In Search of Signatures of **Beyond-Standard-Model Physics** in Diatomic Molecules

2. Timo Fleig

Département de Physique Laboratoire de Chimie et de Physique Quantiques Université Paul Sabatier Toulouse III -France

June 14, 2015

Paul Sabatier TOULOUSE II

Laboratoire de Chimie et Physique Quantique

The Team

Malaya K. Nayak

LCPQ, Toulouse, France

BARC, Mumbai, India

Malika Denis

LCPQ, Toulouse, France

Open Questions at Large Scale and at Small Scale

- Matter-antimatter asymmetry of the universe¹
- Nature of **cold dark matter**
- Degree of \mathcal{CP} violation in nature²
- Detection/constraint of EDMs as a powerful probe of possible explanations/consequences³

¹M. Dine, A. Kusenko, *Rev. Mod. Phys.* **76** (2004) *1*

- ²G. C. Branco, R. G. Felipe, F. R. Joaquim, *Rev. Mod. Phys.* **84** (2012) *515*
- ³J. Engel, M. J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nuc. Phys. **71** (2013) 21

Electric Dipole Moments and Their Source Tree⁴

 d_e : electron EDM

 $(\mathcal{P} \text{ and } \mathcal{T})$ -violating electron-nucleon interaction

 $(\mathcal{P} \text{ and } \mathcal{T})$ -violating NMQM interaction

• EDMs are low-energy physics probes of high-energy physics symmetry breaking

⁴M. Pospelov, A. Ritz, "Electric dipole moments as probes of new physics", Ann. Phys. **318** (2005) 119

Electron EDM Interaction

 $d_e = \frac{\Delta \epsilon}{E_{\text{off}}} \begin{array}{c} (\text{Experiment}) \\ (\text{Theory}) \end{array}$

Single-particle \mathcal{P} - and \mathcal{T} -odd eEDM Hamiltonian⁵: $\hat{H}_{\text{EDM}} = -\frac{d_e}{4} \gamma^0 \gamma^5 \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}\right) F_{\mu\nu} = -d_e \gamma^0 \left[\mathbf{\Sigma} \cdot \mathbf{E} + \imath \boldsymbol{\alpha} \cdot \mathbf{B}\right]$ Internal electric field contributions

$$\mathbf{E}_{\text{int}}(i) = \sum_{A=1}^{N} \frac{Ze \ (\vec{r_i} - \vec{r_A})}{||\vec{r_i} - \vec{r_A}||^3} - \sum_{j=1}^{n} \frac{e \ (\vec{r_i} - \vec{r_j})}{||\vec{r_i} - \vec{r_j}||^3}$$

Expectation value in many-body system in accord with stratagem II⁶

$$-\left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \boldsymbol{\Sigma}_{j} \cdot \mathbf{E}_{j} \right\rangle_{\psi^{(0)}} \approx \frac{2ic}{e\hbar} \left\langle \sum_{j=1}^{n} \gamma_{j}^{0} \gamma_{j}^{5} \vec{p}_{j}^{2} \right\rangle_{\psi^{(0)}} := E_{\text{eff}}$$

⁶E. Lindroth, E. Lynn, P.G.H. Sandars, J Phys B: At Mol Opt Phys 22 (1989) 559

⁵E. Salpeter, *Phys Rev* **112** (1958) *1642*

Nuclear Magnetic Quadrupole Moment Interaction⁷

Effective molecular Hamiltonian⁸ for linear molecule along **n**:

$$\hat{H}_{MQM}^{\text{eff}} = -\frac{W_M M}{2I(2I-1)} \, \mathbf{J_e} \, \hat{\mathbf{T}} \, \mathbf{n}$$

W_M: MQM-electron-magnetic-field interaction constant

with the components of the nuclear MQM $M_{i,k} = \frac{3M}{2I(2I-1)} T_{i,k} \qquad T_{i,k} = I_i I_k + I_k I_i - \frac{2}{3} \delta_{i,k} I(I+1),$ $W_M \propto \left(\frac{\boldsymbol{\alpha} \times \mathbf{r}}{r^5}\right)_3 x_3$

Calculation⁹ via electric-field gradient with the help of $\left(\frac{\boldsymbol{\alpha} \times \mathbf{r}}{r^5}\right)_3 x_3 = \alpha_1 \frac{x_2 x_3}{r^5} - \alpha_2 \frac{x_1 x_3}{r^5} \qquad \iiint \frac{x_i x_j}{r^5} d^3 x = \frac{1}{3} \iiint \frac{\partial}{\partial x_i} \frac{x_j}{r^3} d^3 x$

⁷I.B. Khriplovich, Sov. Phys. JETP 44 (1976) 25; O.P. Sushkov, V.V. Flambaum, I.B. Khriplovich, Sov. Phys. JETP 60 (1984) 873
⁸V.V. Flambaum, D. DeMille, M.G. Kozlov, Phys Rev Lett, 113 (2014) 103003
⁹TF, M.K. Nayak, M.G. Kozlov, Phys Rev, to be submitted

Correlated Wavefunction Theory for \mathcal{P} , \mathcal{T} -odd Properties

- Dirac-Coulomb Hamiltonian operator $\hat{H}^{DC} = \sum_{A} \sum_{i} \left[c(\vec{\alpha} \cdot \vec{p})_i + \beta_i m_0 c^2 + V_{iA} \right] + \sum_{i,j>i} \frac{1}{r_{ij}} \mathbb{1}_4 + \sum_{A,B>A} V_{AB}$
- All-electron Dirac-Coulomb Hartree-Fock (DCHF) calculation set of time-reversal paired 4-spinors $\hat{K}\varphi_i = \varphi_{\bar{i}}$ and $\hat{K}\varphi_{\bar{i}} = -\varphi_i$
- Expansion and variation¹⁰ in *n*-electron sector of Fock space $\begin{aligned} &|\psi_k\rangle = \sum_{I=1}^{\dim \mathcal{F}^{t}(\mathrm{M,n})} c_{kI} \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I} | \rangle & \text{unbarred (Kramers up) string } \mathcal{S} = a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} \dots \\ &\text{barred (Kramers down) string } \overline{\mathcal{S}} = a_{\overline{l}}^{\dagger} a_{\overline{m}}^{\dagger} a_{\overline{n}}^{\dagger} \dots \end{aligned}$

Expectation values over relativistic Configuration Interaction wavefunctions¹¹ $\left\langle \hat{H}' \right\rangle_{\psi_k^{(0)}} = \sum_{I,J=1}^{\dim \mathcal{F}^t(\mathbf{M},\mathbf{n})} c_{kI}^* c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_I^\dagger \right| \hat{H}' \right| (\mathcal{S}\overline{\mathcal{T}})_J \left| \right. \right\rangle$

¹⁰S. Knecht, H.J.Aa. Jensen, T.F., *J Chem Phys* **132** (2010) *014108*

¹¹ S. Knecht, Dissertation, HHU Düsseldorf 2009

\mathcal{P} , $\mathcal{T}\text{-}odd$ Properties as Expectation Values

Interaction constants for n-electron system

• Electron eEDM interaction constant

 $W_d := \frac{2\iota c}{\Omega e\hbar} \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \vec{p}_j^2 \right\rangle_{\psi_k^{(0)}}$

$$\left< \hat{H}_{\mathsf{eEDM}} \right> = d_e \, \Omega \, W_d$$

• S-PS electron-nucleon interaction constant

$$W_{\mathcal{P},\mathcal{T}} := \frac{\imath}{\Omega} \frac{G_F}{\sqrt{2}} Z \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \right\rangle_{\psi_k^{(0)}}$$

$$\left\langle \hat{H}_{\text{e-nSPS}} \right\rangle = k_s \,\Omega \, W_{\mathcal{P},\mathcal{T}}$$

• Nuclear magnetic quadrupole - electronic magnetic field interaction

$$W_M = \frac{3}{2\Omega} \left\langle \sum_{j=1}^n \left(\frac{\boldsymbol{\alpha}_j \times \mathbf{r}_{jA}}{r_{jA}^5} \right)_z (r_{jA})_z \right\rangle_{\psi_k^{(0)}}$$

Four-Spinor Based Generalized-Active-Space CI¹²

TaN sample system wavefunction parameterization

GAS-extended projection manifold $\left< \mu_{ ext{GASCI}}^{N} \right| = \left< \mu_{ ext{hole space}}^{ ext{particle space}} \right|$

Selected sub-sets of higher excitations in projection manifold:

 $\left\langle \mu^{T} \right| \in \left\{ \left\langle \mu_{III^{3}}^{IV^{1},V^{2}} \right|, \dots, \left\langle \mu_{II^{2},III^{1}}^{IV^{1},V^{2}} \right| \right\}$

		# of Kramers pairs	accumulated # of electrons min. max
V Virt	Virtual	110	18 18
IV	Ta: 6p,7s,7p,π Ta: 6s, 5dδ	K	18–q 18
III	N: 2p (Ta: d)	3	16-p 16
II	N: 2s (Ta: d)	1	10-n 10
Ι	Ta: 5s, 5p	4	8-m 8
	Frozen core	(31)	

1)

$$\left\langle \mu^{Q} \right| \in \left\{ \left\langle \mu_{III^{3},IV^{1}}^{IV^{4}} \right|, \dots, \left\langle \mu_{III^{3},IV^{1}}^{IV^{2},V^{2}} \right|, \dots, \left\langle \mu_{II^{2},III^{1},IV^{1}}^{IV^{2},V^{2}} \right| \right\}$$

$$\left\langle \mu^{5} \right| \in \left\{ \left\langle \mu_{III^{3},IV^{2}}^{IV^{5}} \right|, \dots, \left\langle \mu_{III^{3},IV^{2}}^{IV^{3},V^{2}} \right|, \dots, \left\langle \mu_{II^{2},III^{1},IV^{2}}^{IV^{3},V^{2}} \right|, \dots, \left\langle \mu_{I^{1},II^{1},III^{1},III^{1},III^{1},IV^{1}}^{IV^{3},V^{2}} \right| \right\}$$

¹²TF, J. Olsen, L. Visscher, J Chem Phys **119** (2003) 2963, S. Knecht, H.J.Aa. Jensen, TF, J Chem Phys **132** (2010) 014108, J. Olsen, J Chem Phys 113 (2000) 7140

Search for the Electron EDM

Why molecules?

Be an atom in a parity eigenstate $\hat{\mathcal{P}} |\psi_p\rangle = \prod_{i=1}^n \hat{p}(i) \hat{\mathcal{A}} |\varphi_a(1) \dots \varphi_m(n)\rangle$. Then $\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = \left\langle \psi_p | \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} \hat{H}_{\text{EDM}} \hat{\mathcal{P}}^{\dagger} \hat{\mathcal{P}} | \psi_p \right\rangle = -p^2 \left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle$ $= -\left\langle \psi_p | \hat{H}_{\text{EDM}} | \psi_p \right\rangle = 0$

Parity eigenstates need to be mixed (polarization).

- 1. A perturbing laboratory E field is required to mix parity eigenstates. TI experiment¹³ $E_{\rm eff} \approx 0.05 \left[\frac{{\rm GV}}{{
 m cm}}\right]$
- 2. Molecular fields: YbF¹⁴: $E_{\rm eff} \approx 26 \left[\frac{\rm GV}{\rm cm}\right]$, HgF¹⁵: $E_{\rm eff} \approx 100 \left[\frac{\rm GV}{\rm cm}\right]$,

¹⁵Dmitriev et al., *Phys Lett* **167A** (1992) *280*

¹³V.V. Flambaum, Sov J Nucl Phys **24** (1976) 199

¹⁴D.M. Kara, I.J. Smallman, J.J. Hudson, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, New J Phys 14 (2012) 103051

The eEDM in a molecular framework

 $^{3}\Delta$ molecules 16

- One heavy nucleus (relativistic effect)
- One "science" electron (σ^1) one "spectroscopy" electron (δ^1)
- Large $E_{\rm eff}$ for σ^1 electron
- Deeply bound and strongly polar molecules (fluorides, oxides, (nitrides))
- Small Λ (Ω)-doublet splitting¹⁷ (optimal polarization)
- Small reduced mass (one heavy, one light atom)
- $\Omega = 1$ component preferred (small magnetic moment)

 \Rightarrow Low-lying ${}^{3}\Delta_{1}$ as "science" state

¹⁶E. Meyer, J. Bohn, D.A. Deskevich, *Phys Rev A* **73** (2006) *062108*

¹⁷TF, C.M. Marian, J Mol Spectrosc **178** (1996) 1

ThO

Experiment: ACME Collaboration, Yale/Harvard, (DeMille/Doyle/Gabrielse groups)

Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

The ACME Collaboration*: J. Baron¹, W. C. Campbell², D. DeMille³, J. M. Doyle¹, G. Gabrielse¹, Y. V. Gurevich^{1,**}, P. W. Hess¹, N. R. Hutzler¹, E. Kirilov^{3,#}, I. Kozyryev^{3,†}, B. R. O'Leary³, C. D. Panda¹, M. F. Parsons¹, E. S. Petrik¹, B. Spaun¹, A. C. Vutha⁴, and A. D. West³

The Standard Model (SM) of particle physics fails to explain dark matter and why matter survived annihilation with antimatter following the Big Bang. Extensions to the SM, such as weak-scale Supersymmetry, may explain one or both of these phenomena by positing the existence of new particles and interactions that are asymmetric under time-reversal (T). These theories nearly always predict a small, yet potentially measurable $(10^{-27}$ - 10^{-30} e cm) electron electric dipole moment (EDM, d_e), which is an asymmetric charge distribution along the spin (\vec{S}) . The EDM is also asymmetric under T. Using the polar molecule thorium monoxide (ThO), we measure $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29} \ e \text{ cm}$. This corresponds to an upper limit of $|d_e| < 8.7 \times 10^{-29} \ e \text{ cm}$ with 90 percent confidence, an order of magnitude improvement in sensitivity compared to the previous best limits. Our result constrains T-violating physics at the TeV energy scale.

The exceptionally high internal effective electric field (\mathcal{E}_{eff}) of heavy neutral atoms and molecules can be used to precisely probe

is prepared using optical pumping and state preparation lasers. Parallel electric $(\vec{\mathcal{E}})$ and magnetic $(\vec{\mathcal{B}})$ fields exert torques on the electric and magnetic dipole moments, causing the spin vector to precess in the xy plane. The precession angle is measured with a readout laser and fluorescence detection. A change in this angle as $\vec{\mathcal{E}}_{\text{eff}}$ is reversed is proportional to d_e .

Theory
$$E_{eff}[\frac{GV}{cm}]$$
 $W_{P,T}[kHz]$ 2c-CCSD(T)^{18}81.51124c-MR-CISD^{19}75.2105

¹⁸L. Skripnikov, A.V. Titov, *J Chem Phys* **142** (2015) *024301*

¹⁹TF, M.K. Nayak, J Mol Spectrosc **300** (2014) 16; M. Denis, TF (2015)

Variation due to spinor choice 0.2%

Augmentation of virtual space: **further slight decrease**

Historical Development of eEDM Upper Bound²⁰

²⁰Sandars (1975), Commins, DeMille (2008)

eEDM Constraint on Beyond-Standard-Model Theories²¹

Model	$ d_e [e\cdot cm]$
Standard model	$< 10^{-38}$
Left-right symmetric	$10^{-28} \dots 10^{-26}$
Lepton-flavor changing	$10^{-29} \dots 10^{-26}$
Multi-Higgs	$10^{-28} \dots 10^{-27}$
Supersymmetric	$\leq 10^{-25}$
Experimental limit (TI) ²²	$< 1.6 \cdot 10^{-27}$
Experimental limit (YbF) ²³	$< 10.5 \cdot 10^{-28}$
Experimental limit (ThO) ²⁴	$< 9.6 \cdot 10^{-29}$

²¹Courtesy: DeMille (2005), Huliyar (2009)

²²B.C. Regan, E.D. Commins, C.J. Schmidt, D.P. DeMille, *Phys Rev Lett* 88 (2002) 071805/1

²³J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, *Nature* **473** (2011) *493*

²⁴D. DeMille, ICAP 2014, Washington D.C., ACME Collaboration, *Science* 6168 (2014) *269*, TF and M. K. Nayak, *J. Mol. Spectrosc.* **300** (2014) *16*, L. V. Skripnikov, A. N. Petrov, A. V. Titov, *J. Chem. Phys.* 139 (2013) *221103*, L. V. Skripnikov, A. V. Titov, *J. Chem. Phys.* 142 (2015) *024301*

Molecular (cat)ions HfF⁺/ThF⁺

Experiment: JILA, Boulder, Colorado (Cornell group)

EDM Studies in Molecular Ions

as opposed to neutral molecules²⁵

- Valence isoelectronic with neutral contenders (ThO, WC, et al.)
- Sufficiently large value of E_{eff} Hope for very large value²⁶ in ThF⁺ due to Z = 90
- Use of ion traps and rotating electric fields
 ⇒ Long interrogation times
- A related point: HfF⁺ electronic ground state: ${}^{1}\Sigma_{0}^{+}$ ThF⁺ electronic ground state²⁷: ${}^{3}\Delta_{1}$ or ${}^{1}\Sigma_{0}^{+}$

²⁵H. Loh, K.C. Cossel, M.C. Grau, K.-K. Ni, E.R. Meyer, J.L. Bohn, J. Ye, E.A. Cornell, *Science* **342** (2013) *1220*A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, *J Mol Spectrosc* **270**²⁶(2011) *1*

²⁶E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

 ²⁷M. Denis, M.N. Pedersen, H.J.Aa. Jensen, A.S.P. Gomes, M.K. Nayak, S. Knecht, TF, New J Phys (2015) 7 (2015) 043005
 B. Barker, I.O. Antonov, M.C. Heaven, K.A. Peterson, J Chem Phys 136 (2012) 104305

The eEDM in a molecular framework

A Proposed Measurement²⁸ on HfF⁺

²⁸A.E. Leanhardt, J.L. Bohn, H. Loh, P. Maletinsky, E.R. Meyer, L.C. Sinclair, R.P. Stutz, E.A. Cornell, J Mol Spectrosc **270** (2011) 1

Molecular Wavefunctions from CC and CI

		Th spinor distribution on spaces							
			Model	4f5s5p	5d	бѕбр	5f6d7	s 7p7d8s8	Bp6f
	IHFS	SCC	$\mathcal{I}^{\mathcal{CC}}$	frozen	frozen	\overline{Q}	P_m	P_i	
			$\mathcal{II}^{\mathcal{CC}}$	frozen	Q	Q	P_m	P_i	
			III^{CC}	Q	Q	Q	P_m	P_i	
	MRC		$\mathcal{I}^{\mathcal{CI}}$	frozen	Q-S	Q-S	P_m	Q-SI	\mathcal{I}
			${\cal II}^{{\cal CI}}$	frozen	Q - SD	Q - SD	P_m	Q-SI	\mathcal{I}
Model		Th F :	${6s,6p\atop 2s,2p}$	Th $7s$, $6d\delta$	Th $6d\pi$	Th $6d\sigma$,7 $p\pi$	Th 7 $p\sigma$,8 s	< 10 a.u
$\mathcal{III}^{\mathcal{CI}}$	Ζ,3	Q -	-SD	P_m	Q - SD	Q - S	SD	Q - SD	Q - SD
III^{CI}	T+T,3	Q ·	-SD	P_m	$Q - SD'_{2}$	$\Gamma \qquad Q-S$	DT (Q - SDT	Q - SDT
$\mathcal{III}^{\mathcal{CI}}$	Ζ,5	Q -	-SD	P_m	P_m	Q-S	SD	Q - SD	Q - SD
$\mathcal{III}^{\mathcal{CI}}$	Ζ,8	Q -	-SD	P_m	P_m	P_m		Q - SD	Q - SD
$\mathcal{III}^{\mathcal{CI}}$	Ζ,10	Q -	-SD	P_m	P_m	P_m		P_m	Q - SD
$\mathcal{IV}^{\mathcal{CI}}$		fr	ozen	P_m	P_m	P_m		P_m	Q - SD

Low-Lying Electronic States 29 of $\rm ThF^+$

			Electronic state energy				
Method	$Model^a$	Hamiltonian	$^{-1}\Sigma_{0^+}^+$	$^{3}\Delta_{1}$	$^{3}\Delta_{2}$	$^{3}\Delta_{3}$	$^{3}\Pi_{0^{-}}$
IHFSCC	$\mathcal{II}^{\mathcal{CC}}$	2c	42	0.00	1062	3146	4499
	$\mathcal{III}^{\mathcal{CC},\dagger}$	2c	15	0	1062	3149	4511
	$\mathcal{III}^{\mathcal{CC},\ddagger}$	2c	191	0	1048	3157	4123
	$\mathcal{III}^{\mathcal{CC},*}$	2c	319	0	1039	3162	3841
MRCI	$\mathcal{I}^{\mathcal{CI}}$	2c	854	0	1154	3189	3388
	$\mathcal{II}^{\mathcal{CI}}$	2c	630	0	1167	2986	-
	$\mathcal{III}^{\mathcal{CI},10}$	4c	538	0	1155	3012	-
$CCSD(T)+SO^{b}$			501	0	890	2157	
$CCSDT+SO^b$			143	0	890	2157	
$CCSDT(Q) + SO^b$			0	66	955	2223	
Experiment ^b			0	315.0(5)	1052.5(5)	3150(15)	3395(15)

Spinor-based correlation methods yield similar results

Orbital-based perturbative correlation methods underestimate ${}^{3}\Delta$ **splittings dramatically**

²⁹*a* M. Denis, M.N. Pedersen, H.J.Aa. Jensen, A.S.P. Gomes, M.K. Nayak, S. Knecht, TF, New J Phys 7 (2015) 043005

^bB. Barker, I.O. Antonov, M.C. Heaven, K.A. Peterson, J Chem Phys **136** (2012) 104305

(Four-)Spinors vs. Orbitals

The electronic ground state of of ThF^+

 $\frac{\text{Hypothesis:}}{\Delta \varepsilon_{\delta_{5/2} - \delta_{3/2}}} = 2166 \text{ cm}^{-1}.$

Configurational composition of ${}^{3}\Delta$ multiplet states (from MR₁₀-CISD(18) model)

Orbital-based methods underestimate term splittings

Error is large for ${}^{3}\Delta_{2}$ - ${}^{3}\Delta_{3}$ splitting Error is smaller for ${}^{3}\Delta_{1}$ - ${}^{3}\Delta_{2}$ splitting

Suggested explanation for differing ground-state predictions

¹⁹F Magnetic Hyperfine Interaction in ThF⁺ and HfF⁺ ($\Omega = 1$)

Magnetic hyperfine interaction constant:

$$A_{||} = \frac{\mu_F}{I\Omega} \left\langle \sum_{i=1}^n \left(\frac{\vec{\alpha_i} \times \vec{r_{iF}}}{r_{iF}^3} \right)_z \right\rangle_{\psi}$$

System	Model	$A_{ }$ [MHz]	spinor character	R_e [a.u.]
ThF^+	MR_{10} -CISD(20)	8.9	0.001 $p_z(F)$	3.75
(30)	MR_{10} -CISD(18)	4.3		
HfF^{+} (³¹)	MR_6 -CISD(20)	45.3	$0.001 \ p_z(F)$	3.41

- Unpaired electrons localized on heavy atom
- Correlation of 1s (F) electrons of crucial importance
- $A_{||}$ for ThF⁺ very small due to long internuclear distance

³⁰ M. Denis, M.N. Pedersen, H.J.Aa. Jensen, A.S.P. Gomes, M.K. Nayak, S. Knecht, TF, *New J Phys* (2015) **7** (2015) 043005 ³¹TF and M.K. Nayak, *Phys Rev A* **88** (2013) *032514*

\mathcal{P}, \mathcal{T} -Odd Interactions in ThF⁺ ($\Omega = 1$) Basis Sets

Basis set	$T_v [\mathrm{cm}^{-1}]$	$E_{\rm eff}[{\rm GV\over cm}]$	$A_{ }[MHz]$	$W_{P,T}[kHz]$
DZ	378	37.8	1824	51.90
TZ'	787	36.9	1836	50.73
QZ'	877	36.9	1830	50.77

Vertical excitation energy for $\Omega = 0^+$, electron EDM effective electric field, magnetic hyperfine interaction constant, and scalar-pseudoscalar electron-nucleon interaction constant for $\Omega = 1$ at an internuclear distance of $R = 3.779 \ a_0$ using basis sets with increasing cardinal number and the wavefunction model $IIII^{CI,5}$.

Scalar-pseudoscalar electron-nucleon interaction constant:

$$W_{P,T} = \frac{\imath}{\Omega} \frac{G_F}{\sqrt{2}} Z \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\vec{r}_j) \right\rangle_{\psi}$$

The eEDM in ThF⁺ ($\Omega = 1$)

Active 4-Spinor Spaces

CI model(TZ basis)	$T_v [\mathrm{cm}^{-1}]$	$E_{\rm eff}[{\rm GV\over cm}]$	$A_{ }[MHz]$	$W_{P,T}[kHz]$
$\mathcal{IV}^{\mathcal{CI}}$	274	35.4	1749	49.44
$\mathcal{III}^{\mathcal{CI},3}$	1029	47.5	1842	65.78
$\mathcal{III}^{\mathcal{CI},5}$	787	36.9	1836	50.73
$\mathcal{III}^{\mathcal{CI},6}$	709	36.2	1836	49.90
$\mathcal{III}^{\mathcal{CI},8}$	598	35.6	1834	49.04
$\mathcal{III}^{\mathcal{CI},10}$	538	35.2	1833	48.35
$\mathcal{III}^{\mathcal{CI},12}$		35.1	1832	

Vertical excitation energy for $\Omega = 0^+$, electron EDM effective electric field, magnetic hyperfine interaction constant, and scalar-pseudoscalar electron-nucleon interaction constant for $\Omega = 1$ at an internuclear distance of $R = 3.779 a_0$ using the TZ' basis set, varying number of correlated electrons and varying active spinor spaces.

Large active space ⇒ shifts electron density from Th(s) to Th(p) and Th(d), reducing E_{eff}.

The eEDM in ThF⁺ ($\Omega = 1$)

Higher Excitations

CI model(DZ basis)	$T_v [\mathrm{cm}^{-1}]$	$E_{\rm eff}[{\rm GV\over cm}]$	$A_{ }[MHz]$	$W_{P,T}[kHz]$
$\mathcal{III}^{\mathcal{CI},3}$	654	47.0	1830	64.92
$\mathcal{III}^{\mathcal{CI},10}$	88	37.1	1832	51.06
$\mathcal{III}^{\mathcal{CI}+T,3}$	247	35.4	1834	48.64

Vertical excitation energy for $\Omega = 0^+$, electron EDM effective electric field, magnetic hyperfine interaction constant, and scalar-pseudoscalar electron-nucleon interaction constant for $\Omega = 1$ at an internuclear distance of $R = 3.779 a_0$ using the DZ basis set and varying maximum excitation rank.

• Active space accounts for important higher excitations

ThF⁺

Static Molecular Electric Dipole Moment

$^M\Lambda_\Omega$ State	$T_v [\mathrm{cm}^{-1}]$	$\left\langle {}^{M}\Lambda_{\Omega} \hat{D}_{z} ^{M}\Lambda_{\Omega} ight angle$ [D]
$^{1}\Sigma_{0}^{+}$	630	3.941
$^{3}\Delta_{1}$	0	4.029
$^{3}\Delta_{2}$	1167	3.970
$^{3}\Delta_{3}$	2986	4.034

Molecular static electric dipole moments $\langle {}^{M}\Lambda_{\Omega}|\hat{D}_{z}|{}^{M}\Lambda_{\Omega}\rangle$, with $\hat{\vec{D}}$ the electric dipole moment operator, using the TZ basis set and the CI model $\mathcal{II}^{\mathcal{CI}}$. The origin is at the center of mass, and the internuclear distance is $R = 3.779 \ [a_0]$ (F nucleus at $z\vec{e}_z$ with z < 0).

• Very large center-of-mass dipole moment Effectively polarizable, suggest large value of $E_{\rm eff}$

ThF⁺

Electric Transition Dipole Moments

$^M\Lambda_\Omega$ State	$T_v [\mathrm{cm}^{-1}]$	$1\Sigma_0^+$	$^{3}\Delta_{1}$	$^{3}\Delta_{2}$	$^{3}\Delta_{3}$	${}^{1}\Sigma_{0}({}^{3}\Pi_{0})$	$^{3}\Pi_{0}$	$^{1,3}\Pi_1(^3\Sigma_1)$	$^{3}\Pi_{0}(^{1}\Sigma_{0})$
$^{1}\Sigma_{0}^{+}$	274	-4.004							
$^{3}\Delta_{1}$	0	0.012	-4.075						
$^{3}\Delta_{2}$	724	0.000	0.070	-4.022					
$^{3}\Delta_{3}$	2198	0.000	0.000	0.052	-4.075				
${}^{1}\Sigma_{0}({}^{3}\Pi_{0})$	6344	0.439	0.455	0.000	0.000	-3.752			
$^{3}\Pi_{0}$	6528	0.000	0.571	0.000	0.000	0.000	-2.116		
$^{1,3}\Pi_1(^{3}\Sigma_1)$	6639	0.868	0.142	0.218	0.000	0.197	0.000	-2.375	
$^{3}\Pi_{0}(^{1}\Sigma_{0})$	6747	0.003	0.391	0.000	0.000	0.929	0.000	0.094	-2.717
$^{1,3}\Delta_2(^{3}\Pi_2)$	7008	0.000	0.473	0.334	0.298	0.000	0.000	0.529	0.000
$3\Sigma_1$	7490	0.226	0.069	0.221	0.000	0.136	0.197	0.451	0.145
$^{1,3}\Pi_1$	7918	0.667	0.052	0.801	0.000	0.011	0.064	0.107	0.043
${}^{3}\Phi_{2}({}^{3}\Pi_{2})$	8245	0.000	1.338	0.234	0.272	0.000	0.000	0.134	0.000

Electric transition dipole moments $\left\| \left\langle {}^{M}\Lambda'_{\Omega} | \hat{\vec{D}} | {}^{M}\Lambda_{\Omega} \right\rangle \right\|$, with $\hat{\vec{D}}$ the electric dipole moment operator, and vertical transition energies for low-lying electronic states in [D] units using the TZ' basis set and the CI model $\mathcal{IV}^{C\mathcal{I}}$. The origin is at the center of mass, and the internuclear distance is $R = 3.779 \ [a_0]$. $\left({}^{M}\Lambda_{\Omega} \right)$ denotes a term contributing at least 10% to the state. ^{1,3} denotes cases where Λ -S coupling breaks down significantly according to the analysis of our spinor-based ω - ω coupled wavefunctions.

HfF⁺ and ThF⁺: E_{eff} in the $\Omega = 1$ science state³²

HfF ⁺		ThF ⁺	
Model	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$	Model	$E_{\rm eff} \left[\frac{\rm GV}{\rm cm} \right]$
CAS-CI(10)	24.1		
MR-CISD(10)	22.4		
MR-CISD(20)	23.3	MR_3 -CISD(18)	47.5
MR-CISD+T(20)	23.7	MR_6 -CISD(18)	36.2
MR-CISD(34)	22.9	MR_{10} -CISD(18)	35.2
MR-CISD(34)+T	23.3	MR_3 -CISDT(18)	35.4
Estimate, Meyer et al. ³³	≈ 30	Meyer et al.	≈ 90
20 e ⁻ corr., Titov et al. ³⁴	24.2	$38 e^-$ corr., Titov et al. ³⁵	≈ 37.3

 (HfF^+)

Similar results with various methods System currently under exp. study $(\mathsf{Th}\mathsf{F}^+)$

Meyer's model inaccurate

CC and CI approaches yield similar results

³² TF and M.K. Nayak, *Phys Rev A* **88** (2013) *032514*

M. Denis, M. K. Nørby, H. J. Aa. Jensen, A. S. P. Gomes, M.K. Nayak, S. Knecht, TF, New J Phys 7 (2015) 043005

³³E.R. Meyer, J.L. Bohn, *Phys Rev A* **78** (2008) *010502(R)*

³⁴A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, *Phys Rev A* **76** (2007) *030501(R)*

³⁵L. V. Skripnikov, A.V. Titov, *arXiv:1503.01001v1* (2015)

Nuclear Magnetic Quadrupole Moment

Constraining \mathcal{P}, \mathcal{T} -violating hadron physics

- Nuclear MQM has two possible sources³⁶:
 - 1. Intranuclear \mathcal{P} -, \mathcal{T} -odd interactions, described by QCD (\mathcal{CP})-violating parameter³⁷ $\tilde{\Theta}$,

 $M_0^{p,n}(\tilde{\Theta}) \approx 2 \times 10^{-29} \,\tilde{\Theta} \, e \, \mathrm{cm}^2$

M: valence nucleon MQM

- 2. Neutron/proton EDM (order of magnitude smaller)
- MQM is enhanced in non-spherical (deformed) nuclei³⁸
- Enhancement⁴¹ of ≈ 12 in ¹⁸¹Ta, compared to $M_0^{p,n}$
- TaN is a " $^{3}\Delta$ molecule", experiments planned at ACME (Yale/Harvard)

³⁶V. V. Flambaum, D. DeMille, M. G. Kozlov, *Phys Rev Lett* **113** (2014) *103003*

³⁷R. J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, *Phys Lett* **88B** (1979) *123*

³⁸V. V. Flambaum, *Phys Lett B* **320** (1994) *211*

³⁹M. Zhou, L. Andrews, *J Phys Chem A* **102** (1998) *9061*; R. S. Ram, J. Liévin, P. F. Bernath, *J Mol Spectrosc* **215** (2002) *275*

TaN, Spectroscopic properties

$^M\Lambda_\Omega$ State	${}^{1}\Sigma_{0}^{+}$	$^{3}\Delta_{1}$	$^{3}\Delta_{2}$	$^{3}\Delta_{3}$	$^{1}\Delta_{2}$
$^{1}\Sigma_{0}^{+}$	-3.515				
$^{3}\Delta_{1}$	0.028	-4.809			
$^{3}\Delta_{2}$	0.000	0.085	-4.775		
$^{3}\Delta_{3}$	0.000	0.000	0.087	-4.776	
$^{1}\Delta_{2}$	0.000	0.139	0.114	0.164	-4.000

Molecular static electric dipole moments $\langle {}^{M}\Lambda_{\Omega}|\hat{D}_{z}|{}^{M}\Lambda_{\Omega}\rangle$, transition dipole moments $\left|\left|\left\langle {}^{M}\Lambda_{\Omega}'|\hat{\vec{D}}|{}^{M}\Lambda_{\Omega}\right\rangle\right|\right|$, with $\hat{\vec{D}}$ the electric dipole moment operator (both in [D] units) at R = 3.1806 a₀, using the model MR^{+T}₁₂-CISD(10)

- Large molecular electric dipole moment in ${}^3\Delta_1$ science state
- $\approx 3\%$ non- Δ character of science state Transition to ${}^{1}\Sigma_{0}^{+}$ borrows intensity via ${}^{3}\Delta_{1} - {}^{1}\Pi_{1}$ and other second-order spin-orbit couplings

Molecular Nuclear Magnetic Quadrupole Moment

Results for ^{181}TaN , $\Omega=1$

Cutoff/CI Model	$E_{\rm eff} \left[{{ m GV}\over{ m cm}} ight]$	$A_{ }$ [MHz]	$W_{P,T}$ [kHz]	$W_M \; [\frac{10^{33} \text{Hz}}{e \text{cm}^2}]$
vTZ-30a.u./MR $_{12}$ -CISD(10)	30.1	3104	27.4	0.633
vTZ-30a.u./MR $_{12}$ -CISDT(10)	29.7	3092	27.1	0.626
vTZ-30a.u./MR $_{12}$ -CISD(18)	33.9	3063	30.8	0.72
vTZ-30a.u./MR $^{+T}_{12}$ -CISD (10)	31.4	3067	28.7	0.645
vTZ-30a.u./MR $_{12}^{+T}$ -CISD(18)	36	3029	32.5	0.75
Skripnikov et al. ⁴⁰	34.9	-3132	31	1.08
Flambaum <i>et al.</i> ⁴¹	25 (YbF)			≈ 1

 $\mu(^{181}\text{TaN}) = 2.35\mu_N \qquad I = \frac{7}{2}$

- EDM effective field (and $W_{P,T}$) sufficiently large
- NMQM interaction constant W_M smaller than reference values

⁴⁰N. S. Mosyagin, M. G. Kozlov, A. V. Titov, *J Phys B* **31** (1998) *L763*

⁴¹V. V. Flambaum, D. DeMille, M. G. Kozlov, *Phys Rev Lett* **113** (2014) *103003*

Outlook

The induced fermion EDM

Standard Model Picture⁷

BSM Picture

• Three-loop \mathcal{CP} -odd contributions zero in the absence of gluonic corrections⁸

 $d_e^{SM} \leq 10^{-38}\,e\,\,\mathrm{cm}$

• MSSM ("naïve SUSY") prediction⁹: $d_e \leq 10^{-27} e \text{ cm}$

¹E.D. Commins, Adv At Mol Opt Phys **40** (1998) 1

⁸M. Pospelov, I.B. Khriplovich, Sov J Nuc Phys **53** (1991) 638

⁹J. Ellis, J.S. Lee, A. Pilaftsis, J High Energy Phys **10** (2008) 049