
P , T -Violating and Magnetic Hyperfine Interactions in Atomic Thallium

Timo Fleig1, ∗ and Leonid V. Skripnikov2, 3, †

1Laboratoire de Chimie et Physique Quantiques,
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We present state-of-the-art configuration interaction and coupled cluster calculations of the elec-
tron electric dipole moment, the nucleon-electron scalar-pseudoscalar, and the magnetic hyperfine
interaction constants (αde , αCS , A||, respectively) for the thallium atomic ground state 2P1/2. Our

present best values are αde = −559 ± 28, αCS = 6.77 ± 0.34 [10−18e cm], and A|| = 21172 ± 1059
[MHz]. These findings lead to a significant reduction of the theoretical uncertainties for P, T -odd
interaction constants but not to stronger constraints on the electron electric dipole moment, de, or
the nucleon-electron scalar-pseudoscalar coupling constant, CS .

I. INTRODUCTION

Electric dipole moments (EDM) of elementary particles, atoms and molecules give rise to spatial parity
(P) and time-reversal (T ) violating interactions [1] and are a powerful probe for physics beyond the
standard model (BSM) [2]. Current single-source limits [3–5] on the electron EDM, for instance, can
probe New Physics (NP) up to an effective energy scale of 1000 TeV [6] (radiative stability approach) or
even greater [7], surpassing the current sensitivity of the Large Hadron Collider for corresponding sources
of NP.

Until today no low-energy EDM experiment has delivered a positive result. However, the obtained
EDM upper bounds are useful for constraining CP-violating parameters [8] of BSM models, cast as
effective field theories [6, 9] at different energy scales.

Open-shell atomic and molecular systems are particularly sensitive probes of leptonic and semi-leptonic
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CP-violation [10].

In most BSM models [11] the dominant CP-odd sources
in open-shell systems are the electron EDM, de, and the
nucleon-electron scalar-pseudoscalar (Ne-SPS) coupling,
CS . The panel [55] shows the constraints (yellow sur-
face) on de and CS using the combined information from
measurements [3, 12–14] and calculations [4, 5, 15–23],
including the associated experimental and theoretical un-
certainties, on the open-shell systems ThO (green), YbF
(red), HfF+ (orange) and Tl (blue) through a global fit
in the de / CS plane. Results from a single system do,
therefore, not constrain de or CS individually at all in
this multiple-source interpretation [24], but lead to a fan-
shaped surface of allowed combinations. The width of this
surface is a function of the experimental and theoretical
uncertainties.

This means that a substantial reduction of an uncertainty for an individual system could lead to more
stringent constraints on the unknown CP-violating parameters. The main reason for this is that the
surfaces for different systems are not fully aligned, which is due to the different dependency of electron
EDM and Ne-SPS atomic interactions on the electric charge of the respective heavy nuclei [25, 26].

A substantial part of the width of the surface for the Tl atom is due to the great spread of theoretical
values for the electron EDM atomic enhancement, R, calculated in the past by various groups using
different electronic-structure approaches [1, 19–23, 27]. Strikingly, Nataraj et al. [22] used a high-level
many-body approach, the Coupled Cluster (CC) method, and produced a value for R that strongly
disagrees with the results from all other groups, on the order of 20%.

The purpose of this paper is twofold:

1. We use state-of-the-art Configuration Interaction (CI) and Coupled-Cluster approaches for large-
scale applications to determine the mentioned atomic interaction constants. We put particular em-
phasis on the electron EDM enhancement R and a conclusive resolution of the major discrepancy
between literature values. Claims about physical effects that purportedly underlie these discrepan-
cies are scutinized.

2. We investigate whether a reduced uncertainty for R(Tl) impacts the above-described constraints
on de and CS .

The paper is structured as follows. In section II we lay out the theory underlying the atomic electron
EDM, Ne-SPS, and magnetic hyperfine interactions constants. The following section III contains technical
details about our calculations, results, and a discussion of these results in comparison with literature
values. The final section IV concludes on our findings.

II. THEORY

An atomic electric dipole moment (EDM) is defined [28] (p. 16) as

da = − lim
Eext→0

[
∂(∆ε)

∂Eext

]
(1)

where ∆ε is a P, T -odd energy shift and Eext is an external electric field. In atoms with nuclear spin I ≤ 1
2

[29] and in an electronic state with unpaired electrons, this energy shift is dominated by and originates
from either the electron EDM, de, or a P, T -odd nucleon-electron (Ne) interaction, or a combination of
the two [10, 11]. The two cases are presented separately.
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A. Atomic EDM due to electron EDM

The Hamiltonian for the interaction of the electron electric dipole moment, de, is for an atomic system

HEDM = −
∑
j

dj ·E(rj) = −de
∑
j

γ0
j Σj ·E(rj) (2)

where γ0 is a Dirac matrix, Σ =

(
σ 0
0 σ

)
is a vector of spin matrices in Dirac representation, j is an

electron index, E(rj) the electric field at position rj and the bare fermion’s electric dipole moment is
expressed as d = de γ

0 Σ, necessarily linearly dependent on the particle’s spin vector Σ [1, 30].
Supposing a non-zero electron EDM de, the resulting energy shift can be evaluated as

∆εEDM = de

〈
−
∑
j

γ0
j Σj ·E(rj)

〉
ψ(Eext)

(3)

where ψ(Eext) is the field-dependent atomic wavefunction of the state in question. The expectation value
in Eq. (3) has the physical dimension of electric field and can be regarded as the mean interaction of
each electron EDM with this field in the respective state. Following stratagem II of Lindroth et al. [31]
the expectation value is recast in electronic momentum form as an effective one-body operator〈

−
∑
j

γ0
j Σj ·E(rj)

〉
ψ(Eext)

≈ 2ıc

e~

〈∑
j

γ0
j γ

5
j p2

j

〉
ψ(Eext)

(4)

where the approximation lies in assuming that ψ is an exact eigenfunction of the field-dependent Hamil-
tonian of the system. This momentum-form EDM operator has already been used as early as in 1986,
by Johnson et al. [27]. In the present work the field-dependent Hamiltonian is the Dirac-Coulomb (DC)
Hamiltonian (in a.u. , e = me = ~ = 1)

Ĥ := ĤDirac-Coulomb + ĤInt-Dipole

=

n∑
j

[
cαj · pj + βjc

2 − Z

rjK
114

]
+

n∑
k>j

1

rjk
114 +

∑
j

rj ·Eext 114 (5)

with Eext weak and homogeneous, the indices j, k run over n electrons, Z the proton number with the
nucleus K placed at the origin, and α are standard Dirac matrices. Eext is not treated as a perturbation
but included a priori in the variational optimization of the atomic wavefunction. Furthermore, the final
results reported in this work include high excitation ranks in the correlation expansion of ψ. For these
reasons, the approximation in Eq. (4) is considered very good in the present case.

Within the so-defined picture and using Eqs. (1), (3), and (4) the atomic EDM becomes

da = − lim
Eext→0

∂

∂Eext

2ıc de
e~

〈∑
j

γ0
j γ

5
j p2

j

〉
ψ(Eext)

. (6)

The (dimensionless) atomic EDM enhancement factor is defined as R := da
de

. Denoting Eeff =

2ıc
e~

〈∑
j

γ0
j γ

5
j p2

j

〉
ψ(Eext)

for the sake of simplicity, the enhancement factor is

R = − lim
Eext→0

[
∂Eeff

∂Eext

]
. (7)

The external field used in the experiment on Tl [14] was Eext = 1.23× 107
[

V
m

]
≈ 0.2392× 10−4 a.u. In

the present work Eext = 0.24×10−4 a.u. is used. This is a very small field which is well within the linear
regime considering the derivative in Eq. (7). The enhancement factor may under these circumstances be
written as a function of two field points

Rlin = −∆Eeff

∆Eext
= − Eeff(2)− Eeff(1)

Eext(2)− Eext(1)
. (8)
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We set Eext(1) := 0 from which it follows that Eeff(1) = 0, and so

R ≈ Rlin = − Eeff

Eext
. (9)

Eeff is calculated as described in reference [32]. ψ is an approximate configuration interaction (CI)
eigenfunction of the Dirac-Coulomb Hamiltonian including Eext. Alternatively, Eeff can be calculated
within the finite-field approach [33, 34]. The latter has been used in coupled cluster calculations.

The electron EDM enhancement factor R is in the particle physics literature often denoted as

αde := R, (10)

the atomic-scale interaction constant of the electron EDM.

B. Nucleon-Electron Scalar-Pseudoscalar Interaction

The effective Hamiltonian for a P, T -odd nucleon-electron scalar-pseudoscalar interaction is written as
[35]

HNe-SPS = ı
GF√

2
ACS

∑
j

γ0
j γ

5
j ρN (rj) (11)

and the resulting atomic energy shift is accordingly

∆εNe-SPS =
GF√

2
ACS

〈
ı
∑
j

γ0
j γ

5
j ρN (rj)

〉
Ψ(Eext)

, (12)

where A is the nucleon number, CS is the S-PS nucleon-electron coupling constant, GF is the Fermi
constant[56] and ρN (rj) is the nucleon density at the position of electron j. Note that in the present
work we define γ5 := ıγ0γ1γ2γ3, whereas Flambaum and co-workers [21, 25, 26] define γ5 := −ıγ0γ1γ2γ3

which explains the sign difference between the present Ne-SPS atomic interaction constants and those of
Flambaum and co-workers.

Next, we define (see also reference [36]) in analogy with Eq. (7) an Ne-SPS ratio [57]

S :=
da

ACS
GF√

2

(13)

and so one can write, using Eq. (1),

S = − lim
Eext→0

 ∂

∂Eext

〈
ı
∑
j

γ0
j γ

5
j ρN (rj)

〉
Ψ(Eext)

 (14)

and in the linear regime

S = −

〈
ı
∑
j

γ0
j γ

5
j ρN (rj)

〉
Ψ(Eext)

Eext
. (15)

The initial implementation of this expectation value in the latter expression has been described in reference
[37]. The independent implementation of the matrix elements of the Hamiltonian (11) has been developed
in ref. [4].

For comparison with literature results we also define the S-PS nucleon-electron interaction constant

αCS
:=

da
CS

= S A
GF√

2
. (16)
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C. Magnetic Hyperfine Interaction

Minimal substitution according to p −→ p − q
cA in the Dirac equation and representing the vector

potential in magnetic dipole approximation as AD(r) = m×r
r3 with m the nuclear magnetic dipole moment

leads to the magnetic hyperfine Hamiltonian

ĤHF = cα ·
(
−q
c

m× r

r3

)
= qm ·

(
α× r

r3

)
for a single point charge q at position r outside the finite nucleus. Given the nuclear magnetic dipole
moment vector as m = µ

I µN I = gI µN I where µ is the magnetic moment in nuclear magnetons (µN ),
gI is the nuclear g-factor, and I is the nuclear spin, Eq. (17) for a single electron is written as

ĤHF = −e µ
I
µN I ·

(
α× r

r3

)
(17)

Based on Eq. (17) we now define the magnetic hyperfine interaction constant for n electrons in the field
of nucleus K (in a.u. )

A||(K) = − µK [µN ]

2cImpMJ
〈ΨJ,MJ

|
n∑
i=1

(
αi × riK
r3
iK

)
z

|ΨJ,MJ
〉 (18)

where 1
2cmp

is the nuclear magneton in a.u. and mp is the proton rest mass. The term 1
MJ

in the prefactor

of Eq. (18) is explained as follows.

The vector operator
(

αi×riK
r3iK

)
z

can be regarded as the q = 0 component of a rank k = 1 irreducible

tensor operator T̂
(k)
q . Application of the Wigner-Eckart Theorem to the diagonal matrix element in Eq.

(18) yields

〈
α, J,MJ |T̂ (1)

0 |α, J,MJ

〉
= 〈J,MJ ; 1, 0|J, 1; J,MJ〉

〈
α, J ||T̂ (1)||α, J

〉
√

2J + 1

where the Clebsch-Gordan coefficient is – using the general definition in Ref. [38], p. 27 – evaluated as

〈J,MJ ; 1, 0|J, 1; J,MJ〉 = MJ
1√

J(J + 1)
, (19)

which depends linearly on the total electronic angular momentum projection quantum number MJ . How-
ever, the magnetic hyperfine energy has to be independent of MJ which is assured by the above prefactor

1
MJ

. Magnetic hyperfine interaction matrix elements have been calculated based on the implementations

in references [4, 39] which do not make direct use of the Wigner-Eckart theorem and reduced matrix
elements.

III. RESULTS AND DISCUSSION

A. Technical Details

Gaussian atomic basis sets of double-, triple-, and quadruple-ζ quality [40–42] (including correlating
functions for 4f and 5d shells in the case of CI and cvDZ/CC) [43] have been used in the present work.

The atomic spinor basis is obtained in Dirac-Coulomb (DC) Hartree-Fock (HF) approximation where
the Fock operator is defined by averaging over 6p1

j=1/2 and 6p1
j=3/2 open-shell electronic configurations.

A locally modified version of the DIRAC program package [44] has been used for all electronic-structure
calculations. Interelectron correlation effects are taken into account through Configuration Interaction
(CI) theory as implemented in the KRCI module [45] of DIRAC. Coupled cluster (CC) calculations have
been carried out within the mrcc code [46–48].

The nomenclature for both CI and CC models is defined as: S, D, T, etc. denotes Singles, Doubles,
Triples etc. replacements with respect to the reference DCHF determinant. The following number is the
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number of correlated electrons and encodes which occupied shells are included in the CI or CC expansion.
In detail we have 3 =̂ (6s, 6p), 13 =̂ (5d, 6s, 6p), 21 =̂ (5s, 5p, 5d, 6s, 6p), 29 =̂ (4s, 4p, 5s, 5p, 5d, 6s, 6p),
31 =̂ (4d, 5s, 5p, 5d, 6s, 6p), 35 =̂ (4f, 5s, 5p, 5d, 6s, 6p). 81 =̂ (1s, 2s, 2p, 3s, 3p, 3d, 4f, 5s, 5p, 5d, 6s, 6p).
The notation type S10 SD13, as an example, means that the model SD13 has been approximated by
omitting Double excitations from the (5d) shells. CAS3in4 means that an active space is used with all
possible determinant occupations distributing the 3 valence electrons over the 4 valence Kramers pairs.

We use the experimental value [49] for the nuclear magnetic moment of 205Tl with nuclear spin I = 1
2 ,

µ = 1.63821[µN ], in calculations of the magnetic hyperfine interaction constant.

B. Results for Atomic Interaction Constants

The results from the systematic study of many-body effects on atomic EDM enhancement (R), Ne-SPS
interaction ratio (S) and magnetic hyperfine interaction constant (A) are compiled in Table I. The general
strategy is to first qualitatively investigate the relative importance of various many-body effects on the
properties using a rather small atomic basis set. Then, in a second step, accurate models are developed
that include all important many-body effects using the insight from the first step and larger atomic basis
sets. Since EDM enhancement and Ne-SPS interaction ratio are analytically related [25, 26] it is sufficient
to discuss the trends for R only.

C. Step 1: Many-Body effects in cvDZ basis

1. Valence electron correlation

The result of R = −388 for CAS1in3 which is a singles CI expansion for the electronic ground state
can be regarded as close to a DC Hartree-Fock result. The Full-CI (FCI) result including only the three
valence electrons (CAS3in4 SDT3/60au) of R = −487 shows that valence correlation effects lead to a
considerable change by more than 25% (in the large cvQZ basis by more than 35%). The valence FCI
enhancement in cvQZ basis of R = −587 is, therefore, a benchmark. This value is closely reproduced
using the universal basis set of reference [22]. Further effects can be considered as modifications of this
benchmark result and will be studied one by one.

2. Subvalence electron correlation

Subvalence electrons of the Tl atoms are those occuping the 5s, 5p, and 5d shells. All other electrons
will be considered core electrons. Correlations among the 5d electrons and in particular of the 5d and
the valence electrons lead to a strong decrease of R, on the absolute, on the order of 10%. Corresponding
contributions from the 5s and 5p electrons are significantly smaller.

3. Outer-core electron correlation

Outer-core-valence correlations have been evaluated by allowing for one hole in the respective outer
core spinors along with exctations from the subvalence and valence electrons. In sum for the shells with
effective principal quantum number n = 4 these effects amount to about 1.5%.

4. Effect of higher excitation ranks

Allowing for three holes in the shells with effective principal quantum number n = 5 and up to four
particles in the virtual spinors (i.e., adding combined quadruple excitations) leads to a total change of
around 3.5%.
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TABLE I: R, S, and A for Tl atom. By default, calculations were performed using DCHF spinors for the neutral
Tl atom (V N potential) and, for comparison in selected cases, with the Tl+ cation (V N−1 potential) and Tl3+

cation (V N−3 potential) spinors.

Model/virtual cutoff R S [a.u.] A||(
205Tl) [MHz]

Dyall cvDZ

CAS1in3 −388 269 18800

CAS3in4 −415 288 18800

CAS3in4 SD3/60au −487 339 19092

CAS3in4 SDT3/60au −487 339 19103

S10 CAS3in4 SD13/10au −458 321 20003

SD10 CAS3in4 SD13/10au −442 309 19502

SD10 CAS3in4 SD13/30au −441 309 19575

SD10 CAS3in4 SDT13/10au −465 326 19357

SD10 CAS3in4 SDTQ13/10au −464 326 19345

SDT10 CAS3in4 SDT13/10au −460 323 19254

SDT10 CAS3in4 SDTQ13/10au −460 323 19341

SD18 CAS3in4 SD21/10au −437 307 19445

SD18 CAS3in4 SD21/10au(Tl+) −428 300 18934

S8 SD18 CAS3in4 SD29/10au −438 308 19536

SD18 CAS3in4 SD21/30au −443 311 19758

SD18 CAS3in4 SD21/60au −443 311 19759

SD8 SD18 CAS3in4 SD29/30au −449 315 19980

SD18 CAS3in4 SDT21/10au −473 331 19439

SD18 CAS3in4 SDT21/10au(Tl+) −467 328 19228

SDT18 CAS3in4 SDT21/10au −461 325 19274

SD18 CAS3in4 SDT21/30au −483 338 19761

SD18 CAS3in4 SDT21/60au −483 338 19763

S10 SD18 CAS3in4 SDT31/10au −469 329 19423

S14 SD18 CAS3in4 SDT35/10au −469 330 19448

S8 SD18 CAS3in4 SDT29/30au −484 340 19999

SD8 SDT10 CAS3in4 SDT21/10au −471 331

SD18 CAS3in4 SDTQ21/10au −469 329 19395

Dyall cvTZ

CAS3in4 −460 323

CAS3in4 SD3/10au −565 397 19027

CAS3in4 SD3/50au −565 397 19041

CAS3in4 SDT3/50au −566 398 19050

SD18 CAS3in4 SD21/10au −481 340 19619

SD18 CAS3in4 SD21/30au −484 342 19751

SD18 CAS3in4 SDT21/10au −542 383 19995

SD18 CAS3in4 SDT21/10au(Tl3+) −524 371

SD18 CAS3in4 SDT21/20au −541 383

Dyall cvQZ

CAS1in3 −429 301 18806

CAS3in4 −476 334 18806

CAS3in4 SD3/10au −587 412 19023

CAS3in4 SD3/35au −587 412 19050

CAS3in4 SDT3/35au −587 413 19060

SD18 CAS3in4 SD21/35au −459 322 17442

SD18 CAS3in4 SDT21/10au −555 391 20432

SD18 CAS3in4 SDT21/35au −562 397 20592

cvQZ/SD18 CAS3in4 SDT21/35au + ∆corr -539 388 20614

7



TABLE II: R, S, and A for Tl atom calculated within the 81e-CCSD(T) method in different basis sets. In the
case denoted “V N” the atomic spinors are obtained for the neutral Tl atom and the external field perturbs both
the spinor coefficients and the CC amplitudes. In the case denoted “V N−1” the atomic spinors are obtained for
the Tl+ cation and the external electric field only perturbs the CC amplitudes but not the atomic spinors.

Basis set/virtual cutoff R S [a.u.] A||(
205Tl) [MHz]

Nataraj universal/103au (V N ) -559 397 21087

Nataraj universal/103au (V N−1) -550 390 21071

Dyall cvDZ/104au (V N ) -493 347 20626

Dyall cvTZ/104au (V N ) -545 387 20760

Dyall cvQZ/104au (V N ) -558 397 21172

TABLE III: R for Tl atom calculated within the CCSD(T) method in Dyall’s cvQZ basis set.

Method/virtual cutoff R

3e-CCSD(T)/10au -589

21e-CCSD(T)/150au -527

53e-CCSD(T)/150au -542

81e-CCSD(T)/104au -558

D. Step 2: Accurate CI results

Subsets of important CI models based on the findings of the previous subsection have been repeated
using the larger atomic basis sets, cvTZ and cvQZ. The single best values from these calculations are given
by the model SD18 CAS3in4 SDT21/35au. These latter values V are then corrected by a “correction
shift”, calculated as follows:

∆corr := V (S10 SD18 CAS3in4 SDT31/10au)− V (SD18 CAS3in4 SDT21/10au)

+V (S14 SD18 CAS3in4 SDT35/10au)− V (SD18 CAS3in4 SDT21/10au)

+V (S8 SD18 CAS3in4 SDT29/30au)− V (SD18 CAS3in4 SDT21/30au)

+V (SDT18 CAS3in4 SDT21/10au)− V (SD18 CAS3in4 SDT21/10au)

+V (SD18 CAS3in4 SDTQ21/10au)− V (SD18 CAS3in4 SDT21/10au)

The final best CI values are obtained by adding the above sum of individual corrections to the value from
the model SD18 CAS3in4 SDT21/35au.

E. Accurate CC results

Table II gives values of R, S and A||(
205Tl) constants obtained within the all-electron coupled cluster

with single, double and non-iterative triple cluster amplitudes, CCSD(T), method employing several basis
sets. One can see a good convergence of the results in the series of the Dyall’s DZ, TZ and QZ basis sets:
values of R obtained within the QZ and TZ basis sets differ by about 2%. Table II also gives values of
the constants obtained within the Nataraj’s universal basis set [22]. Note that the latter basis set is the
even-tempered basis set (geometry progression). One can see a good agreement of the results obtained
within the QZ basis set and Nataraj’s universal basis set.

Table III gives values of R calculated with different number of correlated electrons. As can be seen
contributions from subvalence and outer-core electrons are close to those obtained within the CI approach
above.

To check the convergence with respect to electron correlation effects we performed a series of successive
21-electron coupled cluster calculations within the TZ basis set (see Table IV). In these calculations two
sets of atomic bispinors were used. The first one was obtained within the DCHF approximation where
the Fock operator is defined by averaging over 6p1

j=1/2 and 6p1
j=3/2 open-shell electronic configurations

as in the CI case above. The second one was obtained within the closed-shell DCHF method for the Tl+

cation. One can see that CC values gives almost identical result for each set at any level. Besides, the
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TABLE IV: Values of R calculated at different level of theory with correlation of 21 electrons of Tl, cvTZ basis
set. Calculations were performed using DCHF spinors for the neutral Tl atom (V N potential) and for the Tl+

cation (V N−1 potential) cases. In both cases the external field perturbs both the spinor coefficients and the CC
amplitudes.

V N V N−1

DCHF -418 -402

CCSD -531 -530

CCSD(T) -521 -522

CCSDT -523 -523

CCSDT(Q) -522 -522

TABLE V: Comparison with literature values

Work αde αCS [10−18e cm] A||(
205Tl) [MHz]

Literature values

Khriplovich et al. [1] 5.1

Johnson et al. [27] Norcross potential −562 −18764

Mårtensson-Pendrill et al. [19] −600± 200 7± 2

Liu et al. [20] −585

Dzuba et al. [21] −582 7.0± 0.2 21067

Nataraj et al. (CCSD(T)) [22] −470 21053

Sahoo et al. (CCSD(T)) [50] 4.06 21026

Porsev et al. [23] −573 22041

This work CI −539 6.61 20614

This work CC −559 6.77 21172

Experiment [51] 21310.8± 0.0

contribution of correlation effects beyond the CCSD(T) model is almost negligible in the considered case.
We considered models up to coupled cluster with Single, Double, Triple and perturbative Quadruple
cluster amplitudes, CCSDT(Q).

Contribution of the effect of the Breit interaction on R has been estimated in reference [23] as 0.36%.
Based on the uncertainties discussed above we conservatively estimate the uncertainty of our final CC
value for R to be less than 5%.

F. Discussion in Comparison with Literature Results

Our present best results are shown in Table V in comparison with previous work. The earlier controversy
between different groups over results for R(Tl) can be condensed into three main points which we address
one by one.

1. Basis sets

From the results in Tables I and II it is evident that a large atomic basis set, at least of quadruple-zeta
quality, must be used for obtaining very accurate interaction constants. The results in VI and II obtained
with our correlation methods demonstrate that the basis set used by Nataraj et al. in ref. [22] fulfills
this requirement, yielding interaction constants that are very close to those obtained with Dyall’s cvQZ
basis set and the same correlation expansion. The earlier suggestion of Porsev et al. about an inadequate
basis set used in ref. [22] can, therefore, be excluded as a possible reason for the outlier result in ref. [22].
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TABLE VI: R, S, and A for Tl atom

Model/virtual cutoff R S [a.u.] A||(
205Tl) [MHz]

Nataraj universal

CAS3in4 −483 339 18800

CAS3in4 SD3/6au −597 419 19035

CAS3in4 SD3/20au −523 367 19174

CAS3in4 SD3/45au −595 419 19060

CAS3in4 SD3/Nat100 −595 418 19060

CAS3in4 SDT3/45au −596 419 19069

CAS3in4 SD3/130au −595 418 19060

CAS3in4 SD3/200au −595 418 19060

SD18 CAS3in4 SD21/45au −510 361 19864

2. Treatment of correlation effects by the many-body method

It is claimed in reference [22] that the treatment of electron correlation effects were more complete than
in references [20] and [21]. We have therefore first attempted to reproduce the electron EDM enhancement
calculated by Nataraj et al. by using the same many-body Hamiltonian and EDM operator, the same
atomic basis set (“Nataraj universal”) and the the same method, CCSD(T). A persisting difference with
the approach of Nataraj et al. is the use of CC amplitudes for the closed shells of neutral Tl (our case)
or the closed shells of the singly-ionized Tl+ (Nataraj case). These results are shown in Table II under
the label “V N−1”. Our calculation of the hyperfine constant A|| = 21071 [MHz] reproduces the value
of Nataraj et al. which is A|| = 21053 [MHz] almost precisely (residual difference of less than 0.1%).
However, using the same wavefunction we obtain R = −550 which differs from the value of Nataraj et
al. by 17%. Our CC result for R is in accord with similar calculations using the large cvQZ basis set, in
accord with the present best CI result (R = −539 which after correction for core correlations from the
innermost 28 electrons, according to the results in Table III, becomes R = −555) and in good agreement
with the best results of Liu et al. [20], Dzuba et al. [21], and Porsev et al. [23], see Table V. The correct
evaluation of the electron EDM enhancement in our codes has been assured by comparative tests of the
independent implementations of present CI and CC, as well as with the DIRRCI module [32, 52] in the
DIRAC program package. All three independent implementations produce the same values of R for small
test cases using Full CI / Full CC expansions. These findings strongly suggest that the CC wavefunctions
used by us and by Nataraj et al. are almost identical, but that the evaluation of R in reference [22] is
flawed.

Since correlation effects have been treated at a very similar (but physically more accurate) level in
the present work as in ref. [22] and the result is very different, the claim of correlation effects being
responsible for the large difference between previous results is untenable.

3. Use of V N , V N−1, and V N−3 potentials

First, given a fixed atomic basis set and a fixed many-body Hamiltonian [58], the Full CI expansion
delivers the exact solution in the N -particle sector of Fock space [53], independent of the orbital/spinor
basis used for this Full CI expansion. This implies that a many-body expansion that closely approximates
the Full CI expansion, such as CCSDT or CCSDT(Q), must also be nearly independent of the employed
Dirac-Fock potential.

Our results in Table IV clearly confirm this conjecture and demonstrate that even in the more approx-
imate CCSD expansion the electron EDM enhancement factor R is almost independent (0.2% difference)
of the underlying spinor set. As the many-body expansion becomes more approximate, such as in the CI
model SD18 CAS3in4 SD21 (see Table I) basic theory leads us to expect that the difference in R should
increase which is indeed the case (roughly 2% difference). Adding external Triple excitations to the CI
expansion, model SD18 CAS3in4 SDT21, quenches the difference to a mere 1.2%, again in accord with
expectation. Even the use of a V N−3 potential (i.e., spinors optimized for the Tl3+ system) changes R
by only about 3% relative to spinors for the neutral atom in the SD18 CAS3in4 SDT21 model. This
difference is expected to be even smaller in CC models.
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Despite of the unimportance of the employed spinor set in highly-correlated calculations, we have used
the physically most accurate spinors for the neutral Tl atom in obtaining our best final results. The

ratios of our calculated P, T -odd interaction constants are
∣∣∣ αde

αCS

∣∣∣(CI) = 81.5 1
10−18[ecm] and

∣∣∣ αde

αCS

∣∣∣(CC)

= 82.6 1
10−18[ecm] which agree well with the analytical value of Dzuba et al. [25, 26] of

∣∣∣ αde

αCS

∣∣∣(an.) =

89 1
10−18[ecm] .

IV. CONCLUSIONS

We conclude from our findings that the result of Nataraj et al. in ref. [22] is unreliable and should
be excluded from the dataset used to constrain the CP-odd parameters de and CS . Likewise, the result
by Sahoo et al. [50] (see Table V) – presumably obtained with a similar code as R(Tl) by Nataraj et
al. – is also significantly too small and should be excluded from the reliable dataset. A further proof of

this conclusion is the ratio obtained using the values from refs. [22] and [50] which amounts to
∣∣∣ αde

αCS

∣∣∣(CC

Nataraj/Sahoo) = 115.8 1
10−18[ecm] which deviates from the analytical ratio [25, 26] by 30%.

The panel is the updated version of the one shown in the
introduction, using the dataset of reliable calculations of
αde and αCS

for the Tl atom. The strongly reduced un-
certainty of atomic interaction constants for Tl leads to a
discernable shrinking of the associated parameter surface
(blue), but does not lead to modified constraints. The
essential reason for this is the extremely high sensitivity
of the experiments on ThO (green) and HfF+ (orange).
However, tighter constraints on de and CS can be ob-
tained by including experimental and theoretical results
for closed-shell atomic systems as discussed in ref. [54].
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