Relativistic Methods for Addressing T-Nonconservation in Heavy Element Volecutes

Timo Fleig

Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III France

June 18, 2013

Université Paul Sabatier

Laboratoire de Chimie et Physique Quantiques

Overview

1. Relativistic Wavefunction Theory

4-component electron correlation methods

2. Application to " $^{3}\Delta$ molecules" Spectroscopy and eEDM data

Four-Component Electronic-Structure Theory

Some Essentials

• Atomic basis sets; in low-energy approximation

 $\psi^S(\vec{r}) \approx \frac{\sigma \cdot \mathbf{p}}{m_0 c} \psi^L(\vec{r})$

Kinetic-balance condition

• Solution of the Dirac-Coulomb Hartree-Fock equations

 $\begin{pmatrix} \left(\hat{V}_{\text{nuc}} + \hat{v}_{\text{DCHF}} \right) \mathbb{1}_{2} & c\sigma \cdot \mathbf{p} \\ c\sigma \cdot \mathbf{p} & \left(\hat{V}_{\text{nuc}} + \hat{v}_{\text{DCHF}} - 2m_{0}c^{2} \right) \mathbb{1}_{2} \end{pmatrix} \begin{pmatrix} \psi_{a}^{L}(\vec{r}) \\ \psi_{a}^{S}(\vec{r}) \end{pmatrix} = \varepsilon \begin{pmatrix} \psi_{a}^{L}(\vec{r}) \\ \psi_{a}^{S}(\vec{r}) \end{pmatrix}, \quad \forall a \\ \varepsilon = E - m_{0}c^{2}$

• Fock matrix for "frozen" atomic core 1) Core energy: $\varepsilon_{core} = \sum_{i,j>i}^{2N_{core}} \{2\langle ij|ij\rangle - \langle ij|ji\rangle - \langle i\overline{j}|\overline{j}i\rangle\}$ 2) Inactive Fock matrix: $f_{pq}^{DC} = h_{pq}^{D} + \sum_{j}^{2N_{core}} \{2\langle pj|qj\rangle - \langle pj|jq\rangle - \langle p\overline{j}|\overline{j}q\rangle\}$

Four-Component Electronic-Structure Theory

The "empty-Dirac" picture

- Occupied positive-energy bound-state spinors Fermi vacuum state $|0\rangle$
- **Empty** continuum of negative-energy states
- Expectation value of parameterized state vector $\langle Ref|\hat{H}|Ref \rangle = \langle 0|e^{-\hat{\kappa}}\hat{H}e^{\hat{\kappa}}|0 \rangle$
- Approximation of general expectation value to first order: $\left\langle 0|e^{-\hat{\kappa}}\hat{H}^{DC}e^{\hat{\kappa}}|0\right\rangle \approx \left\langle 0|\left[\hat{H}^{DC},\hat{\kappa}\right]|0\right\rangle = \sum_{pq}\kappa_{pq}\left[\left\langle 0|\hat{H}^{DC}a_{p}^{\dagger}a_{q}|0\right\rangle - \left\langle 0|\hat{H}^{DC}a_{q}^{\dagger}a_{p}|0\right\rangle^{*}\right]$
- Parameterized Dirac-spinor transformations: $\hat{\kappa} = \sum_{pq} \left[\kappa_{p+q} + a^{\dagger}_{p} + a_{q+} + \kappa_{p+q} - a^{\dagger}_{p} + a_{q-} + \kappa_{p-q} + a^{\dagger}_{p} - a_{q+} + \kappa_{p-q} - a^{\dagger}_{p} - a_{q-} \right]$
- Green terms: minimization of energy w.r.t. rotations
- Red terms: maximization of energy w.r.t. rotations
 ⇒ minimax variation

Spinors and Strings

General principles of rigorous relativistic correlation methods

General concept: Kramers-paired spinors

Time-reversal operator for a fermion: $\hat{K} = e^{-\frac{i}{\hbar}\pi \left(\hat{\vec{s}} \cdot \vec{e_y}\right)} \hat{K}_0 = -i\Sigma_y \hat{K}_0$

Double group symmetry and quaternion algebra

Spinor basis:

 $\phi_i = a_i^{\dagger} \mid \rangle \qquad \phi_{\overline{i}} = a_{\overline{i}}^{\dagger} \mid \rangle$

- Many-particle wavefunction defined as
 - 1 unbarred (Kramers up) string $S = a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} \dots$ 1 barred (Kramers down) string $\overline{S} = a_{\overline{i}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots$
- Configuration Interaction: Slater determinants Coupled Cluster: Individual strings

Spinorbitals	General spinors
$\hat{K}\varphi_i\alpha=\varphi_i^*\beta$	$\hat{K}\phi_i = \phi_{\overline{i}}$
$\hat{K}\varphi_i^*\beta = -\varphi_i\alpha$	$\hat{K}\phi_{\overline{i}} = -\phi_i$

 \otimes x: vertex weight y: arc weight

Relativistic Generalized-Active-Space CC

L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys 134 (2011) 214102
T. Fleig, L. K. Sørensen, J. Olsen, Theo Chem Acc 118,2 (2007) 347
J. Olsen, J Chem Phys 113 (2000) 7140

- "State-Selective" (or SR-MR) GAS-CC Generalized "Oliphant/Adamowicz" Ansatz¹
- GAS-extended excitation manifold $\langle \mu_{\text{GASCC}} | = \langle \psi^{\text{Ref}} | \hat{\tau}^{\dagger}_{\mu_{\text{GAS}}}$
- $\hat{\tau}_{\mu_{\text{GAS}}}$ contains GAS-selected higher excitations $|\psi^{\text{GASCC}}\rangle = exp(\sum_{\mu} t_{\mu} \hat{\tau}_{\mu_{\text{GAS}}}) |\psi^{\text{Ref}}\rangle$
- Relativistic generalization of cluster operators $\hat{T}_1 = \sum_{ia} \left\{ t_i^a \hat{\tau}_i^a + t_{\bar{i}}^a \hat{\tau}_{\bar{i}}^a + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} + t_{\bar{i}}^{\bar{a}} \hat{\tau}_{\bar{i}}^{\bar{a}} \right\}; \hat{T}_2 = \dots$

Example for constructed higher excitations:

$$\begin{aligned} \left\langle \mu_{\text{GASCC}} \right| &= \left\langle \mu^{S(\text{III}^{1})} \right| + \left\langle \mu^{S(\text{IV}^{1})} \right| + \left\langle \mu^{D(\text{III}^{2})} \right| + \left\langle \mu^{D(\text{IV}^{2})} \right| + \left\langle \mu^{D(\text{III}^{1} + \text{IV}^{1})} \right| \\ &+ \left\langle \mu^{\mathbf{T}(\mathbf{III}^{1} + \mathbf{IV}^{2})} \right| + \left\langle \mu^{\mathbf{T}(\mathbf{III}^{2} + \mathbf{IV}^{1})} \right| + \left\langle \mu^{\mathbf{Q}(\mathbf{III}^{2} + \mathbf{IV}^{2})} \right| \end{aligned}$$

¹N. Oliphant, L. Adamowicz J Chem Phys **94** (1991) 1229

Relativistic Generalized-Active-Space CC

Excitation Energies²

$$J_{\mu}^{CC} = \sum_{\nu} A_{\mu\nu} x_{\nu} = \sum_{\nu} \left\langle \mu_{\text{GAS}} \left[e^{-\hat{T}_{\text{GAS}}} \left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] e^{\hat{T}_{\text{GAS}}} \right] \Phi_{0} \right\rangle x_{\nu}$$
$$A_{\mu\nu} = \left\langle \mu \left| \left(\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right] + \left[\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right], \hat{T} \right] + \frac{1}{2} \left[\left[\left[\hat{H}, \hat{\tau}_{\nu_{\text{GAS}}} \right], \hat{T} \right], \hat{T} \right] \dots \right] \right| \Phi_{0} \right\rangle$$

Algorithm for Jacobian matrix elements³

- \circlearrowright Loop over relativistic $N\Delta M_K$ classes of \hat{H}, \hat{T} Determines min./max. commutator nesting
 - \circlearrowright Loop over commutator type, e.g. $\left[\left[\hat{H}, \hat{T}\right], \hat{T}\right], \hat{T}\right]$

 \circlearrowright Loop over relativistic $N \Delta M_K$ classes of \hat{T} operators Find all possible contractions

 \circlearrowright Loop over contractions and perform, e.g.

$$\begin{split} & [[\hat{H}_{2v,2v},\hat{T}_{2v,2o}],\hat{T}_{2v,2o}] \\ & = \frac{1}{4} \sum_{abcd,i'j'a'b',i"j"a"b"} (ad|bc) t^{a'b'}_{i'j'} t^{a"b"}_{i"j"a'} a^{\dagger}_{a} a^{\dagger}_{b} \overline{a_c a_d a}^{\dagger}_{a'} a^{\dagger}_{b'} a_{i'} a_{j'} a^{\dagger}_{a} a^{\dagger}_{b} a_{i'} a_{j'} a^{\dagger}_{a'} a^{\dagger}_{b'} a_{i'} a_{j'} a^{\dagger}_{a} a^{\dagger}_{b} a_{i'} a_{j'} a^{\dagger}_{a'} a^{\dagger}_{b'} a_{i'} a_{j'} a^{\dagger}_{a} a^{\dagger}_{b} a_{i'} a_{j'} a^{\dagger}_{a'} a^{\dagger}_{b'} a_{i'} a_{j'} a^{\dagger}_{b'}$$

²M. Hubert, L. K. Sørensen, J. Olsen, T. Fleig, *Phys Rev A* **86** (2012) *012503*

³L. K. Sørensen, J. Olsen, T. Fleig, J Chem Phys **134** (2011) 214102

L. K. Sørensen, T. Fleig, J. Olsen, Z Phys Chem 224 (2010) 999

Special Relativity and Electron Correlation

Computational Scaling

rel.CC
$$\approx 4\sqrt{\pi \left(\frac{x}{2} - 1\right)}$$

 $\frac{1}{4} \left[\frac{x^2}{4} - \frac{3}{2}x + 2\right] \left(\begin{array}{c} x - 2\\ \frac{x}{2} - 1\end{array}\right)$
 $O^{\frac{x}{2} - 1}V^{\frac{x}{2} + 1}$

Method	Non-Rel.	2-comp.	4-comp.
Hartree-Fock	N^4	$8N^4$	$8\left(\frac{5}{2}N\right)^4$
4-Index transformation	$2N^5$	$32N^5$	$128N^{5}$
CCSD	$3N^6$	$10 \cdot$	$3N^6$
CCSDT	$30N^{8}$	$12 \cdot 3$	$30N^{8}$
CCSDTQ	$210N^{10}$	$14 \cdot 2$	$10N^{10}$

 \Rightarrow The correlated stage is the computational bottleneck (no savings in 2c formalism).

Special Relativity and Electron Correlation

Additive and non-additive methods, CI and CC⁴

⁴J.-B. Rota, S. Knecht, T. Fleig, D. Ganyushin, T. Saue, F. Neese, H. Bolvin, J Chem Phys 135 (2011) 114106

Overview

1. Relativistic Wavefunction Theory

4 components electron correlation methods

2. Application to " $^{3}\Delta$ molecules" Spectroscopy and eEDM data

CP-Violating Physics

Characteristics and energy scales⁵

⁵M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

Wavefunction theory

- Molecular Dirac-Coulomb Hamiltonian: $\hat{H}^{DC} = \sum_{A} \sum_{i} \left[c(\vec{\alpha} \cdot \vec{p})_i + \beta_i m_0 c^2 + V_{iA} \right] + \sum_{i,j>i} \frac{1}{r_{ij}} \mathbb{1}_4 + \sum_{A,B>A} V_{AB}$
- Gaunt term absent; only small errors in heavy-element molecules
- Variationally optimized coefficients $\{c_{kI}\}$ of wavefunction expansion $|\psi_k\rangle = \sum_{I=1}^{\dim \mathcal{F}^t(M,N)} c_{kI} |(S\overline{\mathcal{T}})_I\rangle$
- 4c-Cl expectation values⁶ over eEDM Hamiltonian

$$\left\langle \hat{H}_{\text{edm}} \right\rangle_{\psi_k} = \sum_{I,J=1}^{\dim \mathcal{F}^{\text{t}}(M,N)} c_{kI}^* c_{kJ} \left\langle (\mathcal{S}\overline{\mathcal{T}})_I \right| \sum_{i=1}^n \hat{H}_{\text{edm}}(i) \left| (\mathcal{S}\overline{\mathcal{T}})_J \right\rangle$$

⁶T. Fleig and M. K. Nayak, PRX, submitted, under revision.

EDM Hamiltonian

The pseudo-scalar \mathcal{PT} -odd eEDM Hamiltonian:

- Point of departure: Salpeter's⁷ modified Dirac equation: $\left[\gamma^{\mu} \left(-\imath \hbar \partial_{\mu} - \frac{e}{c} A_{\mu}\right) + m_0 c \mathbb{1}_4\right] \psi(x) = \frac{d_e}{4} \gamma^0 \gamma^5 \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}\right) F_{\mu\nu} \psi(x)$
- neglecting the less important⁸ magnetic part $-d_e \imath ec{\gamma} \cdot \mathbf{B}$
- from which the eEDM operator can we written as an expectation value: $\langle -d_e \gamma^0 \mathbf{\Sigma} \cdot \mathbf{E} \rangle_{\psi_H} = \frac{2 \iota c d_e}{e \hbar} \langle \gamma^0 \gamma^5 \vec{p}^2 \rangle_{\psi_H}$
- In a many-body system \hat{H}_{edm} appears as $\sum_{i=1}^{N} \hat{H}_{edm}(i) = -d_e \sum_{i=1}^{N} \gamma^0(i) \mathbf{\Sigma}(i) \cdot \mathbf{E}(i).$
- Required kinetic-energy integrals of the type $\left<\psi^L|ec{p}_j^2|\psi^S
 ight>$

⁷E. Salpeter, *Phys Rev* **112** (1958) *1642*

⁸E. Lindroth, B. W. Lynn, P. G. H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

GASCI wavefunctions for HfF⁺

Correct relative description of

 $\Omega = 0$ (Hf $6s^2$, ${}^1\Sigma_0^+$) and $\Omega = 1$ (Hf $6s^15d^1$, ${}^3\Delta_1$) important for

1. Spectroscopic properties of involved states

2. Lifetime $\tau_{\Omega=1} = \left(\sum_{k} W_{k,\Omega=1}^{s}\right)^{-1}$ of "science" state

label	configurations
CAS-CI(10)	$F(2s2p)^8 \; Hf(6s5d)^2$, $F(2s2p)^7 \; Hf(6s5d)^3$, $F(2s2p)^6 \; Hf(6s5d)^4$
MR-CISD(10)	$v^{1} + v^{2}$ configurations
MR-CISD(20)	+ up to 2 holes in $Hf(5s5p)$ and $F(1s)$ shells
MR-CISD+T(20)	+ active-space defined Triples replacements to MR-CISD(20)
MR-CISD(34)	$MR extsf{-CISD}(20) + up extsf{ to } 1$ hole in $Hf(4f)$ shell
MR-CISD(34)+T	MR-CISD(34) + 20-electron Triples correction

HfF⁺ potential curves in RASCISD approximation

HfF⁺ spectroscopy; excitation energy and correlation model

	$ R_{e} $	[a.u.]	$\omega_e \ [\mathrm{cm}^{-1}]$			$T_e [cm^{-1}]$				
Model	$\Omega = 0$	$\Omega = 1$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
CAS-CI(10)	3.400	3.435	793	773	774	777	1543	0	1057	2480
MR-CISD(10)	3.506	3.558	651	639	639	640	68	0	1007	2489
MR-CISD+T(10)	3.510	3.560	649	640			0	26		
MR-CISD(20)	3.401	3.438	794	766	766	770	0	386	1519	3165
$MR_{10} ext{-}CISD(20)$	3.401	3.439	796	766	769	769	0	752	1881	3533
Experiment ⁹			790.76	760.9			0	991.83		
$Experiment^{10}$	3.374	3.407	791.2	761.3	762.3	761.5	0	993	2166	3951

- CAS-CI(10) reproduces relative energies of $\Omega = 0$ and $\Omega = 1$ incorrectly.
- MR-CISD(10) accounts for required differential electron correlations.
- MR-CISD(20) is an acceptable model.
- MR_{10} -CISD+T(20) will yield a very accurate description.

⁹K.C. Cossel, D.N. Gresh, L.C. Sinclair, T. Coffrey, L.V. Skripnikov, A.N. Petrov, N.S. Mosyagin, A.V. Titov, R.W. Field, E.R. Meyer, E.A. Cornell, J. Ye, *Chem Phys Lett* **546** (2012) *1*

¹⁰B.B. Barker, I.O. Antonov, V.E. Bondybey, M.C. Heaven, J Chem Phys **134** (2011) 201102

HfF⁺: $E_{\rm eff}$ in the $\Omega = 1$ science state

	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$
Model	vDZ vTZ
CAS-CI(10)	24.1
MR-CISD(10)	21.6 22.4
MR-CISD(20)	22.9 23.3
MR_{10} -CISD(20)	23.0
MR-CISD+T(20)	23.7
MR-CISD(34)	22.9
MR-CISD(34)+T	23.3
Meyer et al. ¹¹	≈ 30
Titov: 20 e ^{$-$} corr. ¹²	24.2

Correction estimate:

 $(\pm 1\%)$ Basis set

 $(\pm 2\%)$ Number of correlated electrons

 $(\pm 2\%)$ Higher excitations

¹²A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

¹¹E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

 $\left<\hat{H}_{
m edm}
ight>_{\psi_{\Omega=1}}$ as a function of R

Spectroscopy Tests of Fundamental Physics, Columbus, June 17-21

eEDM in ${}^3\Delta$ Molecules

ThO

# 0	of Kramers	pairs accu # of min.	mulated electrons max.	Vertical excitation energies T $_v [{ m cm}^{-1}]$					
			1100/10	Correlat	ion model	$\Omega = 0$	$\Omega = 1$	$\Omega = 2$	$\Omega = 3$
				CAS2in	9	0	6706	7349	8333
				CAS2in	CAS2in9_SD2		6598	7074	8090
Virtual	x	18	18	SD16_C	AS2in9_SD18	0	6420	7240	8527
Kramers pairs		10	10 10	Exp. ¹³	Exp. 13 (T _e)		5317	6128	8600
				R = 3.47	77 a.u., vDZ, Dii	rac-Coulomb)		
Th: 7s, 6d, 7p	9	18-n	18						
Th: 6s, 6p O: 2s, 2p	8	16-m	16	Effective electric field E_{eff} $\left[\frac{GV}{cm}\right]$					
(Th: 5s, 5p, 5d)					CAS2in	9		75.2	
Frozen	(41)				CAS2in	9_SD2		71.7	
					SD16_0	CAS2in9_	SD18	74.1	
CAS2in9		n = 0	m = 0		Mever	Bohn		104	
CAS2in9_SD2		n=2	m = 0		ivicyci,			IUI	
SD16_CAS2in9	_SD18	n=2	m = 2	L					

- Rather weak correlation effects
- \rightarrow Potential curves, deeper core correlation for E_{eff}, Th(5*s*, 5*p*, 5*d*) shells, vTZ basis sets

¹³J. Paulovic, T. Nakajima, K. Hirao, R. Lindh, P.-Å. Malmqvist, J Chem Phys **119** (2003) 798, and refs.

eEDM in ${}^3\Delta$ Molecules

___ _ _

	# of Kramers	pairs accumulated # of electrons	ThF⊤	.,		- r —1,	
	_	min. max.		Vertical excitation	energies	$v [cm^{-1}]$	
				Correlation model	$\Omega = 0$	$\Omega = 1$	
			_	CAS2in6	-110	1 0	
Virtual	x	18 18		CAS2in6_SD2	-334	. 0	
Kramers pairs		10 10	-	Exp. 14 (T $_e$)	0	315	
			R=3.8 a.u., vDZ, Dirac-Coulomb				
Th: 7s, 6d	6	18–n 18					
Th: 6s, 6p F: 2s, 2p	8	16-m 16		Effective electric	c field E_{e}	$\operatorname{eff}\left[\frac{\mathrm{GV}}{\mathrm{cm}}\right]$	
(Th: 5s, 5p, 5d)				CAS2in6		32.7	
Frozen core	(41)			CAS2in6_	SD2	45.2	
				Mever Bo	hn	90	
CAS2in6		n = 0 $m = 0$				00	
CAS2in6_SD	2	n=2 $m=0$	L				
SD16_CAS2i	n6_SD18	n=2 $m=2$					

- $\bullet\,$ Strong correlation effects on spectroscopic constants and $E_{\rm eff}$
- \rightarrow Valence and outer core shells to be considered, Th(6s, 6p, 5s, 5p, 5d), O(2s, 2p)

¹⁴B. J. Barker, I. O. Antonov, M. C. Heaven, K. A. Peterson, J Chem Phys **136** (2012) 104305

- Malika Denis (Toulouse)
- **T. F.**, Coordinator
- Mikhail G. Kozlov, St. Petersburg Nuclear Physics Institute
- Malaya K. Nayak, Bhabha Atomic Research Centre, Mumbai
- Jessica Loras (Toulouse)
- Trond Saue (Toulouse)
- Avijit Shee (Toulouse)

ThO, ThF⁺, WC; (transition) dipole moments; hyperfine coupling constants other \mathcal{P} - and \mathcal{P}, \mathcal{T} -nonconserving operators