Breaching $|d_e| \approx 10^{-32} e \text{cm}$ with Ultracold Molecules ?

Timo Fleig¹ and David DeMille²

¹LCPQ, I.R.S.A.M.C. Université Paul Sabatier Toulouse III, France ²Yale University New Haven, CT 06520, USA

26 November 2018

Laboratoire de Chimie et Physique Quantig

Université Paul Sabatier Yale

Motivation and Positioning

- Matter-antimatter asymmetry of the universe¹
- Nature of **cold dark matter**
- Degree of \mathcal{CP} violation in nature²
- Detection/constraint of EDMs as a powerful probe of possible explanations/consequences³

¹M. Dine, A. Kusenko, *Rev. Mod. Phys.* **76** (2004) *1*

²G. C. Branco, R. G. Felipe, F. R. Joaquim, *Rev. Mod. Phys.* **84** (2012) *515*

³J. Engel, M. J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nuc. Phys. **71** (2013) 21

Electric Dipole Moments and Their Source Tree⁴

 $\phi^{\rm (CKM)}_{\rm C'\!P}$ or $\phi^{\rm (BSM)}_{\rm C'\!P}$

give electric dipole moments (d_e, d_q, \ldots)

and \mathcal{T} -violating piece of weak interaction

Recent work on tensor interaction⁵ C_T in ¹⁹⁹Hg and ²²⁵Ra scalar-pseudoscalar interaction⁶ C_S in ¹⁹⁹Hg

⁴M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", *Ann. Phys.* **318** (2005) *119* ⁵TF, *arXiv:1811.01684* (2018)

⁶TF, M. Jung, J. High Energy Phys. 7 (2018) 012

The Electron Electric Dipole Moment

\tilde{e} : selectron

Bosonic superpartner of the electron, s = 0Electric charge $q_{\tilde{e}} = -e$ Mass $m_{\tilde{e}} >> m_e$

$$\begin{split} \tilde{\gamma}: \mbox{ photino (a WIMP, gaugino)}. \\ \mbox{ Fermionic superpartner of the photon,} \\ s &= 1/2 \\ \mbox{ Electric charge } q_{\tilde{\gamma}} &= 0 \\ \mbox{ Mass } m_{\tilde{\gamma}} &> 0 \end{split}$$

One-loop fermion EDM within MSSM ("naïve SUSY") prediction:⁷

 $|d_e|\approx 10^{-27} \left[e \text{ cm}\right]$

⁷J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049

eEDM Constraint on Beyond-Standard-Model Theories⁸ Single-source interpretation

Model	$ d_e [e\cdot cm]$
Standard model	$< 10^{-38}$
Left-right symmetric	$10^{-28} \dots 10^{-26}$ 10^{-29} 10^{-26}
Multi-Higgs	$10^{-28} \dots 10^{-27}$
Supersymmetric	$\leq 10^{-25}$
Experimental limit (TI) ⁹	$< 1.6 \cdot 10^{-27}$
Experimental limit $(YbF)^{10}$	$< 10.5 \cdot 10^{-28}$
Experimental limit $(ThO)^{11}$	$< 9.6 \cdot 10^{-29}$

⁸Courtesy: DeMille (2005), Huliyar (2009)

⁹B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

¹⁰J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

¹¹D. DeMille, ICAP 2014, Washington D.C., ACME Collaboration, *Science* 6168 (2014) *269*, TF and M. K. Nayak, *J. Mol. Spectrosc.* **300** (2014) *16*, L. V. Skripnikov, A. N. Petrov, A. V. Titov, *J. Chem. Phys.* 139 (2013) *221103*, L. V. Skripnikov, A. V. Titov, *J. Chem. Phys.* 142 (2015) *024301*, M. Denis, TF, *J Chem Phys* 145 (2016) *214307*

New Bounds on (Semi-)Leptonic CP-odd Parameters¹²

Multiple-source picture: $\Delta E_{\mathcal{P},\mathcal{T}} = - \langle \mathbf{d}_{sys} \cdot \mathbf{E}_{ext} \rangle$ $= \left(\alpha_{d_e} \, d_e + \alpha_{C_S} \, C_S \right) \, \langle \mathbf{n} \cdot \mathbf{z} \rangle \, (E_{ext})$

Previous resulting bound: From HfF⁺, ThO, YbF, TI $|d_e|_{2017} < 6.4 \times 10^{-28}e$ cm

 $\label{eq:linear} \begin{array}{l} \hline \mbox{New resulting bounds:} \\ \hline \mbox{From Hg, HfF^+, ThO, YbF, TI} \\ |d_e|_{2018} < 3.8 \times 10^{-28} e \ \mbox{cm} \\ |C_S|_{2018} < 2.7 \times 10^{-8} \end{array}$

- ¹²TF, M. Jung, J. High Energy Phys. 7 (2018) 012
 - J. Baron et al., Science 343 (2014) 269
 - M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307
 - L. Skripnikov, J. Chem. Phys. 145 (2016) 214301

- T. F., Phys. Rev. A (Rap. Comm.), 96 (2017) 040502(R)
- L.V. Skripnikov, J. Chem. Phys., 147 (2017) 021101

W.B. Cairncross, D.N. Gresh, M. Grau, K.C. Cossel, T.S. Roussy, Y. Ni, Y. Zhou, J. Ye, E.A. Cornell, *Phys. Rev. Lett.* **119** (2017) *153001*

eEDM Constraint on Beyond-Standard-Model Theories Single-source interpretation (2018)

ACME 2018 result¹³ combined with 2016 theory

¹³ACME collaboration, *Nature*, **562** (2018) *355*

Going Ultracold: From beams to traps

PHYSICAL REVIEW A, VOLUME 63, 023405

Loading and compressing Cs atoms in a very far-off-resonant light trap

D. J. Han, Marshall T. DePue, and David S. Weiss

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (Received 25 May 2000; published 12 January 2001)

We describe an experiment in which 3×10^7 Cs atoms are loaded into a 400 μ m crossed beam far-offresonant trap (FORT) that is only 2 μ K deep. A high-density sample is prepared in a magneto-optic trap, cooled in a three-dimensional far-off-resonant lattice (FORL), optically pumped into the lowest-energy state, adiabatically released from the FORL, magnetically levitated, and transferred to the final trap with a phasespace density of 10^{-3} . Spontaneous emission in the FORT is negligible, and we have compressed the atoms in the FORT to a spatial density of 2×10^{13} atoms/cm³. Evaporative cooling under these conditions proceeds rapidly.

• Estimated sensitivity of Cs EDM measurement in DLT¹⁴ is $|d_e| \approx 10^{-29} ecm$

Cs atom: $\Delta E = R E_{\text{ext}} d_e$ $E_{\text{int}} \approx 20 \left[\frac{\text{MV}}{\text{cm}}\right]$ Ultracold XY Molecule: $\Delta E = E_{\text{eff}} d_e$ $E_{\text{eff}} \approx 50 \left[\frac{\text{GV}}{\text{cm}}\right]$

• A factor of ≈ 2500 gain in sensitivity!

¹⁴DLT: Dipole light trap; D. Weiss (Penn State), 2014: "Measuring the eEDM using laser-cooled Cs atoms in optical lattices"

S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Phys. Rev. Lett. 57 (1986) 314

C. Chin, V. Leiber, V. Vuletić, A.J. Kerman, S. Chu, Phys. Rev. A 63 (2001) 033401

Towards Ultracold DLT EDM Measurement

Picking the cherry

In the casting:

Alkali(-like) atoms: Li, Na, K, Rb, Cs; Ag, Au Earth-alkaline atoms: Sr, Ba, Ra; Yb

Jury spreadsheet for X partner of Ra and some contenders:

X	EA(X) [eV]	$E_{ m effmax}\left[rac{ m GV}{ m cm} ight]$	$B_v = \left\langle v \frac{1}{\mu R^2} v \right\rangle [\mathrm{cm}^{-1}]$	D [D]	$E_{\mathrm{pol}} = \frac{B_v}{D} \left[\frac{\mathrm{kV}}{\mathrm{cm}} \right]$
Li	0.62	61	—	≈ 1.5	
Na	0.55	58	—	≈ 1	
K	0.50	50	—	≈ 1	
Rb	0.49	48	+	≈ 1	
Cs	0.47	44	+	≈ 1	
Ag	1.30	66	0.021	5.4	0.264
Au	2.31	60	+	≈ 6	
AgBa	1.30	6	+	≈ 3	
RbYb ¹⁵		-0.7	0.001	0.21	5.5
$CsYb^{15}$		0.54	0.007	0.24	3.5

¹⁵E. R. Meyer, J. L. Bohn, *Phys. Rev. A* **80** (2009) 042508

Towards Ultracold DLT EDM Measurement

Picking the cherry

In the casting:

Alkali(-like) atoms: Li, Na, K, Rb, Cs; Ag, Au Earth-alkaline atoms: Sr, Ba, Ra; Yb

Jury spreadsheet for X partner of Ra and some contenders:

Х	EA(X) [eV]	$E_{\mathrm{eff}_{\mathrm{max}}}\left[\frac{\mathrm{GV}}{\mathrm{cm}} ight]$	$B_v = \left\langle v \frac{1}{\mu R^2} v \right\rangle [\mathrm{cm}^{-1}]$	D [D]	$E_{\mathrm{pol}} = \frac{B_v}{D} \left[\frac{\mathrm{kV}}{\mathrm{cm}} \right]$
Li	0.62	61	—	≈ 1.5	
Na	0.55	58	—	≈ 1	
K	0.50	50	—	≈ 1	
Rb	0.49	48	+	≈ 1	
Cs	0.47	44	+	≈ 1	
Ag	1.30	66	0.021	5.4	0.264
Au	2.31	60	+	≈ 6	
AgBa	1.30	6	+	≈ 3	
RbYb		-0.7	0.001	0.21	5.5
CsYb		0.54	0.007	0.24	3.5

Au is forbidden fruit!

$(\mathcal{P},\mathcal{T})\text{-}\text{odd}$ properties of AgRa

• Electron EDM effective electric field¹⁶

$$E_{\text{eff}} = \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_j^0 \gamma_j^5 \vec{p}_j^2 \right\rangle_{\psi^{(0)}}$$

• S-PS nucleon-electron interaction constant¹⁷

$$W_{\mathcal{S}} := \frac{i}{\Omega} \frac{G_F}{\sqrt{2}} Z_{\text{heavy}} \left\langle \Psi_{\Omega} \right| \sum_{j=1}^n \left| \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \right| \Psi_{\Omega} \right\rangle$$

	$ $ $^{3}\Delta_{1}$			$^{2}\Sigma$		
	ThO	HfF^+	ThF^+	YbF	ÁgRa	
$ E_{\text{eff}} $	78	23	35	25	64	$\left[\frac{\text{GV}}{\text{cm}}\right]$
$ W_S $	106	20	51	40	175	[kHz]

¹⁶E. Lindroth, E. Lynn, P.G.H. Sandars, *J. Phys. B: At. Mol. Opt. Phys.* **22** (1989) *559* T.F., M.K. Nayak, *Phys. Rev. A* **88** (2013) *032514*

¹⁷V. G. Gorshkov, L. N. Labzovski, and A. N. Moskalev, Zh. Eksp. Teor. Fiz. 76 (1979) 414

M. Denis et al., New J. Phys. 7 (2015) 043005

Devising a AgRa DLT EDM Experiment

• Photoassociating ultracold atoms into ultracold molecules¹⁸

- Does its electronic spectrum allow for efficient energy transfer (remove binding energy without heating) ?
- Which states are candidates for photoassociation ?

¹⁸L. D. Carr, D. DeMille, R. V. Krems, J. Ye, New J. Phys. **11** (2009) 055049

AgRa - Electronic-structure model

	(4 a u)	of Kramers pairs	accun # of el min.	ulated ectrons max.	Determinant classes
III	Virtual Kramers pairs	71	21	21	I ¹⁸ II ³ III ⁰ (Reference space) I ¹⁸ II ² III ¹ (Singles)
II	Ag: 5p,6s Ra: 7p,8p,6d Ag: 5s σ Ra: 7s	18	19	21	I ¹⁸ II ¹ III ² (Valence correlating) I ¹⁷ II ⁴ III ⁰ (Singles) I ¹⁷ II ³ III ¹ (Singles)
Ι	Ra: 6s, 6p Ag: 4d	9	17	18	$I^{17} II^2 III^2$ (Core-val. correlating)
	Frozen core	(57)			$17.6 imes10^6$ expansion terms ($\Omega=1/2$)

cvTZ bases¹⁹

KRCI program²⁰

¹⁹K.G. Dyall, *Theoret. Chim. Acta* **131** (2012) *1217*

K.G. Dyall, A.S.P. Gomes, Theoret. Chim. Acta 125 (2010) 97

²⁰S. Knecht, H.J.Aa. Jensen, T.F., *J. Chem. Phys.* **132** (2010) *014108*

DIRAC15 package (locally modified)

Atomic and Molecular Correlated Wavefunctions

- Solve relativistic equation of motion (yields wavefunctions)
- Dirac-Coulomb Hamiltonian operator (molecules)

$$\hat{H}^{DC} = \sum_{i}^{n} \left[c \,\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{A,B>A}^{N} V_{AB}$$

- Dirac-Coulomb-Gaunt Hamiltonian operator (molecules) $\hat{H}^{DCG} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \left(\frac{1}{r_{ij}} \mathbb{1}_{4} + \frac{1}{2} \frac{\vec{\alpha}_{i} \vec{\alpha}_{j}}{r_{ij}} \right) + \sum_{A,B>A}^{N} V_{AB}$
- Dirac-Coulomb Hamiltonian + external electric field (atoms) $\hat{H}^{\text{Dirac-Coulomb}} + \hat{H}^{\text{Int-Dipole}} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} + \frac{Z}{r_{i}} \mathbb{1}_{4} \right] + \sum_{i,j>j}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{i}^{n} \mathbf{r}_{i} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}$

AgRa - PECs

Searching for New Physics with Cold and Controlled Molecules, Mainz, 26 November 2018

Radium excited states - Comparison with experiment²¹

 21 NIST Atomic Spectra Database (ver. 5.5.1)

Electronic Transition Dipole Moments : $\Omega = 1/2$ states

Searching for New Physics with Cold and Controlled Molecules, Mainz, 26 November 2018

Electronic Transition Dipole Moments : $\Omega = 3/2$ states

Searching for New Physics with Cold and Controlled Molecules, Mainz, 26 November 2018

Long-range interactions : theory

- Motivation: Find least-bound vibrational level of ground potential
- Problem: PECs at long range not sufficiently accurate, even with very large basis sets !
- Solution: Go "back" to atomic physics

Dispersion interaction for two neutral heteronuclear atoms

Van der Waals interaction potential:

 $V(R) = -\frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}} - \dots$

Dispersion coefficients from oscillator strengths²²

Ground state:

$$C_6^{\Omega=1/2(1)} = \sum_{n_c(\ell_c=1), n_d(\ell_d=1)} \frac{3}{2} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} \left(\Delta E_{ca} + \Delta E_{db}\right)}$$

 $a={}^2S_{1/2}(5s^1)$ for Ag and $b={}^1S_0(7s^2)$ for Ra

$$f_{KL}^{(1)} = 2 \left(E_L - E_K \right) || \langle \psi_K | \sum_{k=1}^n \hat{r}(k) |\psi_L \rangle ||^2$$

$$\begin{split} |\psi_L\rangle &= \left|{}^2P\right\rangle = \left|1, M_L; \frac{1}{2}, \frac{1}{2}\right\rangle \text{ are expanded as} \\ &\left|1, 0; \frac{1}{2}, \frac{1}{2}\right\rangle = \left\langle\frac{3}{2}, \frac{1}{2}|1, 0; \frac{1}{2}, \frac{1}{2}\right\rangle \ \left|\frac{3}{2}, \frac{1}{2}\right\rangle + \left\langle\frac{1}{2}, \frac{1}{2}|1, 0; \frac{1}{2}, \frac{1}{2}\right\rangle \ \left|\frac{1}{2}, \frac{1}{2}\right\rangle \\ \text{where } \left\langle J, M_J | L, M_L; S, M_S \right\rangle \end{split}$$

²²J.-Y. Zhang, J. Mitroy, *Phys. Rev. A* **76** (2007) *022705*

Testing the approach: LiBe and RbSr

LiBe
$$(^{2}\Sigma_{1/2})$$
lin. CCSD²³KRCI(FCI) C_{6} [a.u.]478(3)454

5% residual deviation!

AgRa (
$$\Omega = 1/2(1)$$
)
 KRCI(MR-SD)

 C_6 [a.u.]
 1163

 ²³A. Derevianko, S.G. Porsev, J.F. Babb, At. Data Nucl. Data Tables 96 (2010) 323
 M.S. Safronova, W.R. Johnson, A. Derevianko, Phys. Rev. A 60 (1999) 4476

Connecting LR- and SR-Potentials

Ground potential $\Omega = 1/2(1)$

²⁴R.J. LeRoy, Can. J. Phys. 52 (1974) 246
R.J. LeRoy, R. B. Bernstein, J. Chem. Phys. 52 (1970) 3869

- Pure short-range potentials produce artefacts! |
- $V(R) \approx -\frac{C_6}{R^6}$ and fit longrange to short-range curves
- Correct physics from careful fitting

Dispersion coefficients from oscillator strengths

Ra(7p) excited states:

$$C_{6}^{\Omega=1/2(16)} = C_{6}^{\Omega=3/2(11)} = \sum_{n_{c}(\ell_{c}=1), n_{d}(\ell_{d}=0)} \frac{3}{4} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} (\Delta E_{ca} + \Delta E_{db})} + \sum_{n_{c}(\ell_{c}=1), n_{d}(\ell_{d}=1)} \frac{15}{8} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} (\Delta E_{ca} + \Delta E_{db})} + \sum_{n_{c}(\ell_{c}=1), n_{d}(\ell_{d}=2)} \frac{57}{40} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} (\Delta E_{ca} + \Delta E_{db})}$$

$$\begin{tabular}{|c|c|c|c|c|c|c|} \hline AgRa \left(\Omega = 1/2(16), \Omega = 3/2(11)\right) & \mathsf{KRCI}(\mathsf{MR-SD}) \\ \hline C_6[\mathsf{a.u.}] & & 773 \end{tabular}$$

Searching for New Physics with Cold and Controlled Molecules, Mainz, 26 November 2018

Connecting LR- and SR-Potentials

Excited potentials $\Omega = 1/2(16), \Omega = 3/2(11)$

LeRoy radius:

$$R_{\rm LR} = 2 \left(\left\langle \hat{r}^2 \right\rangle_A^{1/2} + \left\langle \hat{r}^2 \right\rangle_B^{1/2} \right)$$

$$ig\langle \hat{r}^2 ig
angle_{\mathrm{Ag}_{5s}} = 13.90 \text{ a.u.} \qquad ig\langle \hat{r}^2 ig
angle_{\mathrm{Ra}_{7p_{3/2}}^+} = 60.63 \text{ a.u.}$$
$$\Rightarrow R_{\mathrm{LR}}^{\Omega = 1/2(1)} = 23.0 \text{ a.u.}$$

eEDM Constraint on Beyond-Standard-Model Theories Single-source interpretation (20??)

Conclusion.²⁵ Where do we go from here ?

- AgRa can be trapped and cooled to ultracold temperatures
- \mathcal{P}, \mathcal{T} -odd properties are competitive
- Electronic spectrum is complex, but not hopeless for PA
- FCFs for $\Omega=1/2(1)-\Omega=1/2(16)$ and $\Omega=1/2(1)-\Omega=3/2(11)$ look promising
- One remaining question: Is predissociation possible?
- AgRa seems prime candidate among ultracold "contenders"

²⁵TF, D. DeMille, manuscript in preparation

Effective Hamiltonian²⁶

$$\hat{H}_{Ne}^{T-PT} = \frac{\imath G_F}{\sqrt{2}} \, 2 \, C_T \, \boldsymbol{\gamma}_e \cdot \boldsymbol{\sigma}_N \, \rho(\mathbf{r})$$

Important in closed-shell atomic systems, Hg, Ra, et al.

²⁶E.A. Hinds, C.E. Loving, P.G.H. Sandars, *Phys. Lett. B* **62** (1976) *97*

With nuclear state expressed as $|I,M_I=I
angle$ it follows

$$\hat{H}_{Ne}^{T-PT} = \frac{iG_F}{\sqrt{2}} 2 C_T (\gamma_e)^3 \langle \sigma_N \rangle_{\Psi_N} \rho(\mathbf{r})$$

Defining an electronic matrix element²⁷

$$M_{Ne}^{T-PT} := \left\langle \psi_e | \iota(\gamma_e)^3 \rho(\mathbf{r}) | \psi_e \right\rangle$$

The Ne-TPT interaction constant is

$$R_T = \sqrt{2} G_F \left\langle \sigma_N \right\rangle_{\Psi_N} M_{Ne}^{T-PT}$$

with $d_a = R_T C_T$.

²⁷TF, *arXiv:1811.01684* (2018) **DIRAC15** package (locally modified)

 199 Hg

Model/virtual cutoff [a.u.]	$lpha_d$ [a.u.]		$R_T [10^{-2}]$	$^{20}\left\langle \sigma_{N} ight angle e{ m cm}]$
	Basis set		Ba	isis set
	vDZ	vTZ	vDZ	vTZ
RPA/-	44.5	45.5	-4.70	-4.94
SD12/22	35.0	33.5	-4.05	-4.25
SD18/22	30.7	34.2	-5.52	-5.82
SD12_SDT18/22			-5.35	
SD34/22			-4.77	-5.16
SD34/50	30.0	34.8	-4.95	-5.19
S8_SD42/50			-5.14	
S10_SD44/50			-5.00	
SDT12/22	37.9	34.4	-3.65	-3.71
SDTQ12/22			-3.40	
vTZ/SD34/50 $+\Delta$	35	5.7 -4.43		-4.43
Singh $et \ al.^{28} \ CCSD_pT$	34	.27	-4.30	
Dzuba $et \ al.^{29}$ RPA/MBPT+CI	44	.9	-5.1	
Experiment ³⁰	33.	.91		

²⁸Y. Singh, B.K. Sahoo, *Phys. Rev. A* **91** (2015) *030501(R)*

³⁰D. Goebel, U. Hohm, J. Phys. Chem **100** (1996) 7710

²⁹V.A. Dzuba, *Phys. Rev. A* **93** (2016) *032519*V.A. Dzuba, V.V. Flambaum, S.G. Porsev, *Phys. Rev. A* **80** (2009) *032120*

 225 Ra

Model/virtual cutoff [a.u.]	R_T [10	$0^{-20} \langle \sigma_N \rangle$	angle e cm]
	Basis set		
	vDZ	vTZ	vQZ
RPA/-	-14.5	-14.7	-14.7
SD10/23	-12.5	-13.6	-13.7
SD10/50	-12.5		
SD20/23	-13.6	-13.9	-14.0
SD28/23	-14.7	-15.0	-14.9
SD28/50		-14.9	
S8_SD36/50		-15.4	
S14_SD42/50		-15.1	
SDT10/23	-11.3	-13.1	-13.2
SDTQ10/23	-10.7		
vTZ/SD28/50 + ΔR_T		-15.0	
Dzuba et al. ³² MBPT+CI		-18	

Using Argonne result³¹ for d_{225}_{Ra}

$$|C_T| < \left| \frac{d_{225_{\text{Ra}}}}{R_T} \right| = 9.3 \times 10^{-5} \frac{1}{\langle \sigma_N \rangle} < 10^{-3}$$

³¹M. Bishof et al., *Phys. Rev. C* **94** (2016) *025501*

³²V.A. Dzuba, V.V. Flambaum, S.G. Porsev, *Phys. Rev. A* **80** (2009) *032120*

Atomic and Molecular Correlated Wavefunction

• All-electron Dirac-Coulomb Hartree-Fock (DC(G)HF) calculation set of time-reversal paired 4-spinors $\hat{K}\varphi_i = \varphi_{\bar{i}}$ and $\hat{K}\varphi_{\bar{i}} = -\varphi_i$

$$\hat{K}(n) := e^{-\frac{i}{2}\pi \left(\sum_{j=1}^{n} \boldsymbol{\sigma} \otimes \mathbb{1}_{2}(j)\right) \cdot \vec{e}_{y}} \prod_{j=1}^{n} \hat{K}_{0}(j)$$

• Expansion and variation³³ in *n*-electron sector of Fock space $\begin{aligned} & \lim_{I=1}^{\dim \mathcal{F}^{t}(M,n)} & \text{unbarred (Kramers up) string } \mathcal{S} = a_{i}^{\dagger}a_{j}^{\dagger}a_{k}^{\dagger} \dots \\ & \text{barred (Kramers down) string } \overline{\mathcal{S}} = a_{\overline{l}}^{\dagger}a_{\overline{m}}^{\dagger}a_{\overline{n}}^{\dagger} \dots \end{aligned}$

Linear expansion: Configuration Interaction

Exponential expansion: Coupled Cluster

³³S. Knecht, H.J.Aa. Jensen, T.F., J Chem Phys **132** (2010) 014108

\mathcal{P} , $\mathcal{T}\text{-}odd$ Property Calculations

using correlated wavefunctions

Expectation values over relativistic Configuration Interaction wavefunctions³⁴ $\left\langle \hat{H}' \right\rangle_{\psi_k^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^t(M,n)} c_{kI}^* c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_I^\dagger \right| \hat{H}' \right| (\mathcal{S}\overline{\mathcal{T}})_J \left| \right. \right\rangle$

Property operator in basis of Kramers-paired molecular spinors

$$\hat{H}' = \sum_{p,q=1}^{P_u} h'_{pq} a^{\dagger}_p a_q + \sum_{p=1}^{P_u} \sum_{q=P_u+1}^{P} h'_{p\overline{q}} a^{\dagger}_p a_{\overline{q}} + \sum_{p=P_u+1}^{P} \sum_{q=1}^{P_u} h'_{\overline{p}q} a^{\dagger}_{\overline{p}} a_q + \sum_{p,q=P_u+1}^{P} h'_{\overline{p}\overline{q}} a^{\dagger}_{\overline{p}} a_{\overline{q}}$$

First-term contribution to expectation value

$$W'(\Psi_k)_1 = \sum_{\substack{I,J=1\\I,J=1}}^{\dim \mathcal{F}^{\mathsf{t}}(\mathsf{P},\mathsf{N})} c_{kI}^* c_{kJ} \sum_{\substack{m,n=1\\m,n=1}}^{P_u} h_{mn}^M$$
$$\begin{pmatrix} N_p \in \mathcal{S}_I \ N_p \in \mathcal{S}_I + N_{\overline{p}} \in \overline{\mathcal{T}}_I \\ \langle \mid \prod_{p=1}^{N_p \in \mathcal{S}_I} \prod_{\overline{p}=N_p+1}^{N_p \in \overline{\mathcal{T}}_I} a_{\overline{p}} a_p \ a_m^{\dagger} a_n \prod_{q=1}^{N_p \in \mathcal{S}_J} N_p \in \mathcal{S}_J + N_{\overline{p}} \in \overline{\mathcal{T}}_J \\ \prod_{p=1}^{T_p \in N_p+1} a_q^{\dagger} a_{\overline{q}}^{\dagger} \mid \rangle$$

³⁴ S. Knecht, Dissertation, HHU Düsseldorf 2009

$\mathcal{P}, \mathcal{T}\text{-}\text{odd}$ Effects in Closed-Shell States ?

- Atomic electronic state in $E_{\text{ext}} \neq 0$: $|M_J\rangle$
- In the closed-shell subcase ($p_{1/2}^2 \neq$ closed shell) it follows: $|M_S=0\rangle$
- Then it is straightfoward to show that $\langle M_S = 0 | \sum_j \gamma^0(j) \Sigma_3(j) E_3 | M_S = 0 \rangle = 0$ and $\langle M_S = 0 | \sum_j \gamma^0(j) \Sigma_{\pm}(j) E_{\pm} | M_S = 0 \rangle = 0$
- The electron EDM Hamiltonian can be reformulated as $-\left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \mathbf{\Sigma}_{j} \cdot \mathbf{E}_{j} \right\rangle_{\psi^{(0)}} \approx \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \gamma_{j}^{5} \vec{p}_{j}^{2} \right\rangle_{\psi^{(0)}}$
- which has the same transformation properties as the ne-SPS Hamiltonian.
- No \mathcal{P}, \mathcal{T} -odd effects in closed-shell states (in $E_{\text{ext}} \neq 0$).

EDMs in paramagnetic atoms:

Nucleon-electron SPS interaction

- Effective interaction Hamiltonian $\hat{H}_{\text{ne-SPS}}(S) = \frac{iG_F}{\sqrt{2}} AC_S \sum_{e} \gamma_e^0 \gamma_e^5 \rho(\mathbf{r}_e)$
- To first order in perturbation theory

$$(\Delta \varepsilon)_J = \left\langle \imath \frac{G_F}{\sqrt{2}} A C_S \sum_e \gamma_e^0 \gamma_e^5 \rho(\mathbf{r}_e) \right\rangle_{\psi_J^{(1)}}$$

- Atomic EDM is defined as $d_a = -\lim_{E_{\text{ext}} \to 0} \left[\frac{\partial(\Delta \varepsilon)}{\partial E_{\text{ext}}} \right]$
- Definition of an ne-SPS ratio

$$S := \frac{d_a}{AC_S \frac{G_F}{\sqrt{2}}}$$

• from which follows

$$S = -\lim_{E_{\text{ext}}\to 0} \left[\frac{\partial}{\partial E_{\text{ext}}} \left\langle i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \right\rangle_{\psi_{J}^{(1)}(E_{\text{ext}})} \right]$$

 ψ_J : atomic many-particle state