The Search for New Physics with Atoms and **Molecules From** *CP***-Violation to Electric Dipole Moments**

Timo Fleig

LCPQ, I.R.S.A.M.C. Université Paul Sabatier Toulouse III

France

14 January 2020

Paul Sabatier TOULOUSE II

Laboratoire de Chimie et Physique Quantique

Outline

Problems (in a Nutshell)

Relevant particle physics

Relevant atomic physics

Science (1): Search for the **Electron EDM**

Science (2) : Atomic EDMs and **stronger constraints**

Questions Begging an Answer

- Matter-antimatter asymmetry of the universe¹
- Nature of **cold dark matter**
- Degree of \mathcal{CP} violation in nature²
- Detection/constraint of **EDMs** as a powerful probe³

- ¹M. Dine, A. Kusenko, *Rev. Mod. Phys.* **76** (2004) *1*
- ²G. C. Branco, R. G. Felipe, F. R. Joaquim, *Rev. Mod. Phys.* **84** (2012) *515*
- ³J. Engel, M.J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nuc. Phys. **71** (2013) 21
- M. Safronova, D. Budker, D. DeMille, D.F. Jackson Kimball, A. Derevianko, C.W. Clark, Rev. Mod. Phys. 90 (2018) 025008
- T.E. Chupp, P. Fierlinger, M.J. Ramsey-Musolf, J.T. Singh, Rev. Mod. Phys. 91 (2019) 015001

Energy Content and Baryon Asymmetry of the Universe (BAU)⁴

Dark energy: Why accelerated expansion? Cosmological constant?

Dark matter: Particle (LSP, axion)? Modification of gravity?

Ordinary matter: Existence contradicts SM prediction!

Evidence for the BAU:

 $Y_B = \frac{n_B - \overline{n}_B}{S} \approx \frac{n_B}{S} = \begin{cases} (7.3 \pm 2.5) \times 10^{-11} & \text{Big-Bang Nucleosynthesis (BBN)}^5 \\ (9.2 \pm 1.1) \times 10^{-11} & (\text{WMAP, exp.})^6 \\ (8.59 \pm 0.11) \times 10^{-11} & (\text{Planck, exp.})^7 \end{cases}$

- ⁵S. Eidelman *et al.*, *Rev. Part. Phys. Phys. Lett. B* **592** (2004) 1
- ⁶D. N. Spergel *et al.*, Astron. J. Suppl. **148** (2003) 175
- ⁷P. A. R. Ade *et al.*, *Astron. Astrophys.* **571** (2013) *A16*

⁴G. A. White, A Pedagogical Introduction to Electroweak Baryogenesis Morgan & Clay (2016) 1

Electric Dipole Moments and Their Source Tree⁸

• EDMs are low-energy physics probes of high-energy physics symmetry breaking

⁸M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

Fundamental Discrete Symmetries (P) Violation

The fall of \mathcal{P} invariance⁹; measuring helicity $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}$ in weak decays

right-handed μ^+ or left-handed μ^- never observed

 \Rightarrow right-handed ν_{μ} and left-handed $\overline{\nu}_{\mu}$ do not exist.

 $\Rightarrow \mathcal{P}$ maximally violated in weak processes.

- ⁹C. S. Wu et al., *Phys Rev* **105** (1957) *254*
- G. Backenstoss et al., Phys Rev Lett 6 (1961) 415
- M. Bardon et al., *Phys Rev Lett* **7** (1961) *23*

Fundamental Discrete Symmetries (CP) Conservation

Same weak decays under $(\hat{C}\hat{P})$ transformation:

The world is back to normal under (\hat{CP}) . Perhaps it is (CP) that is always conserved ?

Fundamental Discrete Symmetries

The fall of (CP) invariance¹⁰

Weak K-meson decays under (CP):

$$\begin{aligned} (\hat{\mathcal{CP}}) & |K_1\rangle &= (\hat{\mathcal{CP}}) \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle - \left| \overline{K}^0 \right\rangle \right) = +1 |K_1\rangle & \tau_1 \approx 10^{-10} [s] \\ (\hat{\mathcal{CP}}) & |K_2\rangle &= (\hat{\mathcal{CP}}) \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle + \left| \overline{K}^0 \right\rangle \right) = -1 |K_2\rangle & \tau_2 \approx 5 \times 10^{-8} [s] \\ (\hat{\mathcal{CP}}) & \left| \pi^+ \pi^- \right\rangle &= (-1)^2 \hat{\mathcal{C}} \left| \pi^+ \pi^- \right\rangle = +1 \left| \pi^+ \pi^- \right\rangle \\ (\hat{\mathcal{CP}}) & \left| \pi^+ \pi^- \pi^0 \right\rangle &= (-1)^3 \hat{\mathcal{C}} \left| \pi^+ \pi^- \pi^0 \right\rangle = -1 \left| \pi^+ \pi^- \pi^0 \right\rangle \end{aligned}$$

However, in 0.2% of decays: $|K_2\rangle \longrightarrow |\pi^+ \pi^-\rangle \Rightarrow (\hat{\mathcal{CP}})$ -nonconservation

Therefore:
$$|K_L\rangle = \frac{1}{\sqrt{1+\varepsilon}} (|K_2\rangle + \varepsilon |K_1\rangle) \qquad \varepsilon \approx 2.3 \times 10^{-3}$$

¹⁰J. H. Christenson et al., *Phys Rev Lett* **13** (1964) *138*

Fundamental Discrete Symmetries

 (\mathcal{CP}) -Violation and Matter-Antimatter Asymmetry¹¹

In 39% of events K_L decays differently:

Fig. 1. The charge asymmetry as a function of the reconstructed decay time τ' for the K_{e3} decays. The experimental data are compared to the best fit as indicated by the solid line.

¹¹S. Gjesdal et al., *Phys Lett* **52B** (1974) *113*

F. Wilczek (1980)

Fundamental Discrete Symmetries

 (\mathcal{CP}) -Violation in the Standard Model¹²

CKM quark-generation mixing matrix for charged weak interactions among quarks:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} c_1 & s_1c_3 & s_1s_3 \\ -s_1c_2 & c_1c_2c_3 - s_2s_3 e^{i\delta} & c_1c_2s_3 + s_2c_3 e^{i\delta} \\ -s_1s_2 & c_1s_2c_3 + c_2s_3 e^{i\delta} & c_1s_2s_3 - c_2c_3 e^{i\delta} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

includes complex phase with (\mathcal{CP}) -violating " δ parameter".

Cosmology:

A Matter-Antimatter Universe?¹³ \longrightarrow ruled out. Leptogenesis¹⁴ Electroweak baryogenesis¹⁵

¹²C. Cabibbo, *Phys Rev Lett* **10** (1963) *531*

M. Kobayashi, K. Maskawa, Prog Theor Phys 49 (1973) 652

¹³A.G. Cohen, A. De Rújula, S.L. Glashow, *Astrophys J* **495** (1998) *539*

¹⁴S. Davidson, E. Nardi, Y. Nir, *Phys Rep* **466** (2008) *105*

¹⁵D.E. Morrissey, M.J. Ramsey-Musolf, New J Phys **14** (2012) 125003

 (\mathcal{CP}) -Violation and the (\mathcal{CPT}) Theorem¹⁶

$$(CP) \xrightarrow{CPT} (T)$$

EDMs violate \mathcal{T} symmetry (at least in a minute ...)

¹⁶W. Pauli, Niels Bohr and the Development of Physics (1955) 30

A Lonely Electron in the Universe

Standard-Model Prediction of the Electron EDM

Interactions with virtual particles including $\mathcal{CP}\text{-}$ violation

 \Rightarrow fermion EDM

Summed three-loop diagrams¹⁶

 $\Rightarrow d_e = 0$

The SM eEDM is extremely small: $d_e < 10^{-38} ecm$

¹⁶M.É. Pospelov, I.B. Khriplovich, Yad. Fiz. **53** (1991) 1030

¹⁷https://www.pourlascience.fr/sd/physique-particules/lelectron-met-a-mal-des-theories-au-dela-du-modele-standard-15089.php

The induced fermion EDM

Beyond the Standard Model

 χ : chargino, neutralino

 \tilde{f}'_j : supersymmetry (s)-fermion

 $\epsilon^{\mu}(q)$: photon

Chargino $(\tilde{\chi}_{1,2}^{\pm})$, neutralino $(\tilde{\chi}_{1,2,3,4}^{0})$ or gluino (\tilde{g}^{a}) fermion/sfermion interaction Lagrangian:

$$\mathcal{L}_{\chi f \tilde{f}'} = g_{Lij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_L f \right) \tilde{f}_j'^* + g_{Rij}^{\chi f \tilde{f}'_j} \left(\overline{\chi}_i P_R f \right) \tilde{f}_j'^* + h.c.$$

One-loop fermion EDM:¹⁹

$$\left(\frac{d_{f}^{E}}{e}\right)^{\chi} = \frac{m\chi_{i}}{16\pi^{2}m_{\tilde{f}'_{j}}^{2}} \mathcal{I}m\left[\left(g_{Rij}^{\chi f\tilde{f}'_{j}}\right)^{*}g_{Lij}^{\chi f\tilde{f}'_{j}}\right] \left[Q_{\chi}A\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right) + Q_{\tilde{f}'_{j}}B\left(\frac{m\chi_{i}}{m_{\tilde{f}'_{j}}^{2}}\right)\right]$$

MSSM ("naïve SUSY") prediction: $\underline{d_e} \leq 10^{-27} e \text{ cm}$

¹⁹J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049

Sets of valid quantum numbers for fermion state:

 $|C, T, U, \ldots, s, m_s\rangle$

 $|C, T, U, \ldots, s, m_s, m_{\mathsf{EDM}}\rangle$

The many-fermion state could be written:

 $|C(1) = C(2), T(1) = T(2), \dots, s(1) = s(2), m_s(1) = m_s(2), m_{\mathsf{EDM}}(1) \neq m_{\mathsf{EDM}}(2)$

leads to an internal contradiction (fermions would not be fermions) !

The Fermion EDM

Hamiltonian in Electromagnetic Field

Classical electromagnetism:

 $\varepsilon_{\mathrm{dip}} = -\mathbf{D} \cdot \mathbf{E}$

Fermion EDM vector operator $\hat{\mathbf{d}} \propto \mathbf{\Sigma} = \left(egin{array}{cc} \boldsymbol{\sigma} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\sigma} \end{array}
ight)$ and so²⁰ $\hat{H}_{\mathsf{EDM}} = -d_f \, \gamma^0 \, \mathbf{\Sigma} \cdot \mathbf{E}$ The proportionality constant d_f is the fermion EDM. Dirac matrix γ^0 ensures that $\left<\hat{H}\right>$ is a Lorentz scalar (I'll come back to that) Energy $\langle \hat{H} \rangle$ violates space-inversion (\mathcal{P}) and time-reversal (\mathcal{T}) symmetries: $\left(\gamma^{0}
ight)^{-1} \gamma^{0} \Sigma \gamma^{0} = \gamma^{0} \Sigma$ $\mathcal{P}^{-1} \mathbf{E} \mathcal{P} = -\mathbf{E}$ $\left(\imath\gamma^0\gamma^5\gamma^2\,\hat{K}_0\right)^{-1}\,\gamma^0\,\mathbf{\Sigma}\,\,\imath\gamma^0\gamma^5\gamma^2\,\hat{K}_0\,=-\gamma^0\,\mathbf{\Sigma}$ $\mathcal{T}^{-1}~\mathbf{E}~\mathcal{T}=\mathbf{E}$ This energy $\langle \hat{H} \rangle$ is a \mathcal{T} -odd *pseudo*scalar.

²⁰E. Salpeter, *Phys Rev* **112** (1958) *1642*

Schiff's Theorem

"The electric dipole moment of a bound-state atom composed of particles with non-zero electric dipole moments is zero in non-relativistic approximation."²¹

Consider the expectation value in eigenstate $\psi^{(0)}$ (incl. E_{ext}) $\varepsilon_{\text{EDM}} = \langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} = \langle -d_e \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} + \langle d_e(\mathbb{1}_4 - \gamma^0) \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}}$

In the non-rel. limit $\gamma^{0 \operatorname{nrlimit}} \mathbb{1}_4$ and so we consider $\langle -d_e \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} = \frac{-d_e}{-e} \langle \mathbf{\Sigma} \cdot (\nabla_{\mathbf{x}} e \phi) \rangle_{\psi^{(0)}} = \frac{i d_e}{e \hbar} \langle [\mathbf{\Sigma} \cdot \mathbf{p}, e \phi \mathbb{1}_4] \rangle_{\psi^{(0)}}$ $= \frac{i d_e}{e \hbar} \left\langle \left[\mathbf{\Sigma} \cdot \mathbf{p}, c \mathbf{\alpha} \cdot \mathbf{p} + \gamma^0 m_0 c^2 - \hat{H}^{(0)} \right] \right\rangle_{\psi^{(0)}}$

Since $\hat{H}^{(0)} |\psi^{(0)}\rangle = E^{(0)} |\psi^{(0)}\rangle$ all commutators vanish, and so $\langle -d_e \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi^{(0)}} = 0 \quad \Box$.

²¹L.I. Schiff, *Phys Rev* **132** (1963) *2194*

Evading Schiff's Theorem by Special Relativity²²

Length contraction for collinear movement: $\mathbf{d}_e(K) = \frac{\mathbf{d}_e(K')}{\gamma} = \mathbf{d}_e(K') \left(1 - \frac{\gamma}{1+\gamma} \frac{v^2}{c^2}\right)$

... and for general movement: $\mathbf{d}_e(K) = \mathbf{d}_e(K') - \frac{\gamma}{1+\gamma} \frac{\mathbf{v}}{c} \left(\mathbf{d}_e(K') \cdot \frac{\mathbf{v}}{c} \right)$

The dipole energy in K then is $\varepsilon_{\mathsf{dip}} = -\mathbf{d}_e(K) \cdot \mathbf{E} = -\mathbf{d}_e(K') \cdot \left[\mathbf{E} - \frac{\gamma}{1+\gamma} \frac{\mathbf{v}}{c} \left(\frac{\mathbf{v}}{c} \cdot \mathbf{E}\right)\right]$

For small relative velocities we can approximate: $\varepsilon_{dip} \approx -\mathbf{d}_e(K') \cdot \mathbf{E} + \frac{1}{2m_e^2 c^2} \mathbf{d}_e(K') \cdot \mathbf{p} \left(\mathbf{p} \cdot \mathbf{E} \right)$

²²E.D. Commins, J.D. Jackson, D.P. DeMille, Am J Phys **75** (2007) 532

Interpretation of the EDM Interaction

The \mathcal{P}, \mathcal{T} -odd energy can also be written as

$$\begin{split} \varepsilon_{\mathsf{EDM}} &= -d_e \left\langle \Psi^L \ \Psi^S \left| \left(\begin{array}{cc} \mathbf{1}_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & -\mathbf{1}_2 \end{array} \right) \left(\begin{array}{cc} \boldsymbol{\sigma} \cdot \mathbf{E} & \mathbf{0}_2 \\ \mathbf{0}_2 & \boldsymbol{\sigma} \cdot \mathbf{E} \end{array} \right) \right| \begin{array}{c} \Psi^L \\ \Psi^S \end{array} \right\rangle \\ &= -d_e \left\{ \left\langle \Psi^L \left| \boldsymbol{\sigma} \cdot \mathbf{E} \right| \Psi^L \right\rangle - \left\langle \Psi^S \left| \boldsymbol{\sigma} \cdot \mathbf{E} \right| \Psi^S \right\rangle \right\} \end{split}$$

Using the low-energy relationship between L and S components of the Dirac spinors $\Psi^S \approx \frac{\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}}{2mc} \Psi^L$ gives $\approx -d_e \left\{ \langle \boldsymbol{\sigma} \cdot \mathbf{E} \rangle_{\Psi^L} - \frac{1}{4m^2c^2} \left\langle (\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})^{\dagger} \ \boldsymbol{\sigma} \cdot \mathbf{E} \ \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \right\rangle_{\Psi^L} \right\}$

Respecting the derivative and using twice the Dirac relation $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \ \boldsymbol{\sigma} \cdot \mathbf{E} = \hat{\mathbf{p}} \cdot \mathbf{E} \mathbf{1}_2 + \imath \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \times \mathbf{E}$

we finally get

$$\varepsilon_{\mathsf{EDM}} \approx -d_e \left\{ \langle \boldsymbol{\sigma} \cdot \mathbf{E} \rangle_{\Psi^L} - \frac{1}{4m^2c^2} \left[\langle \hat{\mathbf{p}} \cdot \mathbf{E} \ \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \rangle_{\Psi^L} + \langle \mathbf{E} \cdot \hat{\mathbf{p}} \ \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \rangle_{\Psi^L} \right] \right\}$$

which corresponds to the classical dipole energy in the observer frame.

Lorentz-Covariant eEDM Hamiltonian

A magnetic field \mathbf{B} in the lab frame (say due to nuclear charged current) partially transforms into an electric field \mathbf{E}' in the electron rest frame (and vice versa).

Covariant eEDM Hamiltonian:

 $\hat{H}_{\rm EDM} = \imath \frac{d_e}{2} \gamma^0 \gamma^5 \, \frac{\imath}{2} \left(\gamma^\mu \gamma^\nu - \gamma^\nu \gamma^\mu \right) \, F_{\mu\nu}$

Use covariant EM field tensor

$$\{F_{\mu\nu}\} = \{\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}\} = \begin{pmatrix} 0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & -B_{z} & B_{y} \\ -E_{y} & B_{z} & 0 & -B_{x} \\ -E_{z} & -B_{y} & B_{x} & 0 \end{pmatrix}$$

to derive conventional representation:

 $\hat{H}_{\rm EDM} = -d_e \gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right]$

Off-diagonal $\boldsymbol{\alpha} = \begin{pmatrix} \mathbf{0}_2 & \boldsymbol{\sigma} \\ \boldsymbol{\sigma} & \mathbf{0}_2 \end{pmatrix}$ couples Ψ^L and Ψ^S and is strongly suppressed due to $\Psi^S \approx \frac{\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}}{2mc} \Psi^L$ (watch out for caveats)

Definition and eEDM enhancement

Electric dipole moment of an atom:²³

 $d_a := -\lim_{E_{\text{ext}} \to 0} \left[\frac{\partial (\Delta \varepsilon_{\mathbb{P}T})}{\partial E_{\text{ext}}} \right] \qquad \Delta \varepsilon_{\mathbb{P}T} \text{ is some } P, T \text{-odd energy shift.}$

Sources are particle EDMs, nuclear MQM, nuclear Schiff moment, \mathcal{T} -odd contribution to weak interaction.

For an electron EDM, we then have $d_{a} = \lim_{E_{\text{ext}}\to 0} \frac{\partial}{\partial E_{\text{ext}}} d_{e} \left\langle \gamma^{0} \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right] \right\rangle_{\psi(E_{\text{ext}})}$ With the definitions $(E + B)_{\text{eff}} = -\left\langle \gamma^{0} \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B} \right] \right\rangle_{\psi(E_{\text{ext}})}$ $R := \frac{d_{a}}{d_{e}}$ $R_{\text{lin}} := -\frac{\Delta(E+B)_{\text{eff}}}{\Delta E_{\text{ext}}} = -\frac{(E+B)_{\text{eff}}(2) - (E+B)_{\text{eff}}(1)}{E_{\text{ext}}(2) - E_{\text{ext}}(1)}$ the linear-regime atomic eEDM enhancement is then:

 $R\approx R_{\rm lin}=-\frac{(E+B)_{\rm eff}}{E_{\rm ext}}$

²³E.D. Commins, Adv. Mol. Opt. Phys. **40** (1999) 1

Scaling and Choice of Sensitive Systems

An **atom** can be much **more sensitive** than a free electron! (Sandars effect)²⁴

Analytical estimates of the eEDM enhancement 25 $R \propto 10 \, Z^3 \alpha^2$

High-Z atoms with unpaired electron shells are optimal choice:					
Atom (state)	Rb ($^2S_{1/2}$)	Cs ($^2S_{1/2}$)	Fr ($^2S_{1/2}$)	TI ($^2P_{1/2}$)	
\overline{Z}	37	55	87	81	
R	26 ± 1^{25}	114 ± 3^{26}	910 ± 45^{27}	-559 ∓ 28^{28}	

²⁴P.G.H. Sandars, *Phys Lett* **14** (1965) *194*

²⁵E.D. Commins, D. DeMille, Adv. Ser. Dir. High En. Phys. chapter 14 (2008) 519

V.V. Flambaum, Sov. J. Nucl. Phys. 24 (1976) 199

²⁵A. Shukla, B.P. Das, J. Andriessen, *Phys. Rev. A* **50** (1994) 1155

²⁶A. C. Hartley, E. Lindroth, A.-M. Mårtensson-Pendrill, J. Phys. B: At. Mol. Opt. Phys. 23 (1990) 3417

²⁷T.M.R. Byrnes, V.A. Dzuba, V.V. Flambaum, D.W. Murray, *Phys. Rev. A* **59** (1999) 3082

²⁸T. F., L.V. Skripnikov, J. Phys. B: At. Mol. Opt. Phys. (2019) submitted.

Measurement Principle³⁰

Hamiltonian of sensitive system in external EM field: $\hat{H} = -(\mu \mathbf{B} + d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|}$

- (1) B-field causes spin precession with frequency ν : $-(\mu \mathbf{B}) \cdot \frac{\hat{\mathbf{J}}}{|J|} = h\nu$
- (2) Added E-field modifies spin precession freq. to ν_+ : $-(\mu \mathbf{B} + d\mathbf{E}) \cdot \frac{\hat{\mathbf{j}}}{|J|} = h\nu_+$

(3) Reversed E-field modifies spin precession freq. to ν_{-} : $-(\mu \mathbf{B} - d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|} = h\nu_{-}$

EDM of system can be extracted from: $\nu_+ - \nu_- = \frac{2dE|J|}{h}$

 30 M. Bishof, M. Dietrich, et al., Phys. Rev. C **94** (2016) 025501

B. C. Regan, E. D. Commins, C. J. Schmidt, D. DeMille, Phys. Rev. Lett. 88 (2002) 071805

EDM Measurement in Molecules HfF⁺ as Example³¹

³¹A.E. Leanhardt *et al.*, E.A. Cornell, *J Mol Spectrosc* **270** (2011) *1* W.B. Cairncross *et al.*, J. Ye, E.A. Cornell, *Phys Rev Lett* **119** (2017) *153001*

Electron Electric Dipole Moment

Historic Upper Bounds From Atomic EDM Measurements

Atomic and Molecular Correlated Wavefunctions³² Hamiltonians

• Dirac-Coulomb Hamiltonian + external electric field (atoms)

$$\hat{H}^{\text{Dirac-Coulomb}} + \hat{H}^{\text{Int-Dipole}} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \frac{Z}{r_{i}} \mathbb{1}_{4} \right] + \sum_{i,j>j}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{i}^{n} \mathbf{r}_{i} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}$$

• Dirac-Coulomb Hamiltonian operator (molecules)

$$\hat{H}^{DC} = \sum_{i}^{n} \left[c \, \boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \frac{1}{r_{ij}} \mathbb{1}_{4} + \sum_{A,B>A}^{N} V_{AB}$$

• Dirac-Coulomb-Gaunt Hamiltonian operator (molecules)

$$\hat{H}^{DCG} = \sum_{i}^{n} \left[c \,\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{i} + \beta_{i} c^{2} - \sum_{A}^{N} \frac{Z}{r_{iA}} \mathbb{1}_{4} \right] + \sum_{i,j>i}^{n} \left(\frac{1}{r_{ij}} \mathbb{1}_{4} - \frac{1}{2} \frac{\vec{\alpha}_{i} \vec{\alpha}_{j}}{r_{ij}} \right) + \sum_{A,B>A}^{N} V_{AB}$$

³²T. F., H.J.Å. Jensen, J. Olsen, L. Visscher, J Chem Phys **124** (2006) 104106

S. Knecht, H.J.Å. Jensen, T. F., J Chem Phys 132 (2010) 014108

Calculation of \mathcal{P} , \mathcal{T} -Violating Effects³³

String-Based CI Techniques

Expectation values over relativistic Configuration Interaction wavefunctions

 $\left\langle \hat{O} \right\rangle_{\psi_{k}^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^{t}(\mathbf{M},\mathbf{n})} c_{kI}^{*} c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I}^{\dagger} \right| \hat{O} \right| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{J} \left| \right\rangle$

Property operator \hat{O} in basis of Kramers-paired molecular spinors $\hat{O} = \sum_{m,n=1}^{P_u} o_{mn} a_m^{\dagger} a_n + \sum_{m=1}^{P_u} \sum_{n=P_u+1}^{P} o_{m\overline{n}} a_m^{\dagger} a_{\overline{n}} + \sum_{m=P_u+1}^{P} \sum_{n=1}^{P_u} o_{\overline{m}n} a_{\overline{m}}^{\dagger} a_n + \sum_{m,n=P_u+1}^{P} o_{\overline{mn}} a_{\overline{m}}^{\dagger} a_{\overline{n}}$

First-term contribution to expectation value

$$W'(\Psi_k)_1 = \sum_{\substack{I,J=1\\I,J=1}}^{\dim \mathcal{F}^{\mathsf{t}}(\mathbf{P},\mathbf{N})} c_{kI}^* c_{kJ} \sum_{\substack{m,n=1\\m,n=1}}^{P_u} o_{mn}^M$$
$$\begin{pmatrix} N_p \in \mathcal{S}_I \ N_p \in \mathcal{S}_I + N_{\overline{p}} \in \overline{\mathcal{T}}_I \\ \langle \mid \prod_{p=1}^{N_p \in \mathcal{S}_I} \prod_{\overline{p}=N_p+1}^{N_p \in \overline{\mathcal{T}}_I} a_{\overline{p}} a_p \ a_m^{\dagger} a_n \prod_{q=1}^{N_p \in \mathcal{S}_J} \sum_{\overline{q}=N_p+1}^{N_p \in \overline{\mathcal{T}}_J} a_q^{\dagger} a_{\overline{q}}^{\dagger} \mid \rangle$$

³³S. Knecht, Dissertation, HHU Düsseldorf (2009)

T. F., M.K. Nayak, Phys Rev A 88 (2013) 032514

eEDM Constraint on Beyond-Standard-Model Theories³⁴ Single-source interpretation

³⁴D. DeMille (2005), H. Nataraj (2009)

³⁴B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

³⁵J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* 473 (2011) 493

³⁶ACME Collaboration, *Nature* **562** (2018) 355; ACME, *Science* **6168** (2014) 269; TF and M. K. Nayak, *J. Mol. Spectrosc.* **300** (2014) 16; L. V. Skripnikov, A. N. Petrov, A. V. Titov, *J. Chem. Phys.* **139** (2013) 221103; L. V. Skripnikov, A. V. Titov, *J. Chem. Phys.* **142** (2015) 024301; M. Denis, TF, *J Chem Phys* **145** (2016) 214307

More Stringent Bounds on (Semi-)Leptonic CP-odd Parameters³⁷

- ³⁷T. F., M. Jung, J. High Energy Phys. 7 (2018) 012
 - J. Baron et al., Science 343 (2014) 269
 - M. Denis, T. F., J. Chem. Phys. 145 (2016) 214307
 - L. Skripnikov, J. Chem. Phys. 145 (2016) 214301

W.B. Cairncross, D.N. Gresh, M. Grau, K.C. Cossel, T.S. Roussy, Y. Ni, Y. Zhou, J. Ye, E.A. Cornell, *Phys. Rev. Lett.* **119** (2017) *153001*

T. F., Phys. Rev. A (Rap. Comm.), 96 (2017) 040502(R)

L.V. Skripnikov, J. Chem. Phys., 147 (2017) 021101

 $\begin{aligned} & \text{Multiple-source picture:} \\ & \Delta E_{\mathcal{P},\mathcal{T}} = - \left\langle \mathbf{d}_{\text{sys}} \cdot \mathbf{E}_{\text{ext}} \right\rangle \\ & = \left(\alpha_{d_e} \, d_e + \alpha_{C_S} \, C_S \right) \, \left\langle \mathbf{n} \cdot \mathbf{z} \right\rangle (E_{\text{ext}}) \end{aligned}$

Previous resulting bound: From HfF⁺, ThO, YbF, TI $|d_e|_{2017} < 6.4 \times 10^{-28}e$ cm

 $\label{eq:linear} \begin{array}{l} \hline \mbox{New resulting bounds:} \\ \hline \mbox{From Hg, HfF^+, ThO, YbF, TI} \\ |d_e|_{2018} < 3.8 \times 10^{-28} e \ \mbox{cm} \\ |C_S|_{2018} < 2.7 \times 10^{-8} \end{array}$

Current World Records

In the presence of a non-zero EDM d, the system's Hamiltonian is $\hat{H} = -(\mu \mathbf{B} + d\mathbf{E}) \cdot \frac{\hat{\mathbf{J}}}{|J|}$

- "Paramagnetic" systems: Precession measurement on ThO ACME II collaboration Yale/Harvard; DeMille, Doyle, Gabrielse³⁹ measured $|\omega^{\mathcal{NE}}| = (-510 \pm 683) \frac{\mu \text{rad}}{s} \Rightarrow |d_e| \leq 1.1 \times 10^{-29} e \text{ cm}$
- "Diamagnetic" systems: Precession measurement on Hg Seattle group; Heckel⁴⁰ measured $|d_{Hg}| \leq 7.4 \times 10^{-30} e \text{ cm}$
- Neutron (n) EDM experiment PSI, Switzerland⁴¹ measured $|d_n| \le 3.6 \times 10^{-26} e$ cm

⁴⁰ B. Graner *et al.*, Phys Rev Lett **116** (2016) *161601*

 $^{^{39}}$ V. Andreev *et al.*, Nature **562** (2018) *355*

⁴¹ J.M. Pendlebury *et al.*, Phys. Rev. D, **92** (2015) *092003*

Science

in collaboration with

D. DeMille Yale University New Haven, CT 06520, USA

• Molecular EDMs : AgRa

• Atomic EDMs : ¹²⁹Xe

Going Ultracold: From beams to traps

PHYSICAL REVIEW A, VOLUME 63, 023405

Loading and compressing Cs atoms in a very far-off-resonant light trap

D. J. Han, Marshall T. DePue, and David S. Weiss

Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (Received 25 May 2000; published 12 January 2001)

We describe an experiment in which 3×10^7 Cs atoms are loaded into a 400 μ m crossed beam far-offresonant trap (FORT) that is only 2 μ K deep. A high-density sample is prepared in a magneto-optic trap, cooled in a three-dimensional far-off-resonant lattice (FORL), optically pumped into the lowest-energy state, adiabatically released from the FORL, magnetically levitated, and transferred to the final trap with a phasespace density of 10^{-3} . Spontaneous emission in the FORT is negligible, and we have compressed the atoms in the FORT to a spatial density of 2×10^{13} atoms/cm³. Evaporative cooling under these conditions proceeds rapidly.

• Estimated sensitivity of Cs EDM measurement in DLT⁴² is $|d_e| \approx 10^{-29} ecm$

Cs atom: $\Delta E = R E_{\text{ext}} d_e$ $E_{\text{int}} \approx 20 \left[\frac{\text{MV}}{\text{cm}}\right]$ Ultracold XY Molecule: $\Delta E = E_{\text{eff}} d_e$ $E_{\text{eff}} \approx 50 \left[\frac{\text{GV}}{\text{cm}}\right]$

• A factor of ≈ 2500 gain in sensitivity!

⁴²DLT: Dipole light trap; D. Weiss (Penn State), 2014: "Measuring the eEDM using laser-cooled Cs atoms in optical lattices"

S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Phys. Rev. Lett. 57 (1986) 314

C. Chin, V. Leiber, V. Vuletić, A.J. Kerman, S. Chu, Phys. Rev. A 63 (2001) 033401

Towards Ultracold DLT EDM Measurement

Picking the cherry

In the casting:

Alkali(-like) atoms: Li, Na, K, Rb, Cs; Ag, Au Earth-alkaline atoms: Sr, Ba, Ra; Yb

Jury spreadsheet for X partner of Ra and some contenders:

Х	EA(X) [eV]	$E_{ m effmax}\left[rac{ m GV}{ m cm} ight]$	$B_v = \left\langle v \frac{1}{\mu R^2} v \right\rangle [\mathrm{cm}^{-1}]$	D [D]	$E_{\mathrm{pol}} = rac{B_{v}}{D} \left[rac{\mathrm{kV}}{\mathrm{cm}} ight]$
Li	0.62	61	—	≈ 1.5	
Na	0.55	58	—	≈ 1	
K	0.50	50	—	≈ 1	
Rb	0.49	48	+	≈ 1	
Cs	0.47	44	+	≈ 1	
Ag	1.30	66	0.021	5.4	0.264
Au	2.31	60	+	≈ 6	
AgBa	1.30	6	+	≈ 3	
RbYb ⁴²		-0.7	0.001	0.21	5.5
$CsYb^{42}$		0.54	0.007	0.24	3.5

⁴²E. R. Meyer, J. L. Bohn, *Phys. Rev. A* **80** (2009) 042508

$(\mathcal{P},\mathcal{T})\text{-}\text{odd}$ properties of AgRa

• Electron EDM effective electric field⁴⁴

$$E_{\text{eff}} = \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_j^0 \gamma_j^5 \vec{p}_j^2 \right\rangle_{\psi^{(0)}}$$

• S-PS nucleon-electron interaction constant⁴⁵

$$W_{\mathcal{S}} := \frac{\imath}{\Omega} \frac{G_F}{\sqrt{2}} Z_{\text{heavy}} \left\langle \Psi_{\Omega} \right| \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \left| \Psi_{\Omega} \right\rangle$$

	$ $ $^{3}\Delta_{1}$			$^{2}\Sigma$		
	ThO	HfF^+	ThF^+	YbF	ÁgRa	
$ E_{\text{eff}} $	78	23	35	25	64	$\left[\frac{\text{GV}}{\text{cm}}\right]$
$ W_S $	106	20	51	40	175	[kHz]

- ⁴⁴E. Lindroth, E. Lynn, P.G.H. Sandars, J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 559
 T.F., M.K. Nayak, Phys. Rev. A 88 (2013) 032514
- ⁴⁵V. G. Gorshkov, L. N. Labzovski, and A. N. Moskalev, Zh. Eksp. Teor. Fiz. 76 (1979) 414
 - M. Denis et al., New J. Phys. 7 (2015) 043005

Devising a AgRa DLT EDM Experiment

• Photoassociating ultracold atoms into ultracold molecules⁴⁶

- Does its electronic spectrum allow for efficient energy transfer (remove binding energy without heating) ?
- Which states are candidates for photoassociation ?

⁴⁶L. D. Carr, D. DeMille, R. V. Krems, J. Ye, New J. Phys. **11** (2009) 055049

AgRa

A Pathway To Assemble AgRa (X) from Trapped Ag-Ra Atom Pairs

Long-Range Theory⁴⁷

Van der Waals interaction potential for two neutral heteronuclear atoms:

$$V(R) = -\frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}} - \dots$$

Ground state:

$$C_6^{\Omega=1/2(1)} = \sum_{n_c(\ell_c=1), n_d(\ell_d=1)} \frac{3}{2} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} \left(\Delta E_{ca} + \Delta E_{db}\right)}$$

 $a={}^2S_{1/2}(5s^1)$ for Ag and $b={}^1S_0(7s^2)$ for Ra

Oscillator strengths:⁴⁸

$$\begin{split} f_{IF}^{(1)} &= \frac{2}{3g_{I}} \left(E_{F} - E_{I} \right) \sum_{\substack{M_{LF}, M_{SF} \\ M_{LI}, M_{SI}}} || \left\langle L_{F}, M_{LF}, S_{F}, M_{SF} | \sum_{k=1}^{n} \hat{\mathbf{r}}(k) \left| L_{I}, M_{LI}, S_{I}, M_{SI} \right\rangle ||^{2} \\ g_{I} &= (2M_{LI} + 1)(2M_{SI} + 1) \\ |\psi_{L}\rangle &= |^{2}P \right\rangle = |1, M_{L}; \frac{1}{2}, M_{S}\rangle \text{ are expanded as} \\ &= \frac{|1, 0; \frac{1}{2}, \frac{1}{2}\rangle}{|1, 0; \frac{1}{2}, \frac{1}{2}\rangle} = \left\langle \frac{3}{2}, \frac{1}{2} |1, 0; \frac{1}{2}, \frac{1}{2}\rangle + \left\langle \frac{1}{2}, \frac{1}{2} |1, 0; \frac{1}{2}, \frac{1}{2}\rangle \right| \frac{1}{2}, \frac{1}{2}\rangle \\ \frac{47}{}_{\text{J.-Y. Zhang, J. Mitroy, Phys. Rev. A 76 (2007) 022705} \end{split}$$

⁴⁸T.N. Chang, *Phys. Rev. A* **36** (1987) *447*

Connecting LR- and SR-Potentials

Ground potential $\Omega = 1/2(1)$

20

R [AA]

25

30

- Pure short-range potentials produce artefacts! | • $V(R) \approx -\frac{C_6}{R^6}$ and fit longrange to short-range curves
 - Correct physics from careful fitting

⁴⁸R.J. LeRoy, Can. J. Phys. **52** (1974) 246
R.J. LeRoy, R. B. Bernstein, J. Chem. Phys. **52** (1970) 3869

15

-200875

-200880

-200885

-200890

10

E [cm-1]

Dispersion coefficients from oscillator strengths

$$\begin{split} C_6^{\Omega=1/2(16)} &= C_6^{\Omega=3/2(11)} &= \sum_{n_c(\ell_c=1),n_d(\ell_d=0)} \frac{3}{4} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} (\Delta E_{ca} + \Delta E_{db})} \\ &+ \sum_{n_c(\ell_c=1),n_d(\ell_d=1)} \frac{15}{8} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} (\Delta E_{ca} + \Delta E_{db})} \\ &+ \sum_{n_c(\ell_c=1),n_d(\ell_d=2)} \frac{57}{40} \frac{f_{ac}^{(1)} f_{bd}^{(1)}}{\Delta E_{ca} \Delta E_{db} (\Delta E_{ca} + \Delta E_{db})} \\ &\text{A test on LiBe:} \qquad \frac{2\Pi \ ^1 P(\text{Be} \ 2s^1 2p^1)}{^2\Sigma \ ^1 P(\text{Be} \ 2s^1 2p^1)} \ 951.6 \ 714.0 \\ 1228 \ 1402 \end{split}$$

Ra(7p) excited states:

⁴⁹J.-Y. Zhang, Y. Cheng, J. Mitroy, J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 125004

eEDM Constraint on Beyond-Standard-Model Theories Single-source interpretation (20??)⁵¹

 51 TF, D. DeMille, "Using Ultracold Assembled AgRa Molecules to Search for Time-Reversal Violation", to be submitted.

More Science:

A $\mathcal{T}\text{-}Violating$ Correction to the Weak Interaction ?

• Nucleon-electron scalar-pseudoscalar \mathcal{P}, \mathcal{T} -odd interaction⁵² through higher orders *via* magnetic hyperfine interaction:

$$d_{\mathsf{sys}} = \alpha_{C_S} C_S$$

• Nucleon-electron tensor-pseudotensor \mathcal{P}, \mathcal{T} -odd interaction⁵³ via expectation value:

$$d_{\mathsf{sys}} = \alpha_{C_T} \, C_T$$

 $d_{\rm sys}$ the system's electric dipole moment $C_{S,P,T}$ fundamental \mathcal{CP} -violating parameters $\underline{\alpha_{C_{S,P,T}}}$ atomic interaction constants

⁵²T.F., M. Jung J. High Energy Phys. **07** (2018) 012 ⁵³T.F., Phys. Rev A **99** (2019) 012515

On Constructing Effective \mathcal{P}, \mathcal{T} **-odd Hamiltonians**

Lorentz invariance of the Dirac equation

From change of reference frame in Dirac theory

 $(-i\hbar\gamma^{\mu}\partial_{\mu} + m_0 c)\,\psi(x) = 0 \qquad \qquad \psi \longrightarrow \psi' = S\psi$

the following condition must hold:

$$S^{-1}(\mathbf{\Lambda}) \, \gamma^{\mu} \, S(\mathbf{\Lambda}) \, = \Lambda^{\mu}_{\ \nu} \gamma^{\nu}$$

For a Lorentz boost we have:

$$\mathbf{\Lambda}_{\mathsf{K}\to\mathsf{K}'x} = \begin{pmatrix} \gamma & -\frac{v_x}{c}\gamma & 0 & 0\\ -\frac{v_x}{c}\gamma & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where
$$\gamma = rac{1}{\sqrt{1-rac{v_x^2}{c^2}}}$$

Then the above condition directly yields

$$S^{-1}(\mathbf{\Lambda}_{x}) \gamma^{0} S(\mathbf{\Lambda}_{x}) = \gamma \gamma^{0} - \frac{v_{x}}{c} \gamma \gamma^{1}$$

$$S^{-1}(\mathbf{\Lambda}_{x}) \gamma^{1} S(\mathbf{\Lambda}_{x}) = -\frac{v_{x}}{c} \gamma \gamma^{0} + \gamma \gamma^{1}$$

$$S^{-1}(\mathbf{\Lambda}_{x}) \gamma^{2} S(\mathbf{\Lambda}_{x}) = \gamma^{2}$$

$$S^{-1}(\mathbf{\Lambda}_{x}) \gamma^{3} S(\mathbf{\Lambda}_{x}) = \gamma^{3}$$
(1)

and we find

$$S(\mathbf{\Lambda}) = a_{\pm}\mathbf{1} + a_{-}\gamma^{0}\gamma^{1} = \begin{pmatrix} a_{\pm} & 0 & 0 & a_{-} \\ 0 & a_{\pm} & a_{-} & 0 \\ 0 & a_{-} & a_{\pm} & 0 \\ a_{-} & 0 & 0 & a_{\pm} \end{pmatrix}$$

where $a_{\pm} = \pm \sqrt{\frac{1}{2}(\gamma \pm 1)}$ and $\gamma^{0}\gamma^{1} = \begin{pmatrix} \mathbf{0} & \sigma_{1} \\ \sigma_{1} & \mathbf{0} \end{pmatrix}$

The bilinear form (mathematically a scalar)

$$\psi^{\dagger}\psi = \begin{pmatrix} \psi_1^* & \psi_2^* & \psi_3^* & \psi_4^* \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

is **not** a Lorentz scalar (not physically a scalar) ! Formally, $(\psi^{\dagger}\psi)' = \psi^{\dagger}S^{\dagger}S\psi \neq \psi^{\dagger}\psi$

essentially because $S^{\dagger}S \neq \mathbf{1}$.

On Constructing Effective \mathcal{P}, \mathcal{T} **-odd Hamiltonians**

Dirac Scalars and Pseudoscalars

However, with $\overline{\psi} := \psi^{\dagger} \gamma^{0}$:

$$\left(\overline{\psi}\psi\right)' = \left(\psi'\right)^{\dagger}\gamma^{0}\psi' = \psi^{\dagger}S^{\dagger}\gamma^{0}S\psi = \psi^{\dagger}\gamma^{0}\psi = \overline{\psi}\psi$$

In addition, since for space inversion

 $S^{-1}(\mathbf{\Lambda}_{\mathcal{P}}) \gamma^{\mu} S(\mathbf{\Lambda}_{\mathcal{P}}) = g^{\mu}_{\ \nu} \gamma^{\nu}$

the spinor-space transformation is found as

 $S(\mathbf{\Lambda}_{\mathcal{P}}) \equiv \mathcal{P}_s = \gamma^0$

The above bilinear form under space inversion:

$$\left(\overline{\psi}\psi\right)' = \left(\psi'\right)^{\dagger}\gamma^{0}\psi' = \left(\gamma^{0}\psi\right)^{\dagger}\gamma^{0}\gamma^{0}\psi = \psi^{\dagger}\gamma^{0}\gamma^{0}\psi = \psi^{\dagger}\gamma^{0}\psi = \overline{\psi}\psi$$

and so $\overline{\psi}\psi$ is a true scalar. It is then straightforward to construct a Dirac pseudo-scalar

$$\left(\overline{\psi}\gamma^{5}\psi\right)' = \left(\psi'\right)^{\dagger}\gamma^{0}\gamma^{5}\psi' = \psi^{\dagger}\gamma^{0}\gamma^{0}\gamma^{5}\gamma^{0}\psi = -\psi^{\dagger}\gamma^{0}\gamma^{5}\psi = -\overline{\psi}\gamma^{5}\psi$$

On Constructing Effective \mathcal{P}, \mathcal{T} -odd Hamiltonians Dirac Vectors

A Dirac vector takes on the form

 $\left(\overline{\psi}\gamma^{\mu}\psi\right)' = \left(\psi'\right)^{\dagger}\gamma^{0}\gamma^{\mu}\psi' = \psi^{\dagger}\gamma^{0}\gamma^{0}\gamma^{\mu}\gamma^{0}\psi = \psi^{\dagger}\gamma^{\mu}\gamma^{0}\psi$

Distinguishing two cases:

1. $\mu = 0 \Rightarrow \left(\overline{\psi}\gamma^0\psi\right)' = \overline{\psi}\gamma^0\psi$

and so we here have the \mathcal{P} -even time-like component of a four-vector. However,

2. $\mu = k \Rightarrow \left(\overline{\psi}\gamma^k\psi\right)' = \psi^{\dagger}\gamma^k\gamma^0\psi = -\psi^{\dagger}\gamma^0\gamma^k\psi = -\overline{\psi}\gamma^k\psi$

which changes sign under space inversion and represents the three components of a vector.

On Constructing Effective \mathcal{P}, \mathcal{T} -odd Hamiltonians ... and pseudovectors

Likewise, the Dirac vector can be turned into a pseudo-vector. With $(\overline{\psi}\gamma^{\mu}\gamma^{5}\psi)' = (\psi')^{\dagger}\gamma^{0}\gamma^{\mu}\gamma^{5}\psi' = \psi^{\dagger}\gamma^{0}\gamma^{0}\gamma^{\mu}\gamma^{5}\gamma^{0}\psi = \psi^{\dagger}\gamma^{\mu}\gamma^{5}\gamma^{0}\psi$

and again, distinguishing cases,

1. $\mu = 0 \Rightarrow \left(\overline{\psi}\gamma^0\gamma^5\psi\right)' = \psi^{\dagger}\gamma^0\gamma^0\gamma^0\gamma^5\gamma^0\psi = -\overline{\psi}\gamma^0\gamma^5\psi$

which is the \mathcal{P} -odd time-like component of a four-pseudovector. Similarly,

2.
$$\mu = k \Rightarrow \\ \left(\overline{\psi}\gamma^k\gamma^5\psi\right)' = \psi^{\dagger}\gamma^0\gamma^0\gamma^k\gamma^5\gamma^0\psi = \psi^{\dagger}\gamma^0\gamma^k\gamma^5\gamma^0\gamma^0\psi = \overline{\psi}\gamma^k\gamma^5\psi$$

which remains even under space inversion and represents the three components of a pseudo-vector.

On Constructing Effective \mathcal{P}, \mathcal{T} **-odd Hamiltonians**

Dirac Rank-2 Tensors and Pseudotensors

Introducing the antisymmetric rank-2 tensor

$$\sigma^{\mu\nu} := \frac{\imath}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right)$$

the diagonal of which is zero and which due to $\sigma^{\mu\nu} = -\sigma^{\nu\mu}$ has six linearly independent components.

The following relations hold true:

$$\begin{aligned} & \left(\overline{\psi}\sigma^{0\ell}\psi\right)' &= -\overline{\psi}\sigma^{0\ell}\psi \\ & \left(\overline{\psi}\sigma^{k0}\psi\right)' &= -\overline{\psi}\sigma^{k0}\psi \\ & \left(\overline{\psi}\sigma^{k\ell}\psi\right)' &= \overline{\psi}\sigma^{k\ell}\psi \qquad \forall k,\ell \in \{1,\ldots,3\} \end{aligned}$$

Since the transformation is the space inversion and the purely space-like elements of the tensor are even under transformation, $\sigma^{\mu\nu}$ identifies a Dirac rank-2 tensor.

Tensor-Pseudotensor \mathcal{P} , \mathcal{T} -odd Nucleon-Electron Interaction

Lagrangian density⁵³ for Ne neutral weak current $(\sigma_{\rho\sigma} = \frac{i}{2} (\gamma^{\rho} \gamma^{\sigma} - \gamma^{\sigma} \gamma^{\rho}))$: $\mathcal{L}_{\text{Ne-TPT}} = \frac{1}{2} \frac{G_F}{\sqrt{2}} C_T \sum_N \varepsilon^{\mu\nu\rho\sigma} \overline{\psi}_N \Sigma_{N\mu\nu} \psi_N \ \overline{\psi} \sigma_{\rho\sigma} \psi$

Corresponding eff. first-quantized Hamiltonian for infinitely heavy nucleus: $\hat{H}_{\text{Ne-TPT}}^{\text{eff}} = -\frac{1}{2} \frac{G_F}{\sqrt{2}} C_T \rho_N(\mathbf{r}) \gamma^0 \varepsilon^{\mu\nu\rho\sigma} \Sigma_{N\mu\nu} \sigma_{\rho\sigma}$

Using
$$\frac{1}{2} \varepsilon^{\mu\nu\kappa\lambda} \sigma_{\kappa\lambda} = -i\gamma^5 \sigma^{\mu\nu}$$
 we get:
 $\hat{H}_{\text{Ne-TPT}}^{\text{eff}} = \frac{iG_F}{\sqrt{2}} C_T \rho(\mathbf{r}) \gamma^0 \Sigma_{N\mu\nu} \gamma^5 \sigma^{\mu\nu}$

Since $\Sigma_{N\mu\nu}\gamma^5\sigma^{\mu\nu} = 2\gamma^0 \Sigma_N \cdot \gamma$ it follows that $\hat{H}_{\text{Ne-TPT}}^{\text{eff}} = \imath G_F \sqrt{2} C_T \Sigma_N \cdot \gamma \rho(\mathbf{r})$

Nuclear state chosen as $|I, M_I = I\rangle$ gives many-electron Hamiltonian:

$$\hat{H}_{\text{Ne-TPT}}^{\text{eff}} = \imath G_F \sqrt{2} C_T \langle \Sigma_N \rangle_{\Psi_N} \sum_{j=1}^n (\gamma_j)^3 \rho_N(\mathbf{r}_j)$$

⁵³K. Yanase, N. Yoshinaga, K. Higashiyama, N. Yamanaka Phys. Rev. D 99 (2019) 075021

Scalar-Pseudoscalar \mathcal{P} , \mathcal{T} -odd Nucleon-Electron Interaction

via magnetic hyperfine interaction

Solve for $K \in \mathbb{CI}$ STATES $\left[\sum_{j}^{N} \left[c \, \boldsymbol{\alpha}_{j} \cdot \mathbf{p}_{j} + \beta_{j} c^{2} - \frac{Z}{r_{j}} \mathbb{1}_{4}\right] + \sum_{j,k>j}^{N} \frac{1}{r_{jk}} \mathbb{1}_{4} + \sum_{j} \mathbf{r}_{j} \cdot \mathbf{E}_{\text{ext}} \mathbb{1}_{4}\right] \left|\psi_{K}^{(0)}\right\rangle = \varepsilon_{K}^{(0)} \left|\psi_{K}^{(0)}\right\rangle$

First-order hyperfine-perturbed CI wavefunctions:

$$\left|\psi_{J}^{(1)}\right\rangle = \left|\psi_{J}^{(0)}\right\rangle + \sum_{K \neq J} \frac{\left\langle\psi_{K}^{(0)}\right| - \frac{1}{2c m_{p}} \frac{\mu \mathbf{I}}{I} \cdot \sum_{i=1}^{n} \frac{\boldsymbol{\alpha}_{i} \times \mathbf{r}_{i}}{r_{i}^{3}} \left|\psi_{J}^{(0)}\right\rangle}{\varepsilon_{J}^{(0)} - \varepsilon_{K}^{(0)}} \left|\psi_{K}^{(0)}\right\rangle$$

To leading order the SPS-ne energy shift is

$$\left(\Delta\varepsilon\right)_{J} = \frac{1}{\langle\psi_{J}^{(1)}|\psi_{J}^{(1)}\rangle} \left\langle\hat{H}_{\text{S-PS-ne}}\right\rangle_{\psi_{J}^{(1)}}$$

Atomic EDM due to Ne-SPS interaction $d_a = \alpha_{C_S} C_S$ and so

$$\alpha_{C_{S}}(\psi_{J}) = \frac{-A\frac{G_{F}}{\sqrt{2}}}{E_{\text{ext}}\left\langle\psi_{J}^{(1)}\middle|\psi_{J}^{(1)}\right\rangle} \left[\sum_{K \neq J} \frac{\left\langle\psi_{K}^{(0)}\middle|\hat{H}_{\text{HF}}\middle|\psi_{J}^{(0)}\right\rangle\left\langle\psi_{J}^{(0)}\middle|i\sum_{e}\gamma_{e}^{0}\gamma_{e}^{5}\rho(\mathbf{r}_{e})\middle|\psi_{K}^{(0)}\right\rangle}{\varepsilon_{J}^{(0)} - \varepsilon_{K}^{(0)}} + h.c.\right]$$

\mathcal{P} , $\mathcal{T}\text{-}odd$ Properties as Expectation Values

Interaction constants / enhancement factors for n-electron system

• Electron eEDM interaction constant $^{\rm 54}$ / enhancement

 $W_d := \frac{2ic}{\Omega e\hbar} \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \vec{p}_j^2 \right\rangle_{\psi_k^{(0)}} \qquad E_{\text{eff}} = -\Omega W_d \qquad R \approx R_{\text{lin}} = -\frac{E_{\text{eff}}}{E_{\text{ext}}}$

• S-PS nucleon-electron interaction constant / ratio

$$W_{\mathcal{S}} := \frac{\imath}{\Omega} \frac{G_F}{\sqrt{2}} A \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \right\rangle_{\psi_k^{(0)}}$$

• T-PT nucleon-electron interaction constant

$$R_T = \sqrt{2}G_F \langle \Sigma_N \rangle_{\Psi_N} \left\langle \psi_I^{(0)} \left| i \sum_{j=1}^n (\gamma_j)^3 \rho(\mathbf{r}_j) \right| \psi_I^{(0)} \right\rangle$$

 $S = -\frac{\left\langle i \sum_{j} \gamma_{j}^{0} \gamma_{j}^{5} \rho_{N}(\mathbf{r}_{j}) \right\rangle_{\Psi(E_{\text{ext}})}}{E_{\text{ext}}}$

⁵⁴W. Johnson, D.S. Guo, M. Idrees, J. Sapirstein, *Phys. Rev. A* **34** (1986) *1043*

E. Lindroth, E. Lynn, P.G.H. Sandars, J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 559, stratagem II

Generalized Active Spaces

Parameterization of the correlated wavefunction

	# of Kramers pairs		accumulated # of electrons min. max.		
III	(100 a.u.) Virtual Kramers pairs	111	32	32	
II	5s5p	_ 4	29	32	
Ι	4s4p 3s3p 2s2p	12	22	24	
	Frozen core	(11)			

Experiment

• Atomic EDMs : ¹²⁹Xe

 $|d_{Xe}| < 1.5 \times 10^{-27} e \text{ cm.}$ Allmendinger *et. al.* (Mainz, Heidelberg), *Phys. Rev. A* **100** (2019) *022505* $|d_{Xe}| < 4.81 \times 10^{-27} e \text{ cm.}$ Sachdeva *et. al.* (Ann Arbor *et. al.*), arXiv:1902.02864 [physics.atom-ph] (2019) Sato *et. al.* (Tokyo *et. al.*), *Hyperfine Interact.* **230** (2015) *147*

¹²⁹Xe EDM

Leading⁵⁶ (and Subleading) Contributions

 $d_{\mathsf{Xe}} = \rho_Z^N d_N + \alpha_S S - \alpha_{C_T} C_T \left(+ \alpha_{C_S} C_S + \alpha_{d_e} d_e \right)$

- Atomic coefficients for leading contributions available (α_{C_T}) and in progress (α_S)
- Subleading contributions affect constraints obtained from global fits⁵⁷

Example: Electron EDM and SPS-Ne coupling

- Measurements and calculations on systems with different ratios of atomic/molecular coefficients
- Global fit⁵⁷ constrains multiple possible EDM sources

⁵⁶T. Chupp, M. Ramsey-Musolf, *Phys. Rev. C* **91** (2015) *035502*⁵⁷W. Dekens, J. de Vries, M. Jung, K.K. Vos, *J. High En. Phys.* **1** (2019) *069*⁵⁷T. F., M. Jung, *J. High En. Phys.* **7** (2018) *012*

Tensor-Pseudotensor \mathcal{P} , \mathcal{T} -odd Nucleon-Electron Interaction

$R_T(\psi_I {}^{129}Xe) = \sqrt{2}G_F \langle \Sigma_N \rangle_{\Psi_N}$	$\left\langle \psi_{I}^{(0)} \right i \sum_{j=1}^{n}$	$\sum_{j=1}^{n} (\gamma_j)^3$	$ ho(\mathbf{r}_j) \left \psi_I^{(0)} \right\rangle$
	1	20	

Model/virtual cutoff (vDZ,vTZ,vQZ) [a.u.]	R_T [10	$)^{-20} \langle \sigma_N \rangle$	angle e cm]
		Basis set	
	vDZ	vTZ	vQZ
RPA/-	0.382	0.473	0.485
SD8/80,100,60	0.360	0.438	0.453
SDT8/80,100,60	0.360	0.435	0.450
SDTQ8/80,12,60	0.357	0.431	
SD16/80,100,60	0.406	0.481	0.496
SD8_SDT16/80,100,60	0.405	0.477	
SD18/80,100,60		0.453	
SD24/80,100,60	0.421	0.497	0.514
SD26/80,100,60		0.493	
S16_SD32/80,100,60		0.507	
SD32/80,100,60	0.431	0.508	0.525
SD36/80,100,60	0.417	0.499	
vQZ/SD32/60 $+\Delta$		0.536	
Mårtensson-Pendrill ⁵⁸ RPA		0.52	
Dzuba $et~al.^{59}$ RPA		0.57	
Singh $et \ al.^{60} \ CCSD_pT$		0.501	

⁵⁸A.M. Mårtensson-Pendrill, *Phys. Rev. Lett.* **54** (1985) *1153*

⁵⁹V.A. Dzuba, V.V. Flambaum, S.G. Porsev, *Phys. Rev. A* **80** (2009) *032120*

⁶⁰Y. Singh, B.K. Sahoo, B.P. Das, *Phys. Rev. A* **89** (2014) *030502(R)*

Scalar-Pseudoscalar \mathcal{P} , \mathcal{T} -odd Nucleon-Electron Interaction

$\alpha_{C_S}(\psi_J{}^{129}{\rm Xe}) =$	$\frac{-A\frac{G_F}{\sqrt{2}}}{E_{\text{ext}}\left\langle \psi_{I}^{(1)} \psi_{I}^{(1)} \right\rangle}$	$\left[\sum_{K\neq I}\right]$	$\frac{\left\langle \psi_{K}^{(0)} \middle \hat{H}_{HF} \middle \psi_{J}^{(0)} \right\rangle \left\langle \psi_{J}^{(0)} \middle \imath \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) \middle \psi_{K}^{(0)} \right\rangle}{\varepsilon_{L}^{(0)} - \varepsilon_{K}^{(0)}}$	+h.c.]
	$-\operatorname{cxt} \setminus \tau J \mid \tau J /$	$\lfloor K \neq J$	J K]

Basis	# of CI states/X	$S [10^{-3} a.u.]$	$lpha_{C_S} \ [10^{-23} e \; { m cm}]$
cvTZ/40 a.u.	8/S8	0.590	0.633
cvTZ/14 a.u.	8/6s6p	0.554	0.594
cvTZ/7 a.u.	8/6s6p5d	0.604	0.648
cvTZ/7 a.u.	$8/6$ s6p5d Q	0.603	0.647
cvTZ/7 a.u.	8/6s6p5d7p	0.667	0.716
cvTZ/7 a.u.	8/6s6p5d7p7s	0.693	0.744
cvTZ/14 a.u.	8/6s6p5d7p7s	0.694	0.745
cvTZ/14 a.u.	8/6s6p5d7p7s*	0.731	0.784
cvTZ/14 a.u.	8/6s6p5d7p7s ^{**}	0.717	0.769
cvTZ/7 a.u.	8/6s6p5d7p7s6d	0.699	0.750
cvTZ/7 a.u.	8/6s6p5d7p7s6d4f	0.702	0.753
cvTZ/7 a.u.	8/6s6p5d7p7s6d4f7d5f8p8s	0.671	0.720
cvTZ/7 a.u.	8/all	0.583	0.625
cvQZ/100 a.u.	8/S8	0.592	0.635
cvQZ/50 a.u.	1000/S8	0.499	0.535
cvQZ/100 a.u.	1281/S8	0.611	0.655
cvQZ/50 a.u.	8/6s6p	0.482	0.517
cvQZ/50 a.u.	8/6s6p5d7p7s	0.710	0.762
$\boxed{\texttt{vQZ}/1281/\texttt{S8}/100 + \Delta S_{corr}}$		0.661	0.709

Scalar-Pseudoscalar \mathcal{P}, \mathcal{T} -odd Nucleon-Electron Interaction Results for ¹²⁹Xe

• Two major contributions in the sum over states:

$$\begin{split} C_{1} &= \frac{\langle 5p \rightarrow 6s \ 0, 0 | \hat{H}_{\mathsf{HF}} | 0, 0 \rangle \langle 0, 0 | \imath \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) | 5p \rightarrow 6s \ 0, 0 \rangle}{\varepsilon_{0,0}^{(0)} - \varepsilon_{5p \rightarrow 6s \ 0, 0}^{(0)}} \\ C_{2} &= \frac{\langle 5p \rightarrow 6p \ 1, 0 | \hat{H}_{\mathsf{HF}} | 0, 0 \rangle \langle 0, 0 | \imath \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) | 5p \rightarrow 6p \ 1, 0 \rangle}{\varepsilon_{0,0}^{(0)} - \varepsilon_{5p \rightarrow 6p \ 1, 0}^{(0)}} \\ & | \text{hole spinor } \rightarrow \text{particle spinor } J, M_{J} \rangle \end{split}$$

• ... and a large number of small contributions uncorrected for correlation effects.

Final values for α_{C_T} and α_{C_S} will lead to tighter constraints.⁶²

⁶²T. F., M. Jung, (2020) *in preparation.*