049

The Fermion Magnetic Dipole Moment (fMDM)

$$oldsymbol{\mu}_f = g_f rac{q_f}{2m_f c} \, oldsymbol{S} = \gamma_f \, oldsymbol{S}$$

The "Jewel" of physics $(f \rightarrow e)$: Experiment: $g_e/2 = 1.001\,159\,652\,180\,59\,(13)^{15}$ Theory: $g_e/2 = 1.001\,159\,652\,180\,(0.7)^{16}$

¹⁵X. Fan and T. G. Myers and A. D. Sukra and G. Gabrielse, *Phys. Rev. Lett.* **130** (2023) *071801*

 ¹⁶T. Aoyama, T. Kinoshita, M. Nio, *Phys. Rev. D* 97 (2018) *036001* Jegerlehner Fred, EPJ Web Conf. 218, 01003 (2019)., *EPJ Web Conf.* 218 (2019) *01003* A. Czarnecki, W. J. Marciano, and A. Vainshtein, *Phys. Rev. D* 67 (2003) *073006*

Sets of valid quantum numbers for fermion state: $|C,T,U,\ldots,s,m_s\rangle \qquad \qquad |C,T,U,\ldots,s,m_s,m_{\mathsf{EDM}}\rangle$

On the rhs. the many-fermion state could be written:

 $|C(1) = C(2), T(1) = T(2), \dots, s(1) = s(2), m_s(1) = m_s(2), m_{\text{EDM}}(1) \neq m_{\text{EDM}}(2)$ which contradicts observation !

The Fermion EDM

Hamiltonian in Electromagnetic Field

Classical electromagnetism:

 $\varepsilon_{\mathrm{dip}} = -\mathbf{D} \cdot \mathbf{E}$

Fermion EDM vector operator $\hat{\mathbf{d}} \propto \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\sigma} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\sigma} \end{pmatrix}$ and so¹⁷ $\hat{H}_{\text{EDM}} = -d_f \gamma^0 \boldsymbol{\Sigma} \cdot \mathbf{E}$ The proportionality constant d_f is the fermion EDM. Dirac matrix γ^0 ensures that $\langle \hat{H} \rangle$ is a Lorentz scalar Energy $\langle \hat{H} \rangle$ violates space-inversion (\mathcal{P}) and time-reversal (\mathcal{T}) symmetries: $(\gamma^0)^{-1} \gamma^0 \boldsymbol{\Sigma} \gamma^0 = \gamma^0 \boldsymbol{\Sigma}$ $\mathcal{P}^{-1} \mathbf{E} \mathcal{P} = -\mathbf{E}$

$$\left(\imath\gamma^{0}\gamma^{5}\gamma^{2}\,\hat{K}_{0}\right)^{-1}\,\gamma^{0}\,\boldsymbol{\Sigma}\,\,\imath\gamma^{0}\gamma^{5}\gamma^{2}\,\hat{K}_{0}\,=-\gamma^{0}\,\boldsymbol{\Sigma}\qquad\qquad\mathcal{T}^{-1}\,\,\mathbf{E}\,\,\mathcal{T}=\mathbf{E}$$

This energy
$$\left< \hat{H} \right>$$
 is a \mathcal{T} -odd $pseudo$ scalar.

¹⁷E. Salpeter, *Phys Rev* **112** (1958) *1642*

Schiff's Theorem

"The electric dipole moment of a bound-state atom composed of particles with non-zero electric dipole moments is zero in non-relativistic approximation."¹⁸

Consider the expectation value in eigenstate $\psi^{(0)}$ (incl. E_{ext}) $\varepsilon_{\text{EDM}} = \langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} = \langle -d_e \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} + \langle d_e(\mathbb{1}_4 - \gamma^0) \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}}$

In the non-rel. limit $\gamma^{0 \operatorname{nrlimit}}_{\longrightarrow} 1_4$ and so we consider $\langle -d_e \boldsymbol{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} = \frac{-d_e}{-e} \langle \boldsymbol{\Sigma} \cdot (\nabla_{\mathbf{x}} e \phi) \rangle_{\psi^{(0)}} = \frac{\imath d_e}{e\hbar} \langle [\boldsymbol{\Sigma} \cdot \mathbf{p}, e \phi 1_4] \rangle_{\psi^{(0)}}$ $= \frac{\imath d_e}{e\hbar} \langle [\boldsymbol{\Sigma} \cdot \mathbf{p}, c \boldsymbol{\alpha} \cdot \mathbf{p} + \gamma^0 m_0 c^2 - \hat{H}^{(0)}] \rangle_{\psi^{(0)}}$

Since $\hat{H}^{(0)} |\psi^{(0)}\rangle = E^{(0)} |\psi^{(0)}\rangle$ all commutators vanish, and so $\langle -d_e \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} = 0 \quad \Box$.

¹⁸L.I. Schiff, *Phys Rev* **132** (1963) *2194*

Evading Schiff's Theorem by Special Relativity¹⁹

Length contraction for collinear movement: $\mathbf{d}_e(K) = \frac{\mathbf{d}_e(K')}{\gamma} = \mathbf{d}_e(K') \left(1 - \frac{\gamma}{1+\gamma} \frac{v^2}{c^2}\right)$

... and for general movement: $\mathbf{d}_e(K) = \mathbf{d}_e(K') - \frac{\gamma}{1+\gamma} \frac{\mathbf{v}}{c} \left(\mathbf{d}_e(K') \cdot \frac{\mathbf{v}}{c} \right)$

The dipole energy in K then is $\varepsilon_{\mathsf{dip}} = -\mathbf{d}_e(K) \cdot \mathbf{E} = -\mathbf{d}_e(K') \cdot \left[\mathbf{E} - \frac{\gamma}{1+\gamma} \frac{\mathbf{v}}{c} \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E}\right)\right]$

For small relative velocities we can approximate: $\varepsilon_{dip} \approx -\mathbf{d}_e(K') \cdot \mathbf{E} + \frac{1}{2m_e^2 c^2} \mathbf{d}_e(K') \cdot \mathbf{p} \left(\mathbf{p} \cdot \mathbf{E} \right)$

¹⁹E.D. Commins, J.D. Jackson, D.P. DeMille, Am J Phys **75** (2007) 532

Interpretation of the EDM Interaction

The \mathcal{P}, \mathcal{T} -odd energy can also be written as

$$\begin{split} \varepsilon_{\mathsf{EDM}} &= -d_e \left\langle \Psi^L \ \Psi^S \left| \left(\begin{array}{cc} \mathbf{1}_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & -\mathbf{1}_2 \end{array} \right) \left(\begin{array}{cc} \boldsymbol{\sigma} \cdot \mathbf{E} & \mathbf{0}_2 \\ \mathbf{0}_2 & \boldsymbol{\sigma} \cdot \mathbf{E} \end{array} \right) \right| \begin{array}{c} \Psi^L \\ \Psi^S \end{array} \right\rangle \\ &= -d_e \left\{ \left\langle \Psi^L \left| \boldsymbol{\sigma} \cdot \mathbf{E} \right| \Psi^L \right\rangle - \left\langle \Psi^S \left| \boldsymbol{\sigma} \cdot \mathbf{E} \right| \Psi^S \right\rangle \right\} \end{split}$$

Using the low-energy relationship between L and S components of the Dirac spinors $\Psi^S \approx \frac{\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}}{2mc} \Psi^L$ gives $\approx -d_e \left\{ \langle \boldsymbol{\sigma} \cdot \mathbf{E} \rangle_{\Psi^L} - \frac{1}{4m^2c^2} \left\langle (\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})^{\dagger} \ \boldsymbol{\sigma} \cdot \mathbf{E} \ \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \right\rangle_{\Psi^L} \right\}$

Respecting the derivative and using twice the Dirac relation $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \ \boldsymbol{\sigma} \cdot \mathbf{E} = \hat{\mathbf{p}} \cdot \mathbf{E} \mathbf{1}_2 + \imath \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \times \mathbf{E}$

we finally get

$$\varepsilon_{\mathsf{EDM}} \approx -d_e \left\{ \langle \boldsymbol{\sigma} \cdot \mathbf{E} \rangle_{\Psi^L} - \frac{1}{4m^2c^2} \left[\langle \hat{\mathbf{p}} \cdot \mathbf{E} \ \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \rangle_{\Psi^L} + \langle \mathbf{E} \cdot \hat{\mathbf{p}} \ \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \rangle_{\Psi^L} \right] \right\}$$

which corresponds to the classical dipole energy in the observer frame.

Lorentz-Covariant eEDM Hamiltonian

Fields $({\bf E},{\bf B})$ in the lab frame transform into fields $({\bf E}',{\bf B}')$ in some other Lorentz frame.

Covariant single-particle eEDM Hamiltonian:

 $\hat{H}_{\rm EDM} = \imath \frac{d_e}{2} \gamma^0 \gamma^5 \, \frac{\imath}{2} \left(\gamma^\mu \gamma^\nu - \gamma^\nu \gamma^\mu \right) \, F_{\mu\nu}$

Use covariant EM field tensor

$$\{F_{\mu\nu}\} = \{\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}\} = \begin{pmatrix} 0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & -B_{z} & B_{y} \\ -E_{y} & B_{z} & 0 & -B_{x} \\ -E_{z} & -B_{y} & B_{x} & 0 \end{pmatrix}$$

to derive conventional representation of form-invariant Hamiltonian: $\hat{H}_{\rm EDM} = -d_e \gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right]$

Off-diagonal $\boldsymbol{\alpha} = \begin{pmatrix} \mathbf{0}_2 & \boldsymbol{\sigma} \\ \boldsymbol{\sigma} & \mathbf{0}_2 \end{pmatrix}$ couples Ψ^L and Ψ^S and suppresses **B** term

One-body Hamiltonian in *n*-body system: $\hat{H}_{\text{EDM}} = -d_e \sum_{j}^{n} \gamma^0(j) \left[\mathbf{\Sigma}(j) \cdot \mathbf{E}(\mathbf{r}_j) + \imath \boldsymbol{\alpha}(j) \cdot \mathbf{B}(\mathbf{r}_j) \right]$

Definition and eEDM enhancement

Electric dipole moment of an atom:²⁰

 $d_a := -\lim_{E_{\text{ext}} \to 0} \left[\frac{\partial (\Delta \varepsilon_{\mathcal{P}\mathcal{T}})}{\partial E_{\text{ext}}} \right] \qquad \Delta \varepsilon_{\mathcal{P}\mathcal{T}} \text{ is some } P, T \text{-odd energy shift.}$

Sources are particle EDMs, nuclear MQM, nuclear Schiff moment, \mathcal{T} -odd contribution to weak interaction.

For an electron EDM, we then have $d_{a} = \lim_{E_{\text{ext}}\to 0} \frac{\partial}{\partial E_{\text{ext}}} d_{e} \left\langle \gamma^{0} \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right] \right\rangle_{\psi(E_{\text{ext}})}$ With the definitions $(E + B)_{\text{eff}} = -\left\langle \gamma^{0} \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right] \right\rangle_{\psi(E_{\text{ext}})}$ $R := \frac{d_{a}}{d_{e}}$ $R_{\text{lin}} := -\frac{\Delta(E+B)_{\text{eff}}}{\Delta E_{\text{ext}}} = -\frac{(E+B)_{\text{eff}}(2) - (E+B)_{\text{eff}}(1)}{E_{\text{ext}}(2) - E_{\text{ext}}(1)}$ the linear-regime atomic eEDM enhancement is then:

 $R\approx R_{\rm lin}=-\frac{(E+B)_{\rm eff}}{E_{\rm ext}}$

²⁰E.D. Commins, *Adv. Mol. Opt. Phys.* **40** (1999) 1

Scaling and Choice of Sensitive Systems

An **atom** can be much **more sensitive** than a free electron! (Sandars effect)²¹

Analytical estimates of the eEDM enhancement^{22} $R \propto 10 \, Z^3 \alpha^2$

High- Z atoms v	vith unpaired	electron shells	are optimal	choice:
Atom (state)	Rb ($^2S_{1/2}$)	Cs ($^2S_{1/2}$)	Fr ($^2S_{1/2}$)	TI ($^2P_{1/2}$)
Z	37	55	87	81
R	26 ± 1^{23}	114 ± 3^{24}	910 ± 45^{25}	-559 ∓ 28^{26}

²¹P.G.H. Sandars, *Phys Lett* **14** (1965) *194*

²²E.D. Commins, D. DeMille, Adv. Ser. Dir. High En. Phys. chapter 14 (2008) 519

V.V. Flambaum, Sov. J. Nucl. Phys. 24 (1976) 199

²³A. Shukla, B.P. Das, J. Andriessen, *Phys. Rev. A* **50** (1994) 1155

²⁴A. C. Hartley, E. Lindroth, A.-M. Mårtensson-Pendrill, J. Phys. B: At. Mol. Opt. Phys. 23 (1990) 3417

²⁵T.M.R. Byrnes, V.A. Dzuba, V.V. Flambaum, D.W. Murray, *Phys. Rev. A* **59** (1999) 3082

²⁶T. F., L.V. Skripnikov, *Symmetry* **12** (2020) 498

Atomic-Scale EDM

Measurement Principle of $\Delta \varepsilon_{PT}^{27}$

Hamiltonian of sensitive system in external EM field: $\hat{H} = -(\mu \mathbf{B} + d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|}$

- (1) B-field causes spin precession with frequency ν : $-(\mu \mathbf{B}) \cdot \frac{\hat{\mathbf{j}}}{|J|} = h\nu$
- (2) Added E-field modifies spin precession freq. to ν_+ : $-(\mu \mathbf{B} + d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|} = h\nu_+$

(3) Reversed E-field modifies spin precession freq. to ν_{-} : - $(\mu \mathbf{B} - d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|} = h\nu_{-}$

EDM of system can be extracted from: $\nu_+ - \nu_- = \frac{2dE|J|}{h} \iff d = \frac{h(\nu_+ - \nu_-)}{2E|J|}$

²⁷M. Bishof, M. Dietrich, et al., Phys. Rev. C **94** (2016) 025501

B. C. Regan, E. D. Commins, C. J. Schmidt, D. DeMille, Phys. Rev. Lett. 88 (2002) 071805

EDM Measurement in Molecules HfF⁺ as Example²⁸

²⁸A.E. Leanhardt *et al.*, E.A. Cornell, *J Mol Spectrosc* **270** (2011) *1* W.B. Cairncross *et al.*, J. Ye, E.A. Cornell, *Phys Rev Lett* **119** (2017) *153001*

Electron Electric Dipole Moment

Historic Upper Bounds From Atomic EDM Measurements

Atomic and Molecular Correlated Wavefunctions²⁹ Hamiltonians

• Dirac-Coulomb Hamiltonian + external electric field (atoms)

$$\hat{H}^{\text{Dirac-Coulomb}} + \hat{H}^{\text{Int-Dipole}} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \frac{Z}{r_{i}} \mathbb{1}_{4} \right] + \sum_{i,j>j}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{i}^{n} \mathbf{r}_{i} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}$$

• Dirac-Coulomb Hamiltonian operator (molecules)

$$\hat{H}^{DC} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{A,B>A}^{N} V_{AB}$$

• Dirac-Coulomb-Gaunt Hamiltonian operator (molecules)

$$\hat{H}^{DCG} = \sum_{i}^{n} \left[c \,\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \left(\frac{1}{r_{ij}} \mathbb{1}_{4} - \frac{1}{2} \frac{\vec{\alpha}_{i} \vec{\alpha}_{j}}{r_{ij}} \right) + \sum_{A,B>A}^{N} V_{AB}$$

²⁹T. F., H.J.Å. Jensen, J. Olsen, L. Visscher, J Chem Phys **124** (2006) 104106

S. Knecht, H.J.Å. Jensen, T. F., J Chem Phys 132 (2010) 014108

Calculation of \mathcal{P} , \mathcal{T} -Violating Effects³⁰

String-Based CI Techniques

Expectation values over relativistic Configuration Interaction wavefunctions

 $\left\langle \hat{O} \right\rangle_{\psi_{k}^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(\mathbf{M},\mathbf{n})} c_{kI}^{*} c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I}^{\dagger} \right| \hat{O} \right| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{J} \left| \right\rangle$

Property operator \hat{O} in basis of Kramers-paired molecular spinors $\hat{O} = \sum_{m,n=1}^{P_u} o_{mn} a_m^{\dagger} a_n + \sum_{m=1}^{P_u} \sum_{n=P_u+1}^{P} o_{m\overline{n}} a_m^{\dagger} a_{\overline{n}} + \sum_{m=P_u+1}^{P} \sum_{n=1}^{P_u} o_{\overline{m}n} a_{\overline{m}}^{\dagger} a_n + \sum_{m,n=P_u+1}^{P} o_{\overline{mn}} a_{\overline{m}}^{\dagger} a_{\overline{n}}$

First-term contribution to expectation value

$$W'(\Psi_k)_1 = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(\mathbf{P},\mathbf{N})} c_{kI}^* c_{kJ} \sum_{m,n=1}^{P_u} o_{mn}^M$$

$$\begin{cases} N_p \in \mathcal{S}_I \ N_p \in \mathcal{S}_I + N_{\overline{p}} \in \overline{\mathcal{T}}_I \\ \langle \prod_{p=1}^{N_p \in \mathcal{S}_I} \prod_{\overline{p}=N_p+1}^{N_p \in \overline{\mathcal{T}}_I} a_{\overline{p}} a_p \ a_m^{\dagger} a_n \prod_{q=1}^{N_p \in \mathcal{S}_J} \prod_{\overline{q}=N_p+1}^{N_p \in \overline{\mathcal{T}}_J} a_q^{\dagger} a_{\overline{q}}^{\dagger} \mid \rangle \end{cases}$$

³⁰S. Knecht, Dissertation, HHU Düsseldorf (2009)

T. F., M.K. Nayak, Phys Rev A 88 (2013) 032514

Single-source eEDM Constraint on BSM Theories³¹

³¹D. DeMille (2005), H. Nataraj (2009)

³²B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

³³J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

³⁴ACME Collaboration, *Nature* **562** (2018) 355; ACME, *Science* **6168** (2014) 269; TF and M. K. Nayak, *J. Mol. Spectrosc.* **300** (2014) 16; L. V. Skripnikov, A. N. Petrov, A. V. Titov, *J. Chem. Phys.* **139** (2013) 221103; L. V. Skripnikov, A. V. Titov, *J. Chem. Phys.* **142** (2015) 024301; M. Denis, TF, *J Chem Phys* **145** (2016) 214307

³⁶L. V. Skripnikov, J. Chem. Phys. **147** (2017) 021101

³⁷T. S. Roussy, L. Caldwell, T. Wright, W. B. Cairncross, Y. Shagam, K. B. Ng, N. Schlossberger, S. Y. Park, A. Wang, J. Ye,

E. A. Cornell, Science 381 (2023) 46

 $^{38}\text{ACME}$ Collaboration, Nature 562 (2018) $\mathit{355}$

Current World Records

In the presence of a non-zero EDM d, the system's Hamiltonian is $\hat{H} = -\left(\mu \mathbf{B} + d\mathbf{E}\right) \cdot \frac{\mathbf{\hat{J}}}{|J|}$

- "Paramagnetic" systems: Precession measurement on HfF⁺ JILA group; Ye, Cornell³⁹ measured $f = (-14.6 \pm 29.7) \ \mu$ Hz $\Rightarrow |d_e| \le 4.1 \times 10^{-30} e \text{ cm}$
- "Diamagnetic" systems: Precession measurement on Hg Seattle group; Heckel⁴⁰ measured $|d_{Hg}| \leq 7.4 \times 10^{-30} e$ cm
- Neutron (n) EDM experiment PSI, Switzerland⁴¹ measured $|d_n| \le 1.8 \times 10^{-26} e$ cm

- ⁴⁰ B. Graner *et al.*, Phys Rev Lett **116** (2016) *161601*
- ⁴¹ C. Abel *et al.*, Phys. Rev. Lett., **124** (2020) *081803*

³⁹ T. S. Roussy, *et al.*, J. Ye, E. A. Cornell, Science **381** (2023) *46*

EDM Science

• Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc., M. Hubert, T. F., arXiv: 2309.11633 [physics.atom-ph] (2023)
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., arXiv: 2311.06376 [physics.atom-ph] (2023)
T. F., *Phys. Rev. A* 99 (2019) 012515

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039

T. F., L. V. Skripnikov, Symmetry 12 (2020) 498

T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012

T. F., Phys. Rev. A 96 (2017) 040502(R)

T. F., Phys. Rev. A 95 (2017) 022504

M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

EDM Science

• Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc., M. Hubert, T. F., arXiv: 2309.11633 [physics.atom-ph] (2023)
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., arXiv: 2311.06376 [physics.atom-ph] (2023)

T. F., Phys. Rev. A 99 (2019) 012515

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039

T. F., L. V. Skripnikov, Symmetry 12 (2020) 498

T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012

T. F., Phys. Rev. A 96 (2017) 040502(R)

T. F., Phys. Rev. A 95 (2017) 022504

M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

Search for a Lepton EDM: Radium-Silver (RaAg)

in collaboration with

David DeMille Yale University / University of Chicago

Olivier Grasdijk ARGONNE Labs / University of Chicago

Going Ultracold: From beams to traps

PHYSICAL REVIEW A, VOLUME 63, 023405

Loading and compressing Cs atoms in a very far-off-resonant light trap

D. J. Han, Marshall T. DePue, and David S. Weiss

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (Received 25 May 2000; published 12 January 2001)

We describe an experiment in which 3×10^7 Cs atoms are loaded into a 400 μ m crossed beam far-offresonant trap (FORT) that is only 2 μ K deep. A high-density sample is prepared in a magneto-optic trap, cooled in a three-dimensional far-off-resonant lattice (FORL), optically pumped into the lowest-energy state, adiabatically released from the FORL, magnetically levitated, and transferred to the final trap with a phasespace density of 10^{-3} . Spontaneous emission in the FORT is negligible, and we have compressed the atoms in the FORT to a spatial density of 2×10^{13} atoms/cm³. Evaporative cooling under these conditions proceeds rapidly.

• Estimated sensitivity of Cs EDM measurement in DLT⁴² is $|d_e| \approx 10^{-29} ecm$

Cs atom: $\Delta E = R E_{\text{ext}} d_e$ $E_{\text{int}} \approx 20 \left[\frac{\text{MV}}{\text{cm}}\right]$ Ultracold XY Molecule: $\Delta E = E_{\text{eff}} d_e$ $E_{\text{eff}} \approx 50 \left[\frac{\text{GV}}{\text{cm}}\right]$

• A factor of ≈ 2500 gain in sensitivity!

⁴²DLT: Dipole light trap; D. Weiss (Penn State), 2014: "Measuring the eEDM using laser-cooled Cs atoms in optical lattices"

S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Phys. Rev. Lett. 57 (1986) 314

C. Chin, V. Leiber, V. Vuletić, A.J. Kerman, S. Chu, Phys. Rev. A 63 (2001) 033401

Towards Ultracold DLT EDM Measurement⁴³

Picking the cherry

Target atom: Z(Ra) = 88 $\alpha_D(Ra) = 246 \pm 4 \text{ a.u.}^{44}$

Polarizing partner:

Alkali(-like) atoms: Li, Na, K, Rb, Cs, Fr; Cu, Ag, Au

	R_e [a.u.]	$B_e \ [\mathrm{cm}^{-1}]$	D[Debye]	EA [eV]	$E_{eff}\left[rac{\mathrm{GV}}{\mathrm{cm}} ight]$	$W_S \; [{\sf kHz}]$	$E_{\sf pol}\left[rac{ m kV}{ m cm} ight]$
RaLi	7.668	0.151	1.36	0.618	22.2	-59.5	13.3
RaNa	8.703	0.038	0.51	0.548	12.0	-32.2	8.90
RaK	10.37	0.017	0.39	0.501	5.44	-14.6	5.18
RaRb	10.75	0.008	0.36	0.486	5.01	-13.6	2.75
RaCs	11.25	0.006	0.46	0.472	4.52	-12.6	1.48
RaFr	11.26	0.004	0.24	0.486	3.44	-12.4	2.06
RaCu	6.050	0.033	4.30	1.236	67.0	-180.6	0.92
RaAg	6.241	0.021	4.76	1.304	63.9	-175.1	0.53
RaAu	5.836	0.017	5.71	2.309	50.4	-166.4	0.36

⁴³T. F., D. DeMille, New J. Phys. **23** (2021) 113039

⁴⁴P. Schwerdtfeger, J. K. Nagle, *Mol. Phys.* **117** (2019) *1200*

RaLi vs. RaAg⁴⁵

⁴⁵T. F., D. DeMille, New J. Phys. **23** (2021) 113039

"Building" RaAg in a DLT EDM Experiment

• Photoassociating ultracold atoms into ultracold molecules⁴⁶

- Does its electronic spectrum allow for efficient energy transfer (remove binding energy without heating) ?
- Which states are candidates for photoassociation ?

⁴⁶L. D. Carr, D. DeMille, R. V. Krems, J. Ye, New J. Phys. **11** (2009) 055049

RaAg: Complete Spectrum up to $T \approx 5 \text{ eV}$

⁴⁷S. Kasahara, C. Fujiwara, N. Okada, H. Katô, M. Baba, *J. Chem. Phys.* **111** (1999) *8857*⁴⁸L. K. Sørensen, S. Knecht, T. F., C. M. Marian, *J. Phys. Chem A* **113** (2009) *12607*

RaAg⁴⁹: **E1 TDM** $d_{XY}(R) = \left\langle \Psi_X | \sum_j q_j \hat{\mathbf{r}}_j | \Psi_Y \right\rangle(R)$

⁴⁹O. Grasdijk, T. Fleig, D. DeMille (2023) in preparation.

RaAg

Long-Range Theory

Van der Waals interaction potential for two neutral heteronuclear atoms:

$$V(R) = -\frac{C_{6}}{R^{6}} - \frac{C_{8}}{R^{8}} - \frac{C_{10}}{R^{10}} - \dots$$
Porsev formalism⁵⁰:

$$C_{6}(\Omega) = \sum_{j=|J_{A}-1|}^{J_{A}+1} \sum_{J=|J_{B}-1|}^{J_{B}+1} A_{jJ}(\Omega) X_{jJ}$$
with

$$A_{jJ}(\Omega) = \sum_{\mu m M_{J}} \left\{ (1 + \delta_{\mu 0}) \begin{pmatrix} J_{A} & 1 & j \\ -M_{J_{A}} & \mu & m_{j} \end{pmatrix} \begin{pmatrix} J_{B} & 1 & J \\ -M_{J_{B}} & -\mu & M_{j} \end{pmatrix} \right\}^{2}$$

$$\left(\begin{array}{c} j_{1} & j_{2} & j \\ m_{j_{1}} & m_{j_{2}} & m_{j} \end{array} \right) = \frac{\langle j_{1}j_{2}m_{j_{1}}m_{j_{2}}|j_{1}j_{2}j - m_{j} \rangle}{(-1)^{-j_{1}+j_{2}+m_{j}}\sqrt{2j+1}}$$

$$X_{jJ} = \sum_{\alpha_{l},\alpha_{k}} \frac{\left| \left\langle \alpha_{A} J_{A} || \hat{T}^{(1)} || \alpha_{l} J_{l} = j \right\rangle \right|^{2} \left| \left\langle \alpha_{B} J_{B} || \hat{T}^{(1)} || \alpha_{k} J_{k} = J \right\rangle \right|^{2}}{E_{l} - E_{A} + E_{k} - E_{B}}$$

$$\left\langle \alpha J || \hat{D} || \alpha' J' \right\rangle = \frac{\left| \left| \left\langle \alpha J M_{J} |\hat{D} |\alpha' J' M'_{J} \right\rangle \right| \right| \sqrt{2J+1}}{\langle J' 1 M'_{J} q |J' 1 J M_{J} \rangle}$$

⁵⁰S. G. Porsev, M. S. Safronova, A. Derevianko, and C. W. Clark, *Phys. Rev. A* **89** (2014) *022703*

Long-Range Interactions

E1 Transitions in Earth-Alkaline and Alkali Test Systems

$\left \left\langle X\left(J=\frac{1}{2}\right) \boldsymbol{D} l\left(J=\frac{1}{2}\right) ight angle ight $ and $\left \left\langle X\left(J=\frac{1}{2}\right) ight angle ight $	$\left \hat{\boldsymbol{D}} \right \left \hat{\boldsymbol{D}} \right \left l\left(J = \frac{3}{2} \right) \right $) in [a.u.]
--	--	-------------

Li		present		experiment 51	literature
Excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$^{-2}{P}_{1/2}(2p^1)$	3.3197	14909	0.2495	14903.66	
$^{2}{P}_{3/2}(2p^{1})$	4.6948	14910	0.4991	14904.00	$0.7470(^2P)^{-52}$
${}^2P_{1/2}(3p^1)$	0.1794	30916	0.0015	30925.38	
$^{2}{P}_{3/2}(3p^{1})$	0.2536	30917	0.0030	30925.38	$0.00482(^2P)^{53}$

$$\left|\left\langle X(J=0)||\hat{\boldsymbol{D}}||l(J=1)
ight
angle
ight|$$
 [a.u.]

Be		present		experiment 51	literature
excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$^{-3}P_1(2s^12p^1)$	0.0002	21977	0.0000	21978.93	
$^{1}{P}_{1}(2s^{1}2p^{1})$	3.2615	42585	1.3760	42565.35	1.374 ⁵⁴
$^{1}{P}_{1}(2s^{1}3p^{1})$	0.2111	60347	0.0082	60187.34	0.0086 ⁵⁴

⁵¹A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team, *NIST Atomic Spectra Database* (2019)

⁵²Z.-C. Yan, M. Tambasco, and G. W. F. Drake, *Phys. Rev. A* **57** (1998) *1652*

⁵³L. Qu, Z. Wang, and B. Li, *Eur. Phys. J. D* **5** (1999) *173*

⁵⁴S. Nasiri, L. Adamowicz, and S. Bubin, J. Phys. Chem. Ref. Data **50** (2021) 043107

Long-Range Interactions

Earth-Alkali Atoms

$\left \left\langle X(J=0) \hat{\boldsymbol{D}} l(J=1) ight angle ight $ [a.u.]							
Са			present			experiment	
state	CI model	RME	\Deltaarepsilon [cm $^{-1}$]	f	RME	\Deltaarepsilon [cm $^{-1}$] 55	f
$^{1}P_{1}(4p^{1})$ (3)	SDTQ_SD	4.98	25200	1.90	4.912^*	23652.304	$1.7332(7)^{56}$
$^{1}P_{1}(5p^{1})$ (10)	SDTQ_SD	0.23	43000	0.01		36731.615	
$^{1}P_{1}(6p^{1})(17)$	$SDTQ_SD$	0.93	52400	0.14		41679.008	

Dispersion coefficients for RaAg valence-isoelectronic systems:

	C_{6} [a.u.]				
System	present	literature			
BeLi $X^2\Sigma_{1/2}$	464	$478 \mathrm{a^{56}}$			
CaLi $X^2\Sigma_{1/2}$	1581	1689			
	1644^{*}				
$CaCa\ X(\Omega=0)$	2030*	$2080(7) b^{56}$			

⁵⁵A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team, *NIST Atomic Spectra Database* (2021)

⁵⁶(a) J. Jiang, Y. Cheng, and J. Mitroy, J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 134305
(b) O. Allard, C. Samuelis, A. Pashov, H. Knöckel, and E. Tiemann, Eur. Phys. J. D 26 (2003) 155

eEDM Constraint on Beyond-Standard-Model Theories

Single-source interpretation (21??)

Montpellier Seminar, 5 December 2023

People

Mickaël Hubert, Lecturer

Aurélien Marc, PhD Student

Thanks for your attention !

EDM Science

• Nuclear Schiff-moment interactions (Xe, Hg, TIF, FrAg et al.)

A. Marc., M. Hubert, T. F., arXiv: 2309.11633 [physics.atom-ph] (2023)
M. Hubert, T. F., *Phys. Rev. A* 106 (2022) 022817

• Weak neutral current interactions (Xe, Hg, Ra, TIF)

T. F., arXiv: 2311.06376 [physics.atom-ph] (2023) T. F., *Phys. Rev. A* **99** (2019) *012515*

• Electron EDM interactions (HfF⁺, ThO, Hg, TI, TaO⁺, RaAg et al.)

T. F., D. DeMille, New J. Phys. 23 (2021) 113039

T. F., L. V. Skripnikov, Symmetry 12 (2020) 498

T. F., M. Jung, J High Energy Phys. (JHEP) 07 (2018) 012

T. F., Phys. Rev. A 96 (2017) 040502(R)

T. F., Phys. Rev. A 95 (2017) 022504

M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307

• Nuclear MQM interactions (TaN, TaO⁺, HfF⁺, RaAg)

T. F., M. K. Nayak, M. G. Kozlov, Phys. Rev. A 93 (2016) 012505

EDMs and their possible sources: An overview

W. Cairncross, J. Ye, Nat. Rev. Phys. 1 (2019) 510

Tensor-Pseudotensor \mathcal{P} , \mathcal{T} -odd Nucleon-Electron Interaction

Effective Hamiltonian for a single electron⁵⁷ for Ne neutral weak current $\hat{H}_{\text{T-PT-ne}}^{\text{eff}} = \frac{iG_F}{\sqrt{2}} \sum_N C_T^N \rho_N(\mathbf{r}) \gamma^0 \sigma_{N\mu\nu} \gamma^5 \sigma^{\mu\nu}$

Using the identity

$$\sigma_{N\mu\nu}\gamma^5\sigma^{\mu\nu} = 2\gamma_N^0\boldsymbol{\gamma}_N\cdot\boldsymbol{\Sigma} + 2\gamma^0\boldsymbol{\Sigma}_N\cdot\boldsymbol{\gamma}$$

and $\langle \psi | \mathbf{\Sigma} | \psi \rangle = 0$ for closed-shell systems: $\hat{H}_{\text{T-PT-ne}}^{\text{eff}} = \frac{\imath G_F}{\sqrt{2}} \sum_N 2C_N^T \, \mathbf{\Sigma}_N \cdot \boldsymbol{\gamma} \rho_N(\mathbf{r})$

For nuclear state $|I, M_I = I\rangle$ isotope-specific many-electron Hamiltonian⁵⁸:

$$\hat{H}_{\text{T-PT-ne}}^{\text{eff}} = \imath \sqrt{2} G_F C_T^A \left\langle \Sigma \right\rangle_A \sum_{j=1}^n (\gamma_3)_j \rho(\mathbf{r}_j)$$

⁵⁷K. Yanase, N. Yoshinaga, K. Higashiyama, N. Yamanaka *Phys. Rev. D* **99** (2019) *075021*

⁵⁸T. F., M. Jung *Phys. Rev. A* **103** (2021) *012807*

Molecular T-PT-ne Interaction Constant⁵⁷

Energy shift of state E in a molecule:

$$\Delta \varepsilon_E = \left\langle \psi_E^{(0)} \middle| \hat{H}_{\text{T-PT-ne}}^{\text{eff}} \middle| \psi_E^{(0)} \right\rangle = W_T C_T^A$$

It then follows that

$$W_T(X) = \sqrt{2}G_F \langle \Sigma \rangle_A \left\langle \psi_E^{(0)} \left| i \sum_{j=1}^n (\gamma_3)_j \rho_X(\mathbf{r}_j) \right| \psi_E^{(0)} \right\rangle$$

In atoms

$$d_a = C_T^A \, \alpha_{C_T}$$

where

$$\alpha_{C_T} := \frac{\left<\hat{H}_{\mathrm{T-PT-ne}}^{\mathrm{eff}}\right>_{\psi^{(0)}(E_{\mathrm{ext}})}}{E_{\mathrm{ext}}}$$

⁵⁷T. F., arXiv: 2311.06376 [physics.atom-ph] (2023)

$W_T(\mathsf{TI})$ in $\mathsf{TIF}(^1\Sigma_0)$ from Hartree-Fock theory⁵⁸

model	$W_T(TI) \; [kHz \; \langle \Sigma angle_A]$	total energy
Hartree-Fock ¹	-0.851	
Dirac-Coulomb HF ²	-4.330	-20374.4108
DZ/DCHF	-4.601	-20374.41122770
TZ/DCHF	-4.673	-20374.46576781
QZ/DCHF	-4.684	-20374.47704191
QZ+dens+sp/DCHF	-4.684	-20374.47660904

⁵⁸T. F., arXiv: 2311.06376 [physics.atom-ph] (2023)

¹D. Cho and K. Sangster and E. A. Hinds, *Phys. Rev. A* 44 (1991) *2783*

P. V. Coveney and P. G. H. Sandars, J. Phys. B: At. Mol. Opt. Phys. 16 (1983) 3727

²H. M. Quiney, J. K. Lærdahl, T. Saue, and K. Fægri Jr., *Phys. Rev. A* 57 (1998) *920*

 $W_T(TI)$ in TIF($^1\Sigma_0$) from Correlated Theory⁵⁹

⁵⁹T. F., *arXiv: 2311.06376 [physics.atom-ph]* (2023)

Questions Begging an Answer

- Matter-antimatter asymmetry of the universe¹
- Nature of **cold dark matter**
- Degree of CP violation in nature²
- Detection/constraint of **EDMs** as a powerful probe⁶²

- ¹M. Dine, A. Kusenko, *Rev. Mod. Phys.* **76** (2004) *1*
- ²G. C. Branco, R. G. Felipe, F. R. Joaquim, *Rev. Mod. Phys.* **84** (2012) *515*
- ⁶²J. Engel, M.J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nuc. Phys. **71** (2013) 21
 - M. Safronova, D. Budker, D. DeMille, D.F. Jackson Kimball, A. Derevianko, C.W. Clark, Rev. Mod. Phys. 90 (2018) 025008
 - T.E. Chupp, P. Fierlinger, M.J. Ramsey-Musolf, J.T. Singh, Rev. Mod. Phys. 91 (2019) 015001

Electric Dipole Moments and Their Source Tree⁶³

• EDMs are low-energy physics probes of high-energy physics symmetry breaking

⁶³M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

Fundamental Discrete Symmetries (P) Violation

The fall of \mathcal{P} invariance⁶⁴; measuring helicity $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}$ in weak decays

right-handed μ^+ or left-handed μ^- never observed

 \Rightarrow right-handed ν_{μ} and left-handed $\overline{\nu}_{\mu}$ do not exist.

 $\Rightarrow \mathcal{P}$ maximally violated in weak processes.

- ⁶⁴C. S. Wu et al., *Phys Rev* **105** (1957) *254*
 - G. Backenstoss et al., Phys Rev Lett 6 (1961) 415
 - M. Bardon et al., Phys Rev Lett 7 (1961) 23

Fundamental Discrete Symmetries (CP) Conservation

Same weak decays under $(\hat{C}\hat{P})$ transformation:

 $\begin{array}{cccc} \mu^{-} & & \pi^{-} & \longrightarrow \overline{\nu}_{\mu} \\ \begin{pmatrix} s_{\mu} \\ \leftarrow \end{pmatrix} & & s_{\pi} = 0 & \longrightarrow \begin{pmatrix} \overline{\nu}_{\mu} \\ \begin{pmatrix} s_{\overline{\nu}} \\ \rightarrow \end{pmatrix} \end{pmatrix} \\ \text{right-handed } \mu^{-} & \text{right-handed } \overline{\nu}_{\mu} \\ & & \hat{\mathcal{CP}} \\ & \longrightarrow & & \\ \begin{pmatrix} \hat{\nu}_{\mu} \\ \begin{pmatrix} s_{\nu} \\ \rightarrow \end{pmatrix} & \leftarrow & \pi^{+} & \longrightarrow & \mu^{+} \\ \begin{pmatrix} s_{\mu} \\ \leftarrow \end{pmatrix} \\ s_{\pi} = 0 & \longrightarrow & \begin{pmatrix} s_{\mu} \\ \leftarrow \end{pmatrix} \\ \text{left-handed } \mu^{+} & \text{left-handed } \mu^{+} \end{array}$

The world is back to normal under $(\hat{C}\hat{P})$. Perhaps it is (CP) that is always conserved ?

Fundamental Discrete Symmetries

The fall of (CP) invariance⁶⁵

Weak K-meson decays under (CP):

$$(\hat{\mathcal{CP}}) |K_1\rangle = (\hat{\mathcal{CP}}) \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle - \left| \overline{K}^0 \right\rangle \right) = +1 |K_1\rangle \qquad \tau_1 \approx 10^{-10} [s]$$

$$(\hat{\mathcal{CP}}) |K_2\rangle = (\hat{\mathcal{CP}}) \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle + \left| \overline{K}^0 \right\rangle \right) = -1 |K_2\rangle \qquad \tau_2 \approx 5 \times 10^{-8} [s]$$

$$(\hat{\mathcal{CP}}) |\pi^+ \pi^- \rangle = (-1)^2 \hat{\mathcal{C}} |\pi^+ \pi^- \rangle = +1 |\pi^+ \pi^- \rangle$$

$$(\hat{\mathcal{CP}}) |\pi^+ \pi^- \pi^0\rangle = (-1)^3 \hat{\mathcal{C}} |\pi^+ \pi^- \pi^0\rangle = -1 |\pi^+ \pi^- \pi^0\rangle$$

However, in 0.2% of decays: $|K_2\rangle \longrightarrow |\pi^+ \pi^-\rangle \Rightarrow (\hat{C}\hat{\mathcal{P}})$ -nonconservation Therefore: $|K_L\rangle = \frac{1}{\sqrt{1+\varepsilon}} (|K_2\rangle + \varepsilon |K_1\rangle) \qquad \varepsilon \approx 2.3 \times 10^{-3}$

⁶⁵J. H. Christenson et al., *Phys Rev Lett* **13** (1964) *138*

Fundamental Discrete Symmetries

 (\mathcal{CP}) -Violation and Matter-Antimatter Asymmetry⁶⁶

In 39% of events K_L decays differently:

Fig. 1. The charge asymmetry as a function of the reconstructed decay time τ' for the K_{e3} decays. The experimental data are compared to the best fit as indicated by the solid line.

⁶⁶S. Gjesdal et al., *Phys Lett* **52B** (1974) *113*

F. Wilczek (1980)

Fundamental Discrete Symmetries

 (\mathcal{CP}) -Violation in the Standard Model⁶⁷

CKM quark-generation mixing matrix for charged weak interactions among quarks:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} c_1 & s_1c_3 & s_1s_3 \\ -s_1c_2 & c_1c_2c_3 - s_2s_3 e^{i\delta} & c_1c_2s_3 + s_2c_3 e^{i\delta} \\ -s_1s_2 & c_1s_2c_3 + c_2s_3 e^{i\delta} & c_1s_2s_3 - c_2c_3 e^{i\delta} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

includes complex phase with (\mathcal{CP}) -violating " δ parameter".

Cosmology:

A Matter-Antimatter Universe?⁶⁸ \longrightarrow ruled out. Leptogenesis⁶⁹ Electroweak baryogenesis⁷⁰

⁶⁷

⁶⁷C. Cabibbo, *Phys Rev Lett* **10** (1963) *531*

M. Kobayashi, K. Maskawa, Prog Theor Phys 49 (1973) 652

⁶⁸A.G. Cohen, A. De Rújula, S.L. Glashow, Astrophys J **495** (1998) 539

⁶⁹S. Davidson, E. Nardi, Y. Nir, *Phys Rep* **466** (2008) *105*

⁷⁰D.E. Morrissey, M.J. Ramsey-Musolf, New J Phys **14** (2012) 125003