Atoms, Molecules, Dirac Theory and all that ... : Relativistic Many-Body "Standard Models" to Arbitrary Order

Timo Fleig

Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III France

March 22, 2010

Laboratoire de Chimie et Physique Quantiques

Scientific Motivation (1)

Actinide Sciences

- Materials sciences involving actinides
 E.g. uranium hydriding reaction
- Nuclear waste problem Small complexes
- Actinide spectroscopy Hydrides, oxides and hydroxides

C.D. Taylor, T. Lookman, R.S. Lillard, *Acta Materialia* **58** (2010) *1045*

Persistent problems:

- Extremely complicated electronic structure
- Strong relativistic and electron correlation effects
- Protagonist systems: AcH_x , AcO_x , Ac_2 , Ac^{n+} (complex), and many others

Scientific Motivation (2)

Ultracold Molecular Sciences

- Ultracold chemistry Quantum-controlled reactions
- Fundamental physics Electron EDM ?
- Quantum information e.g. Quantum computers

J. Hutson, Science 327 (2010) 788

Persistent problems:

- Short- and long-range potentials required at very high accuracy
- Often considerable relativistic and electron correlation effects
- Protagonist systems: (A A'), (A EA), LiCs, KRb, Cs₂, RbYb, RbBa⁺, and others

Motivation from Principles of Theory

Predictive power and falsifiability of theories/models

Avoid experimental data and fixed parameters

Generality and flexibility in application General-order methods, adaptable multi-reference schemes

Pure "ab-initio" theory. Consequences:

Many (!) parameters Large-scale algorithms required

Imperative "ingredients":

Creator-string based methodology Modern representation of many-body methods

Exploit all the symmetry available !

Time-reversal, double point groups and quaternion algebra

Relativistic Many-Body Theory

What is different, what is new?

- (different) "Scalar relativistic" effects can be treated straightforwardly in a one-component formalism Many implementations available
- (new) Magnetic couplings (spin-orbit interaction) ⇒
 Partial lifting of degeneracies, reduction of symmetry; much fewer methods/codes available

Consistent treatment by Dirac equation:

$$\begin{pmatrix} V\mathbf{1}_2 & c\boldsymbol{\sigma} \cdot \boldsymbol{p} \\ c\boldsymbol{\sigma} \cdot \boldsymbol{p} & (V - 2mc^2)\mathbf{1}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{\psi}^L \\ \boldsymbol{\psi}^S \end{pmatrix} = E \begin{pmatrix} \boldsymbol{\psi}^L \\ \boldsymbol{\psi}^S \end{pmatrix}$$

- Is a 4-component approach really necessary?
- Is a spinor-based approach necessary?

Relativistic Many-Body Theory

Methodology for treating electron correlation and spin-orbit interaction

Relativistic Effects

TI atomic valence spinors

Radial probability density functions

Describe difference a priori or a posteriori ?

Relativistic Many-Body Theory

Why do we prefer spinors over spin-orbitals?

Comparison of orbital-based and spinor-based relativistic CI for representative atoms $^{1}\,$

Atom	Tm ((f^{13})	Lu ((d^1)	TI ((p^1)
Valence spinors	$f_{7/2} - f_{5/2}$		$d_{3/2} - d_{5/2}$		$p_{1/2} - p_{3/2}$	
$\Delta < r >$	0.018		0.085		0.496	
Approach	orbitals	spinors	orbitals	spinors	orbitals	spinors
rel. CASCI	9108	8996	2578	1687	6330	7709
rel. CISD	9817	9280	2450	1744		
rel. CISDT					7200	7286
Exp. (Martin, Moore)	8771.243		1993.32		7793	

- Spinor basis outperforms (scalar relativistic) orbital basis
- Reason: Spin-orbit splitting need not be described by correlation expansion
- How do we use spinors and are there any drawbacks?

¹T. Fleig, J. Olsen, L. Visscher, *J Chem Phys* **119,6** (2003) *2963*

Dirac-Hartree-Fock and MCSCF

The "empty Dirac" picture

- Occupied positive-energy bound-state spinors Fermi vacuum state $|0\rangle$
- **Empty** continuum of negative-energy states
- Expectation value of parameterized state vector $\langle p_{-} c | \hat{\mu} | p_{-} c \rangle = \langle c | -\hat{\kappa} \hat{\mu} | \hat{\kappa} | c \rangle$

 $\left\langle Ref|\hat{H}|Ref\right\rangle = \left\langle 0|e^{-\hat{\kappa}}\hat{H}e^{\hat{\kappa}}|0\right\rangle$

- Approximation of general expectation value to first order: $\left\langle 0|e^{-\hat{\kappa}}\hat{H}^{DC}e^{\hat{\kappa}}|0\right\rangle \approx \left\langle 0|\left[\hat{H}^{DC},\hat{\kappa}\right]|0\right\rangle = \sum_{pq}\kappa_{pq}\left[\left\langle 0|\hat{H}^{DC}a^{\dagger}_{p}a_{q}|0\right\rangle - \left\langle 0|\hat{H}^{DC}a^{\dagger}_{q}a_{p}|0\right\rangle^{*}\right]$
- Parameterized Dirac-spinor transformations: $\hat{\kappa} = \sum_{pq} \left[\kappa_{p+q} + a^{\dagger}_{p} + a_{q+} + \kappa_{p+q} - a^{\dagger}_{p} + a_{q-} + \kappa_{p-q} + a^{\dagger}_{p} - a_{q+} + \kappa_{p-q} - a^{\dagger}_{p} - a_{q-} \right]$
- Green terms: minimization of energy w.r.t. rotations
- Red terms: maximization of energy w.r.t. rotations
 ⇒ minimax variation

Rigorous Relativistic Many-Body Approaches²

Relativistic MRCI³

GAS Ansatz, 4- or 2-spinors $\left|\Psi^{\text{GASCI}}\right\rangle = \hat{T}_{\text{GAS}}^{\text{rel}} \left|\Psi^{\text{Ref}}\right\rangle$

 $\hat{T}_{\mathrm{GAS}}^{\mathrm{rel}}$ General-order excitations Basis of 4- or 2-spinors

Relativistic MR Coupled Cluster⁴

Generalized-Active-Space Ansatz

$$\left|\Psi^{\text{GASCC}}\right\rangle = e^{\hat{T}_{\text{GAS}}^{\text{rel}}} \left|\Psi^{\text{Ref}}\right\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu}_{\text{GAS}}) \left|\Psi^{\text{Ref}}\right\rangle$$

Hamiltonians based on Dirac theory

4- and 2-component operators, e.g. $\hat{H}^{\rm rel} = \hat{H}^{\rm Dirac} + \hat{H}^{\rm Coulomb}$

 ²T. Fleig, "Relativistic String-Based Electron Correlation Methods" (2010) in "Challenges and Advances in Computational Chemistry and Physics, Vol. 10", Eds. Barysz, Ishikawa
 ³S. Knecht, H.J.Aa. Jensen, T. Fleig, J Chem Phys 132 (2010) 014108
 ⁴L.K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999

LCDQQ Laboratoire de Chimie et Physique Quantiques

Spinors and Strings

How do we parameterize $\hat{T}_{\mathrm{GAS}}^{\mathrm{rel}}$?

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{\imath}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e_y}\right)} \hat{K}_0 = -\imath \Sigma_y \hat{K}_0$

 $\begin{array}{l} \text{General spinor basis:} \\ \phi_i = a_i^\dagger ~|~ \rangle ~~ \phi_{\overline{i}} = a_{\overline{i}}^\dagger ~|~ \rangle \end{array}$

- Many-particle wavefunction defined as

 unbarred (Kramers up) string S = a_i^{\dagger}a_j^{\dagger}a_k^{\dagger}...
 barred (Kramers down) string S = a_{\overline{l}}^{\dagger}a_{\overline{m}}^{\dagger}a_{\overline{n}}^{\dagger}...
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

Relativistic CI and CC

How do we parameterize $\hat{T}_{\text{GAS}}^{\text{rel}}$?

Relativistic Symmetry

MCSCF and Configuration Interaction

T. Fleig, J. Olsen, H. J. Aa. Jensen, L. Visscher, J Chem Phys 124 (2006) 104106

- Double point-group symmetry fully exploited Currently D^*_{2h} and subgroups
- Quaternion algebra at the integral level⁵ \Rightarrow For matrix groups $D_{2h}^*, D_2^*, C_{2v}^*$ entirely *real* algebra

- Only shaded blocks are non-vanishing
- Various shadings display block structure in quaternion/complex/real matrix groups⁶
- Square indicates many-particle Kramers symmetry

^bT. Saue, H. J. Aa. Jensen, J Chem Phys **111** (1999) *6211*

⁶H. J. Aa. Jensen, K. G. Dyall, T. Saue, K. Fægri Jr., J Chem Phys **104** (1996) *4083*

BiH: Spin-Orbit Splitting of $0^+(^3\Sigma^-) - 1(^3\Sigma^-)$

S. Knecht, H. J. Aa. Jensen, T. Fleig, J Chem Phys 132 (2009) 014108

```
Uncontracted Dyall basis sets (Bi)
/ (ANO-RCC: H)
aTZ [30s26p17d11f1g]
aQZ [34s31p21d17f3g1h]
Cutoff virtual spinors: 5 a.u.
```

4c-/2c-Hamiltonians

Basis set correction (TZ - QZ) Higher excitations (SD - SDTQ) 5d correlation Gaunt correction (spin-other-orbit)

⁷NIST Standard Reference Database (2008)

SD(2in2)MRSD6 (aQZ)	4655
SD(2in2)MRSD16 (aTZ)	4467
SD(2in2)MRSD16 (aQZ)	4689
IOTC-G SD(2in2)MRSD16 (aTZ)	4407
SD(2in2)MRSDTQ16 (aTZ)	4633
SD(6in5)MRSD16 (aTZ)	4509
SD(6in5)MRSD16 (aQZ)	4761
SD(2in2)MRSDTQ16 (aQZ)	pprox 4950
Exp. ⁷	4917

 $\begin{array}{r} +300 \text{ cm}^{-1} \\ +250 \text{ cm}^{-1} \\ +35 \text{ cm}^{-1} \\ -60 \text{ cm}^{-1} \end{array}$

"Standard model" SD(6in5)MRSD16 (aQZ)

"Benchmark model" SD(2in2)MRSDTQ16 (aQZ) $\approx 2.8 \times 10^9$ determinants

Applications aux éléments lourds

Etudes 4c-CC / 4c-IC sur la molécule RbYb

- PECs et moment dipolaire de haute précision ($\mu_e^{4c-CCSD(T)23} = 0.977 D$)
- Mécanisme supposé pour l'émission stimulée à l'état fondamental rovibronique via les facteurs de Franck-Condon

L.K. Sørensen, S. Knecht, T. Fleig, C.M. Marian, J Phys Chem 113 (2009) 12607

U-H

Applications to Heavy Elements

4c-CI study of UH

<u>Motivation 1</u>: UH plays a role in the uranium hydriding reaction

T.C. Totemeier, J Nuc Mater 278 (2000) 301

• <u>Motivation 2</u>: Can we accurately describe even the smallest conceivable uranium molecule?

Problems:

- 1. The uranium atom has several unpaired electrons ground-state configuration: $[Rn]5f^{3}6d^{1}7s^{2}$
- 2. Sub-valence and outer-core shells are energetically close
- 3. The reference space for a correlated calculation is expected to be huge
- 4. Electron correlation and relativistic effects are strong and likely to be coupled

UH bonding and valence spinors; 2.0 Å

- Bonding mainly of 7s 1s type, fairly ionic
- Strong spin-orbit mixing in (essentially atomic) 5f shell
- Lower excited states arise from different occupations within the 5f shell

Vertical electronic spectrum of UH

Vertical electronic spectrum of UH

 Inferred from calculations of Dolg et al.

X. Cao, A. Moritz, M. Dolg, *Chem Phys* **343** (2007) *250*

- Scalar relativistic
 calculations suggest
 strong state interactions
- Pattern corresponds to splitting of "particle" states
- Strong state interactions

 strong SO splittings
 suggest a rigorous
 treatment of both

Vertical electronic spectrum of UH; 2.0 Å, Ω states

Vertical electronic spectrum of UH; spin-orbit free states

- Quartet manifold in energy window of 0.1 eV
- Sextet states significantly lower
- Somewhat different ordering, overall agreement
- Remaining discrepancies cannot be responsible for different excited-state structure including SO !

Discrepancies of Theories on UH

Analysis

- Essential approximations: No reoptimization of expansion coefficients of $\Psi^{\text{CASSCF/MRCI}}$ w.r.t. \hat{H}^{SO} No higher-order couplings included
- Both models neglect correlation (and polarization) contributions of the type $\langle \Psi_{M_J}^{\text{rel}} | \hat{H}^{\text{el}} | \Psi_{M_J}^{\prime \text{rel}} \rangle$, $\Delta M_J = 0$
- Is there a difference of this kind in UH for manifolds 9/2,7/2 and 5/2,3/2,1/2 ?

Discrepancies of Theories on UH

Analysis

States contributing to M_J subspace in energy window of $\approx 0.5~{\rm eV}$

M_J	states
9/2	$^4I, ^4H, ^4\Gamma, ^6K$
7/2	$^4H, {}^4\Gamma, {}^4\Phi$
5/2	$^{4}\Gamma, ^{4}\Phi$
3/2	$^4\Phi$
1/2	$^{4}\Delta$

- Decreasing number of interacting states
- Decreasing contributions to couplings $\left\langle \Psi_{M_J}^{\mathrm{rel}} | \hat{H}^{\mathrm{el}} | \Psi_{M_J}^{\prime \mathrm{rel}} \right\rangle, \Delta M_J = 0$
- Consequence: Complete interaction model (spinor-based rel. CI) should give lower-lying 9/2 and 7/2 states
- Is there a possibility of confirming this hypothesis ?
 → exactly corresponding first-order state-interaction calculation
 (Thierry Leininger)

The UH Molecule

Some Conclusions and General Consequences for Other Actinide Species

- Relativistic effects and electron correlation effects are important in actinide systems
- Their coupling is sizeable and crucial for describing the **excited-state** and **dissociation** energetics
- Simplified models are applied to many different actinide species; a word of warning
- TD-DFT in general too inaccurate in such situations
- Ground-state properties, e.g. R_e , ω_e , are often obtained satisfactorily with more approximate models

Relativistic Correlation Methods

Generalized Active Space Coupled Cluster

- J. Olsen, J Chem Phys 113 (2000) 7140
 T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc 118,2 (2007) 347
 L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999
- "State-Selective" (SS) GAS-CC Simulation (SR-MRCC) of true multi-reference CC
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \Psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GASC}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains "internal" higher excitations $|\Psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\Psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_{1} = \sum_{ia} \left\{ t_{i}^{a} \hat{\tau}_{i}^{a} + t_{\bar{i}}^{a} \hat{\tau}_{\bar{i}}^{a} + t_{i}^{\bar{a}} \hat{\tau}_{i}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\}; \hat{T}_{2} = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^1)} \right| + \left\langle \mu^{S(\text{IV}^1)} \right| + \left\langle \mu^{D(\text{III}^2)} \right| + \left\langle \mu^{D(\text{IV}^2)} \right| + \left\langle \mu^{D(\text{III}^1 + \text{IV}^1)} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^1 + \mathbf{IV}^2)} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^2 + \mathbf{IV}^1)} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^2 + \mathbf{IV}^2)} \right| \end{aligned}$$

Relativistic Correlation Methods

Rel. Kramers-Unrestricted GAS-CC

CI-based CC vector function

$$\Omega_{\mu} = \left\langle \mu \left| e^{-\hat{T}} \hat{H} e^{\hat{T}} \right| \operatorname{Ref} \right\rangle$$

- 1. $|a\rangle = e^{\hat{T}} |\text{Ref}\rangle = \left(\sum_{n=0} \frac{1}{n!} \hat{T}^n\right) |\text{Ref}\rangle$
- 2. $\ket{b} = \hat{H} \ket{a}$ (CI sigma vectors)
- 3. $|c\rangle = e^{-\hat{T}} |b\rangle = \left(\sum_{n=0} \frac{(-1)^n}{n!} \hat{T}^n\right) |b\rangle$
- 4. $\Omega_{\mu} = \langle \mu | c \rangle = \left\langle \text{Ref} \left| \hat{\tau}_{\mu}^{\dagger} \right| c \right\rangle$ (CI density matrices)
- T. Fleig, L. K. Sørensen, J. Olsen, *Theo Chem Acc* **118,2** (2007) *347*

CI-based linear response (LR) function

Commutator-based CC vector function

 $\Omega_{\mu} = \left\langle \mu \left| \left(\hat{H} + \left[\hat{H}, \hat{T} \right] + \frac{1}{2} \left[\left[\hat{H}, \hat{T} \right], \hat{T} \right] \dots \right) \right| \operatorname{Ref} \right\rangle$

- \circlearrowright Loop over rel. excitation class of \hat{H}
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T}\right], \hat{T}\right], \hat{T}\right]$
 - \circlearrowright Loop over rel. excitation types \hat{T}_i of \hat{T} operators ! Check for coupling with $\langle \mu |$ Yes? Contract with integrals \checkmark End loop
 - √ End loop
 - End loop
- L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999

Commutator-based LR function

 $A_{\mu\nu} = \left\langle \mu \left| e^{-\hat{T}} \left[\hat{H}, \hat{\tau}_{\nu} \right] e^{\hat{T}} \right| \operatorname{Ref} \right\rangle \qquad \left\langle \mu \left| \left(\left[\hat{H}, \hat{\tau}_{\nu} \right] + \left[\left[\hat{H}, \hat{\tau}_{\nu} \right], \hat{T} \right] + \frac{1}{2} \left[\left[\left[\hat{H}, \hat{\tau}_{\nu} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right], \hat{T} \right] \right\rangle \right\rangle$ Properties of the implementation:

- Very general approach
- Increased "N-scaling": $O^{n+2}V^{n+2}$
- General approach, currently some limitations
- Conventional "N-scaling": $O^n V^{n+2}$

Application of GAS-CC

BiH: Spectral constants of $0^+(^3\Sigma^-)$ ground state

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys (2010) in preparation.

	CC model	R_e [Å]	$\omega_e [{ m cm}^{-1}]$
• Setup:	CCSD 6	1.822	1694
	MRCCSD (6in5)	1.826	1676
Unc. cc-pCVTZ (Bi) / cc-pVTZ (H)	CCSD(T) 6	1.824	1685
$[30s26p17d13f1g] \ / \ [5s2p1d]$	CCSDT 6	1.824	1681
Cutoff virtual spinors: 5.6 a.u.	CCSDTQ 6	1.825	1681
Direc Coulomb Hamiltonian (no 500)	CCSD 16	1.792	1726
Dirac-Coulomb Hamiltonian (no 500)	CCSD(T) 16	1.793	1709
$\sigma_{1/2}$, $\pi_{1/2}$, $\pi_{3/2}$ occupied	CCSDT 16	1.793	1709
	Exp. ⁸	1.809	1700

- R_e , ω_e : outer-core (5d) correlation > Higher excitations
- CCSDT 16 feasible for complete potential curves
- Alternative: MRCCSD (6in5) active-space model (GAS problem)

⁸Diode laser / IR Spectroscopy, Bernath et al. (1991), Urban et al. (1989)

DIRAC –

a European metalaboratory for the development of relativistic 4- and 2component quantum-physical and -chemical methodology

H J Aa Jensen

Odense, Denmark

T Saue

Strasbourg, France

L Visscher

Amsterdam, The Netherlands

K Fægri, T Helgaker

Oslo, Norway

T Fleig Toulouse, France

U Kaldor, E Eliav

Tel Aviv, Israel

P Norman

Linköping, Sweden

M Pernpointner

Heidelberg, Germany

Projets concernant

la relativité et la théorie $a\$ N corps

Haute précision:

Théorie de la réponse linéaire pour des fonctions d'onde CC relativiste *(Mickael Hubert et Timo Fleig)*

Interaction de Gaunt pour des méthodes corrélées à 4 composantes *(Timo Fleig, collaboration avec Trond Saue)*

Systèmes de plus grande taille:

Implémentation d'une approximation du type GAS-CC(n) dans le cadre relativiste (?? et Timo Fleig)

Physique fondamentale:

Nonconservation de la parité dans les systèmes moléculaires (*Timo Fleig, collaboration avec Trond Saue*)

Acknowledgement/Collaboration

Stefan Knecht

Strasbourg, France

Lasse K. Sørensen

Århus, Denmark

Jeppe Olsen

Århus, Denmark

Hans Jørgen Aa. Jensen

Odense, Denmark

Lucas Visscher

Amsterdam, The Netherlands

Comparison of Methods

Vertical electronic spectrum of I_3^- ; 2.93 Å, Ω states

A.S.P. Gomes, L. Visscher, H. Bolvin, T. Saue, S. Knecht, T. Fleig, E. Eliav, J Chem Phys XXX (2009) to be submitted.

- Prototype for $S_N 2$ reactions
- Example of hyperconjugation
- Excited states involved in photodissociation dynamics⁹
- High-accuracy PEC/Ss for subsequent wave-packet dynamics

• Comparison of methodologies:

 $\begin{bmatrix} I - I - I \end{bmatrix}$

- Efficient description of dynamic electron correlation
- Proper description of spin-orbit interaction
- Method yields correct dissociation limits
- Contestants: rel. IHFSCC, SO-CASPT2, rel. MRCI, rel. TDDFT

⁹J. Vala, R. Kosloff, J.N. Harvey, J Chem Phys **114** (2001) 7413

R. Nakanishi, N. Saitou, T. Ohno, S. Kowashi, S. Yabushita, T. Nagata, J Chem Phys 126 (2007) 204311

Comparison of Methods

Vertical electronic spectrum of I_3; 2.84 Å, Ω states

- Errors of rel. MRCI systematic and < 0.1 eV
- SO-CASPT2 less systematic but also with small errors
- Error of IHFSCC likely due to linear parameterization for excited states (in this case)

Comparison of Methods

Vertical electronic spectrum of I_3^- ; 2.93 Å, Ω states

• TDDFT: large spread; CASPT2, MRCI: Similar quality, MRCI more systematic, IHFSPT2 inferior

Application of GAS-CC

LiCs $^1\Sigma$: Vibrational levels and electric properties

L. K. Sørensen, T. Fleig, J. Olsen, J Phys B: At Mol Opt Phys 42 (2009) 165102

- Vibrational levels up to dissociation limit Change of level distance
 - criterion for quality of full curve
 - perturbative triples models deteriorate early
 - full triples yield balanced description
 - CCSDTQ for highest accuracy required

- Dipole moment and static polarizability
 - required in studies on ultracold molecules
 - CCSD insufficient
 - perturbative models insufficient beyond bonding region
 - CCSDT balanced and yields accurate results

Application of Relativistic CI/MCSCF

\mathbf{UO}_2 vertical excitation energies

T. Fleig, H. J. Aa. Jensen, J. Olsen, L. Visscher, J Chem Phys $\mathbf{124,10}$ (2006) 104106

•	u state manifold ${ m U}(5{ m f}^1~7{ m s}\sigma_{ m g}^1){ m O}_2$
	g state manifold ${ m U}(5{ m f}^2){ m O}_2$
•	Weak dependence of excitation energies on internuclear
	distance (ca. 200 cm^{-1})

 Differential matrix effect unclear (est. << 500 cm⁻¹)

State $(\Omega_{ m par})$	SOCI(Col.) ⁸	SO/CASPT2 ⁹	GASCI $14^{(DCHF)}$	^{3g1h} CV-GASCI 24	Exp.
U-O separation	$3.402~\mathrm{a_0}$	$3.452 \mathrm{a_0}$	$3.372 a_0$	$3.372 \mathrm{a_0}$	$[\mathrm{cm}^{-1}]$
$2_{ m u}$	0	0	0	0	0
$3_{ m u}$	431	378	427		360 ¹⁰
$1_{ m u}$	1088	2567	1089		1094^{11}
$2_{ m u}$	1566	2908	1542	2042	1401^{11}

⁸Thesis by Q. Chang, Ohio State University (2002); COLUMBUS program

⁹L. Gagliardi, M. C. Heaven, J. W. Krogh, B. O. Roos, J Am Chem Soc **127** (2005) 86

¹⁰J. Han, V. Goncharov, L.A. Kaledin, A.V. Komissarov, M.C. Heaven, J Chem Phys **120** (2004) 5155

¹¹C.J. Lue, J. Jin, M.J. Ortiz, J.C. Rienstra-Kiracofe, M.C. Heaven, J Am Chem Soc, **126** (2004) 1812

Application of Relativistic CI/MCSCF

 UO_2 vertical excitation energies, theory/experiment

- Matrix emission spectrum¹² (argon)
- ${}^{3}\Delta_{1_{u},2_{u}}$: Assignment based on inexact calculations !
- $2_u, 3_u$: Nearly parallel PECs
- New assignment:¹³ Vibrational progression of ${}^{3}\Phi_{2_{u},3_{u}}$ states

Matrix shift remains unresolved

More advanced experiments (and calculations) in progress

¹²C.J. Lue, J. Jin, M.J. Ortiz, J.C. Rienstra-Kiracofe, M.C. Heaven, J Am Chem Soc, **126** (2004) 1812 ¹³M.C. Heaven, Phys. Chem. Chem. Phys., **8** (2006) 4497

Application MRCI

Double photoionisation of $\mbox{\rm Br}_2$

T. Fleig, D. Edvardsson, S. T. Banks, J. H. D. Eland, Chem Phys 343 (2008) 270

Process: $Br_2 \xrightarrow{h\nu} Br_2^{2+}$, various types of ionizations Double ionisation spectra via TOF-PEPECO¹⁵

¹⁵J.H.D. Eland, O. Vieuxmaire, T. Kinugawa, P. Lablanquie, R.I. Hall, F. Penent, Phys Rev Lett **90** (2003) 053003