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6 CONTENTS

Preface

These lecture notes evolved between the years 2017 and 2022 during
the course I was giving to third-year physics students at the University
Paul Sabatier. Its spirit is an axiomatic (as opposed to historical)
introduction to special relativity, followed by applications in particle
and nuclear physics. The Covid crisis in the last two years of the
lecturing period – where many courses and exercise sessions had to be
given online – helped substantially in completing the LATEX manuscript
which is now fully available.

Some comments on recommended literature:

• W. Rindler: Relativity.
Covers special and general relativity; good and established introductory text.

• Jackson: Classical Electrodynamics.
Lorentz-covariant formulation of electrodynamics

• D. Griffiths: Introduction to Elementary Particles.
Pedagogically brilliant introduction to relativistic kinetics and theoretical particle physics



Chapter 0

Introduction

0.1 Generalities

Welcome to this L3 course on “Relativity and Nuclear Physics”. Let us
begin with some general outline and positioning of the matters in the
complete framework of modern physics.

The theory of relativity is one of the centrals pillars of modern
physics (the other being quantum mechanics). The theory of Spe-
cial Relativity was developed first (1905), and it reconciles Newton’s
laws of motion with electrodynamics. Newton’s laws of motion are
invariant under Galilean transformations, whereas classical electrody-
namics was known not to be invariant under such transformations1.
Newtonian physics can thus be rewritten in the framework of special
relativity which is a first goal of this course. After this modification,
Newton’s laws will not be the same anymore, although they will retain
an equivalent structure. To the contrary, Maxwell’s electrodynam-
ics will remain unchanged, but the equations will be written in a new
language that is adapted to the principles of special relativity.

Later in the history of physics (1926), even quantum mechanics un-
derwent a first round of unification with special relativity in the form
of the Dirac equation. The course will cover this development in

1This fact could be demonstrated, but we will take a different route: We will develop the relativistic Einsteinian
– different from the Galilean – transformation and show that Maxwell’s equations are invariant under this new
transformation.
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8 CHAPTER 0. INTRODUCTION

the second half of the semester. The next steps were taken in the late
1940s and early 1950s when Quantum Electrodynamics and more gen-
erally Quantum Field Theory were developed, representing a complete
“merger” of special relativity with quantum mechanics. These develop-
ments even encompassed two forces beyond the electromagnetic force,
the nuclear “strong” force and the “weak” force. The quantum-
field theoretical framework for these three forces is today known as
the “Standard Model of Elementary Particles” (SM), developed in the
1960s and 1970s. It was completed in 2012 with the detection of the
evasive SM “Higgs boson” at the CERN laboratories.

The (so far) last of Nature’s forces, the gravitational force, was in-
corporated into the framework of the theory of relativity early on, in
the form of General Relativity that today generalizes Newton’s laws
of gravitation. However, it remains until today one of the great un-
solved problems in physics to unify General Relativity with quantum
mechanics. Thus, general relativity is not a part of the SM of elemen-
tary particles. For the large majority of questions in particle physics,
this is not a problem because gravity is so many orders of magnitude
weaker than the other three forces of Nature. For questions involving
quantum length scales and bodies with large masses – such as black
holes or the very early universe – a quantum theory of general relativ-
ity seems indispensable.

This course, however, is aimed at phenomena in nuclear physics (and
particle physics) where gravity is negligible. There is one aspect of
general relativity, however, that will be used in the present context: The
“language” of co- and contravariant four-tensors that will be developed
(as far as required) in the first half of the course. This formalism is
frowned upon by many students (and some teachers as well!) for the
reason that it adds a level of complexity to an already difficult part
of physics. However, modern fundamental physicists use this language
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everywhere (!), and so it is obligatory for us to learn it. The price
of learning comes with immediate advantages, too, since it massively
simplifies the understanding of Lorentz covariance.

A few examples from different fields of physics shall illustrate the im-
portance of special relativity. They highlight the following relativistic
phenomena and central aspects of this course:

• Mass ↔ energy conversion (t production)
• Existence of antimatter (t production, PET treatment, Fermion
EDM)
• Relativistic effects in bound matter (lead battery, Fermion EDM)
• Nuclear decays / radioactivity (PET treatment)
• Length contraction (Fermion EDM)
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0.1.1 Special relativity in high-energy physics: Production of the top(t)
quark
antimatter; mass-energy conversion

In 1995 the production of the so far heaviest elementary particle, the
top (t) quark, succeeded at the Tevatron collider at Fermilab just out-
side Chicago. It was produced as and decays as shown in the image:

Figure 1:

A high-energy collision of a proton (p) and an an-
tiproton (p) produces a tt pair via the strong in-
teraction. These have a lifetime of ≈ 10−25 [s]
and rapidly decay into a bottom (b) quark and a
W+ vector boson (the t decays into an antibot-
tom (b) and a W− vector boson). These in turn
lead to further decays, the debris of which is de-
tected at the facilities. Note that the particle elec-
tric charges are as follows (in elementary charges):
C(t) = +2/3, C(b) = −1/3, C(W+) = +1.

What is remarkable is that the rest mass of the t ism(t) ≈ 172
[GeV

c2

]
whereas the sum of the rest masses of the proton and the antiproton
is only m(p) + m(p) ≈ 1.88

[GeV
c2

]
. The rest mass of a t roughly

corresponds to the mass of a tungsten (W) atom!
So the mass of the incident particles constitute only about 0.5%

of the mass of the produced particles. An explanation for this can
only be given by one of the central theorems of special relativity which
states that energy (in this case kinetic energy) can be converted into a
different form of energy, in this case rest energy, representing rest mass
×c2.

The production of the extremely heavy t quark is just one example
of how special relativity acts in high-energy physics. Nowadays, New
Physics searches, in particular for SuperSymmetric (SUSY) particles,
probe into the energy range of ≈ 1000 [TeV] = 1 [PeV].
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0.1.2 Nuclear Medicine and Special Relativity: PET Treatment
antimatter; radioactivity; mass-energy conversion

Positron Emission Tomography (PET) is used as a means to detect
(“imaging”) and treat cancerous cells in the human body. A “tracer”
is injected which contains a radionuclide, e.g. 18F∗, in a fluorine atom
bound in a biologically active molecule, 18F∗BAM. This radioactive
nucleus in a nuclear excited state arrives at the targeted position and
decays under β+ (positron) emission:

p∗ −→ n + e+ + νe (1)

This is the fundamental process underlying the decay of 18F∗. Note
that the rest mass of the proton is smaller than that of the neutron,
but the proton is in an excited state, and it is this excitation energy
that can be converted into rest energy! The positron does not survive
for long because it will undergo pair annihilation with an electron of
adjacent matter:

e+ + e− + X+ −→ 2γ + X+ (2)

where the nucleus X+ of the atom providing the bound electron has
been included in the reaction. Pair annihilation2 is a high-energy pro-
cess with emitted photon energies ε(γ) on the order of ≈ 500 [keV]3.
This energy is to be compared with typical atomic transition energies,
on the order of 0.01 . . . 10 [eV], depending on the involved degrees of
freedom (rovibrational, electronic). The high-energy radiation is then
detected by detectors surrounding the patient.

So once again, we are confronted with the existence of antimatter.
Its existence, in fact, of the positron, was one of the most spectacular
predictions of theoretical physics, and it is a natural consequence of

2The amplitudes (transition probabilities) for such processes can be calculated with Feynman’s formalism in
the framework of QED.

3Such a photon energy converts via E = hν and λ = c/ν into a wavelength of about 2.5 pm, constituting γ rays.
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special relativity, becoming manifest in the Dirac equation, here
written in Lorentz covariant form:

(−ı~ γµ ∂µ + m0c 114) Ψ(x) = 0 (3)

We will walk through its derivation, its solutions, and its basic inter-
pretation and consequences.
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0.1.3 Atomic Matter and Special Relativity: Lead-Acid Battery
fundamental properties (spin); relativistic mass; magnetic interactions

As an example from the physics of ordinary atomic matter, consider
the lead-acid battery. This work has been published in Phys. Rev.
Lett. 106 (2011) 018301.

The potential difference of a conventional lead-acid
battery for cars is 12 [V]. The electrons produced
at the negative pole give rise to an electrical cur-
rent that launches the starter of the car.

The potential difference is obviously crucial for the functioning of
the battery. The authors found that it is a function of the energy of
electrons occupying the 6s state in lead, U = U(ε(6sPb)). This energy,
in turn, is different in a non-relativistic world, i.e., if special relativity is
“turned off”. The main reason for this energy difference is the difference
between non-relativistic and relativistic momentum of the electron
in the rest frame of the nucleus. In perturbation theory the total energy
of a one-particle atomic state can be written as

ε = εn.r. + ε
(1)
MV + ε

(1)
Dar (4)

The relativistic correction “mass-velocity” and “Darwin” can be ob-
tained from Pauli’s approximation to Dirac theory, yielding

ε
(1)
MV = −α

2e2

a0

Z4
eff

8n4

[
4n

` + 1
2

− 3

]
ε

(1)
Dar =

α2e2

a0
δ0`

Z4
eff

2n3

for single-particle states in an atom4. These relativistic corrections
4Zeff is the effective nuclear charge in the state, α is Sommerfeld’s fine-structure constant, e is the elementary

charge, a0 is the Bohr radius, n is the state’s principal quantum number, and ` is the orbital angular-momentum
quantum number.
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depend on the environment and are different in Pb and PbO2. The
authors were able to model the car battery without these relativistic
effects, and the result was Unon-rel ≈ 10 [V]. Such a tension is insuffi-
cient for launching the car’s starter! So whenever you start your car,
remember that this works because of special relativity.
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0.1.4 Search for New Physics: Fermion Electric Dipole Moment
fundamental properties; antimatter; length contraction; magnetic interactions

It is well known that fermions have magnetic dipole moments since
this is proportional to the spin of the fermion (its intrinsic angular
momentum). First of all, particle spin is a relativistic phenomenon.
We will see this in the context of the Dirac equation. But can fermions
have an electric dipole moment (EDM)? If this were the case, the
EDM vector could relate to the spin vector (operator) in two principal
ways:

Why
δ

δ
−

+

S

D

? and not
δ

δ
−

+

S
D

?

We will not go into why the second scenario is impossible (it leads
to an internal contradiction in Fermi-Dirac statistics). So what is the
Hamiltonian for such a fundamental electric dipole in an external E
field?

Classical electromagnetism:
εdip = −D · E

Fermion EDM vector operator d̂ ∝ Σ =

(
σ 0

0 σ

)
and so5

ĤEDM = −df γ0 Σ · E
The proportionality constant df is the fermion EDM.

Dirac matrix γ0 ensures that
〈
Ĥ
〉
is a Lorentz scalar (we will see

in a short while what that is.)

This energy
〈
Ĥ
〉
is a T -odd pseudoscalar.

The potential energy of a fermion EDM in an electric field ((incl.
5E. Salpeter, Phys Rev 112 (1958) 1642
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Eext) for a state ψ(0) is thus the expectation value
εEDM =

〈
−deγ0Σ · E

〉
ψ(0)

Interpretation:6

K’ de

y

x

z
x’

z’

y’

v

K

Length contraction for
collinear movement:
de(K) = de(K

′)
γ =

de(K
′)
(

1− γ
1+γ

v2

c2

)
. . . and for general move-
ment:
de(K) = de(K

′) −
γ

1+γ
v
c

(
de(K

′) · v
c

)
The dipole energy in K then is
εdip = −de(K) · E = −de(K

′) ·
[
E− γ

1+γ
v
c

(
v
c · E

)]
For small relative velocities we can approximate:
εdip ≈ −de(K

′) · E + 1
2m2

ec
2 de(K

′) · p (p · E)

The QM expression can be approximated similarly, yielding

εEDM ≈ −de
{
〈σ · E〉ΨL − 1

4m2c2
[〈p̂ · E σ · p̂〉ΨL + 〈E · p̂ σ · p̂〉ΨL]

}
which corresponds to the classical dipole energy in the ob-
server frame.

0.1.5 Fundamental Physical Theory: Weak-Interaction Lagrangian
Nuclear physics; covariant formalism; quantum-field theory

6E.D. Commins, J.D. Jackson, D.P. DeMille, Am J Phys 75 (2007) 532
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0.2 Galilei Invariance

At the end of the 19th century classical mechanics was a theory, the
equations of motion of which were invariant to so-calledGalilei trans-
formations. These include rotations in three-dimensional coordinate
(real) space and “boosts”. The ensemble of such transformations forms
the group of Galilei transformations.

Let us review Newton’s axioms:

1. There exists an inertial frame7 (or system) of reference in
which the forceless motion of a particle is described by a constant
velocity,

v = const. (5)

2. In inertial frames the motion of a particle under the influence of a
force is described by the equation of motion

ma =
∑
i

Fi = ṗ (6)

3. For every force with which a particle (1) acts on another particle
(2) there is an equal and opposite reaction force with which particle
(2) acts on particle (1):

F1→2 = −F2→1 (7)

As an illustration of the mentioned invariance, we will explicitly trans-
form the second axiom under boost:

A coordinate transformation between two inertial frames which move
at a constant velocity relative to one another is called a boost. We
will test the invariance of the fundamental law of dynamics for one of

7This course will be restricted to the treatment of inertial frames. Nevertheless, in Euclidean (flat) spacetime,
it is possible to treat the non-inertial frame’s acceleration as an acceleration seen in an inertial frame. It is thus
possible to solve problems involving accelerated motion in the framework of special relativity.
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Figure 2:

K’

y

x

z

x’

z’

y’

v

K

O O’

r(1)

r(2)

m(1),q(1)

m(2),q(2)

Two interacting particles and two inertial frames
related by a boost transformation. It is supposed
that at t = t′ = 0 we have x = x′ = 0, i.e., the
origins of K and K’ coincide.

the particles.

F2→1 = m(1)a(1)

−∇(1)κϕ21 = m(1)a(1)

−κ
3∑
j=1

ej
∂

∂xj(1)
ϕ (||r(1)− r(2)||) = m(1)

dv(1)

dt
(8)

where we are considering a fundamental force that can be written as
dependent on the negative gradient of some scalar potential (electro-
static, gravitational) that depends only on the distance between the
particles, and κ is a constant (q1 or m1, respectively)8.

The individual terms are now subjected to the Galilei transformation
from inertial frame K to inertial frame K’:

r′(n) = r(n)− vtex
t′ = t (12)

8Verification of the second line for the case of electromagnetic interaction: The electric potential at instant t
and position of particle 1 due to the presence of particle 2 is

ϕ21 =
1

4πε0

q2
||r(1)− r(2)||

. (9)

The gradient of this potential with respect to coordinates of particle 1 then is

∇(1)ϕ21 = − q2
4πε0

r(1)− r(2)

||r(1)− r(2)||3
. (10)

From this it follows for the electric field at position 1:

E(r(1)) = −∇(1)ϕ21 =
q2

4πε0

r(1)− r(2)

||r(1)− r(2)||3
(11)

and so the force on particle 1 is correctly obtained as F2→1 = q1E(r(1)) and κ = q1 in this case.
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and we obtain in detail

• a′(1) = dv′(1)
dt′ = d2r′(1)

dt′2
= d2

dt2
(r(1)− vtex) = d2

dt2
r(1) = a(1)

Whereas velocity and momentum depend on the reference frame,
acceleration does not.

• The potential depends on distance between particles only, so we
regard that distance:
||r′(1)−r′(2)|| = ||r(1)−vtex−r(2)+vtex|| = ||r(1)−r(2)||. And
so we can conclude that ϕ′ = ϕ.

• For transforming the gradient we have to respect the functional
relationship between the coordinates as due to the transformation,
here r = r′ + vtex. Suppose the most general case of a (ten-
sor) field f that is defined in space and time for the frame K,
f = f

(
x(x′), y(x′), z(x′), t(x′)

)
where all the variables are gener-

ally functions of all of the coordinates of K’ (x′ is sufficient here).
Then the total rate of change of f with respect to x′ is expressed
via the chain rule and we can write
∂

∂x′(1) = ∂
∂x(1)

∂x(1)
∂x′(1) + ∂

∂y(1)
∂y(1)
∂x′(1) + ∂

∂z(1)
∂z(1)
∂x′(1) + ∂

∂t
∂t

∂x′(1) = ∂
∂x(1)

Since for the above Galilei transformation ∂x(1)
∂x′(1) = 1, ∂y(1)

∂x′(1) = 0,
same for z, and ∂t

∂x′(1) = 0 since t = t′ it follows that

⇒∇x = ∇x′.

which proves that F′2→1 = m(1)a′(1) is equivalent (form invariant) to
the untransformed law of motion. Note that particle mass is absolute
in Newtonian physics, just like time is. Newtonian mechanics is said
to be Galilei (boost) invariant.

Boosts are not the only conceivable kind of transformations between
reference frames. In the case frame K’ being rotated by an angle α
about any particular axis relative to K, this angle plays the role of
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the constant velocity in the above demonstration. Newton’s law is,
therefore, also invariant under reference frame rotations.

From the Galilei transformation we can deduce the relative velocity
between two inertial frames that move relatively to a third inertial
frame in a known way. Fig. (1.1.3.1) shows the setup of the thought
experiment.

K’ K’’K

y

x

z

v

x’

z’

v1 2

y’ y’’

x’’

z’’

(K) (K’)

Inertial frames K, K’ and K” with axes
aligned. Origins coincide at t = t′ = t′′ =
0. For instance, an observer may be stand-
ing on a platform at rest in K, a train
(with v1) carries a gunner who shoots off
a bullet (with v2).

Supposing that the relative velocities v1 and v2 are known, we wish
to deduce the relative velocity v3 between frames K and K”. From
the Galilei transformation in Eq. (12) using two successive Galilei
boosts we have, written in matrix form which we will be useful for the
treatment of the Einsteinian case,(

x′

t′

)
=

(
1 −v1

0 1

)(
x

t

)
=

(
x− v1t

t

)
(13)(

x′′

t′′

)
=

(
1 −v2

0 1

)(
x′

t′

)
(14)

Inserting Eq. (13) into Eq. (14) yields(
x′′

t′′

)
=

(
1 −v1

0 1

)(
1 −v2

0 1

)(
x

t

)
=

(
1 −v1 − v2

0 1

)(
x

t

)
. (15)

Preserving the form of transformation means that the relative velocity
between frames K and K” has to be v3 := v1 + v2. This result is
generalized to the theorem of addition of velocities:

v3 = v1 + v2. (16)
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Therefore, assuming for simplicity that the involved velocities are col-
linear, a light beam’s velocity (v2 = c) emitted from an approaching
train with velocity v1 relative to a stationary observer9 measured in the
reference frame of this observer should give the result

v3 = v1 + c (17)

But experiments10 with sufficient accuracy carried out in the 20th cen-
tury agree on the fact that the speed of light in all reference frames is
v3 = c, irrespective of the magnitude of v2, i.e., the state of movement
of the light source!

This finding has been elevated to become a postulate by A. Einstein
in his seminal paper11 from 1905. It will be invoked as the fourth and
last postulate in the axiomatic construction of the special theory of
relativity.

9Remaining in the earlier picture, imagine that the gunner is now using a laser gun.
10A. A. Michelson and E. W. Morley, Am J Sci 34 (1887) 333-345

G. Joos, Ann Phys 7 (1930) 385
11A. Einstein, Ann Phys 17 (1905) 891-921
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Chapter 1

Special Theory of Relativity

1.1 The Lorentz Transformation

1.1.1 Deduction from Axioms

Be there two inertial frames (see section 0.2) K with cartesian coordi-
nates {x, y, z} and K’ with cartesian coordinates {x′, y′, z′}. We wish
to establish a transformation

f : {x, y, z, t} −→ {x′, y′, z′, t′} (1.1)

of these coordinates including the respective time coordinate, t and t′,
according to

x′ = fx(x, y, z, t)

y′ = fy(x, y, z, t)

z′ = fz(x, y, z, t)

t′ = ft(x, y, z, t) (1.2)

and the inverse transformation. For simplification, we suppose that at
t = t′ = 0: O = O′, i.e., the spatial origins of K and K’ coincide at
t = t′ = 0. The two frames will be allowed to move at constant velocity
v relative to each other. This situation is depicted in Fig. (1.1).

We will first establish the linearity of the transformation f .

23
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Figure 1.1:

K’

v
x’

y’

K

y

x

z’

z

The inertial frames at t = t′ = 0. The origins
coincide but the axes may be rotated with respect
to each other. The relative velocity takes a general
direction.

1.1.1.1 Homogeneity and Isotropy of Space and Time

Postulate 1: Without external influence, no point in space or time
is distinguished from any other (homogeneity of
space and time).

Postulate 2: Without external influence, no spatial direction is
distinguished from any other (isotropy of space).

Lemma: The transformation f is linear, so f : x −→ ηx′ + const.

Idea of proof: Suppose the simplest form of non-linear transformation
would hold1: f : x −→ ζx′2 + ηx′ + const.. Then it would follow that
ζx′2 + ηx′ + const. = ζ(x′ + x′0)2 + const.’ by quadratic extension2 .
However, this means that x′ = −x′0 would be an extremum and, there-
fore, distinguished from other points x′ (contradiction with postulate
1). The proof can be carried on to higher orders in a similar way3.

Due to postulate 2 the inertial frames can be rotated such that v =

vx. So we now depart from Fig. (1.2).
Obviously, z = 0 ⇒ z′ = 0 and y = 0 ⇒ y′ = 0, so we can write a

1ζ, η, θ ∈ IR are real scalar constants.
2In this case the equivalence means that 2ζx′0 = η and ζx′20 + const.’ = const..
3All even-order polynomials have at least one local extremal value. If an odd-order polynomial does not have a

local extremal value (like f(x) = x3) then it has at least one point of inflection which again represents a distinguished
point.
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Figure 1.2:
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Inertial frames K and K’ with axes
aligned. The relative velocity can be cho-
sen along a single axis.

transformation

y′ = a(v) y

z′ = a(v) z (1.3)

with no constant added. Invoking postulate 2 again, we find a(v) =

a(v) since the spatial coordinates y and z are on a par with respect to
translation in x direction. Therefore,

y′ = a(v) y

z′ = a(v) z. (1.4)

The function a(v) will be determined subsequently.
For the relation between x′ and x we start out from the Galilei

transformation and introduce a generalization in form of a function of
velocity that is b(v) = 1 for the Galilei transformation

x′ = b(v) (x− vt) (1.5)

Note also that a and b are in general functions of the velocity v but
not of time t since the relative motion between K and K’ is constant
in time.

The inverse transformation can immediately be written by analogy,

x = b′(v′) (x′ + v′t′) (1.6)

where the + sign reflects the increase of x with time, say for the origin
of K’. Without loss of generality we here understand v′ as the velocity
of K relative to K’.
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1.1.1.2 Einstein’s Principle of Relativity

Homogeneity and isotropy of space and time do not lead any further
than what has been presented in section 1.1.1.1. The next task is to
establish a general transformation for the time coordinate. This general
transformation will become evident in Eq. (1.16).

The first of Einstein’s postulates of relativity reads

Postulate 3: No physical measurement can distinguish between
reference frames K and K’ (Einstein’s first pos-
tulate of relativity).
In other words: “The laws of physics are the same in
all inertial frames.”

We will now determine general expressions for the functions a and b.
We here define the event which is understood as a generalization of a
point in real space and an instant in time. An event has three spatial
and one time coordinate.

• Consider a particle at rest at time t and position z0 in frame K.
This event in K has spatial and time coordinates as

E: (0, 0, z0, t) (1.7)

The coordinates of that same event can immediately be written for
K’:

(0, 0, z′0, t
′)
′
= (0, 0, a(v)z0, t

′)
′ (1.8)

where Eq. (1.4) has been used. Comparing Eqns. (1.7) and (1.8)
it follows that a(v) = 1, or else an objective difference between
frames K and K’ would exist4, which would contradict postulate 3.

4Suppose that a(v) 6= 1, then z′0 6= z0 and the two frames would not be equivalent. Since there is no relative
movement in z direction, frame K would have to be stretched (or compressed) relative to K’ and the laws of physics
would not be the same in both frames.
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• Postulate 3 also dictates that v = v′, else we would again distin-
guish between the two frames5. So we have established

b′(v′) = b′(v). (1.9)

In order to determine the relationship between b and b′ we will now
carry out an elementary length measurement of a rigid object in
coordinates of both frames. However, before doing so, we need to
consider a further difficulty: It will be required to relate the time
variables at different positions of a reference frame to each other.
In other words, we have to settle the problem of synchronizing
perfect clocks6. This can be achieved through the arrangement
in Fig. 1.3.

Figure 1.3:
y

x

z

K
perfect clocks

  x              x1 2

Clocks can be synchronized by installing them in
their final position and then using a signal and its
duration of travel for synchronizing times on clocks
1 and 2.

It is not possible to first synchronize the clocks and then transport
them to the place of measurement. The reason is that we have
no guarantee that they will remain synchronized during transport
(in fact, they generally don’t!). So the clocks are installed in their
final destinations in frame K (or K’, for that matter), and then
synchronized. This latter step can be carried out in the following
way:
Be an ideal clock (1) at position x1. A light pulse is emitted at
t(1) = 0, so time on clock (2) is set at the time of arrival of the

5v and v′ are taken as positive numbers. So they designate the relative velocity between the two frames.
6We are not really doing this in practice. This is a so-called “Gedankenexperiment” (yes, they use a German

word in English for this, it means in French “expérience à pensées”).
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pulse at x2 to t(2) := t(1) + x2−x1
c = x2−x1

c . From then onward,
clocks (1) and (2) are synchronized.
Now back to the elementary length measurement.

Figure 1.4:

K’
y

x

z
x’

z’

y’

v

O
l A

K

Length measurement of the same physical object
in the rest frame and in the moving frame.

– We first measure the left-hand situation in Fig. (1.4). The left
tip and the right tip of the bar in coordinates of K are

O : (0, 0, 0, t)

A : (l, 0, 0, t) (1.10)

where the replacement x = l is permissive since the bar rests in
frame K. We carry out the same measurement in coordinates
of K’ at the same time7 (using synchronized clocks), say at
t′ = 0. With the above discussion and Eq. (1.9), Eq. (1.6)
becomes

x = b′(v) (x′ + vt′)

x′ =
x

b′(v)
− vt′ and with t′ = 0 we have

x′ =
x

b′(v)

So the coordinates of the events in K’ can be written as

O : (0, 0, 0, 0)′

A : (x′, 0, 0, 0)
′
= (l/b′(v), 0, 0, 0)

′ (1.11)
7This is equivalent to supposing that there exists an inertial frame K’ in which the two events occur simulta-

neously. From the Galilean point of view this is a trivial assumption. We will later see that this assumption is
compatible with the general structure of SpaceTime in Einsteinian relativity.



1.1. THE LORENTZ TRANSFORMATION 29

– Carrying out the same type of measurement, but now with the
bar at rest in frame K’, Fig.

Figure 1.5:
K’y

x

z
x’

z’

y’

v

O’
l A’

K

Length measurement of the same physical object in
the rest frame and in a frame in relative movement
with respect to the rest frame.

(1.5), we measure in K’ coordinates

O′ : (0, 0, 0, t′)
′

A′ : (l, 0, 0, t′)
′ (1.12)

Expressed in coordinates of K at the same time, say at t = 0,
we obtain

O′ : (0, 0, 0, 0)

A′ : (x, 0, 0, 0) = (l/b(v), 0, 0, 0) (1.13)

where now (1.5) has been used for the equality. In detail:

x′ = b(v) (x− vt)

x =
x′

b(v)
+ vt

x =
x′

b(v)

Invoking postulate 3 once again, it follows necessarily that

b(v) = b′(v) (1.14)

since otherwise we would have an objective distinction between
frames K and K’ (inverting the measurement should not change
the measured length of the bar).
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The situation is symmetric: The length of the bar fixed in K’
appears changed in K, and the bar fixed in K also appears
changed in K’ in the same manner. This is not surpising, since
in both situations an observer has a bar moving away from him.
Having obtained this result, we can rewrite Eqns. (1.5) and
(1.6) as

x′ = b(v) (x− vt)
x = b(v) (x′ + vt′). (1.15)

We can now summarize the findings up to this point. Eliminating x′

from the second equation in Eq. (1.15) by inserting the first (with the
goal of obtaining t′ as a function of the unprimed variables) yields

x = b(v)
(
b(v) (x− vt) + vt′

)
vt′ =

x

b(v)
− b(v) (x− vt)

t′ =
x

vb(v)
+ tb(v)− xb(v)

v

and the transformation from coordinates of frame K to K’ can be writ-
ten as

x′ = b(v) (x− vt)
y′ = y

z′ = z

t′ = b(v)

[
t +

x

v

(
1

b(v)2
− 1

)]
(1.16)

It is not possible to determine b(v) without experimental information.
Setting b(v) = 1 yields the Galilei transformation, which was the ac-
cepted form until measurements at very high relative velocity and very
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high precision became available. Then, deviations from b(v) = 1 could
be determined8.

1.1.1.3 The Constancy of the Speed of Light

The result of various measurements has been elevated by Einstein to
become a postulate:

Postulate 4: A measurement of the speed of light in any direction
in a reference frame always yields a constant value,
c ≈ 2.99792458×108

[
m
s

]
a (Einstein’s second pos-

tulate of relativity).
aNational Institute of Standards (NIST), values of physical constants

Corollary: It is sufficient to formulate Postulate 4 for one reference
frame, because it follows from Postulate 3 that c =const. in all reference
frames, since they have to be equivalent.

We are now in the position to determine the function b(v) unam-
biguously. It follows from a simple thought experiment:

Fig. (1.6) defines the arrangement. The coordinates of the emission
event are

E : (0, 0, 0, 0)

E : (0, 0, 0, 0)′ (1.17)

An observer at rest in K measures the detection of the pulse in x at
time t. An observer at rest in K’ measures the detection at x′ at time
t′.

Let us first see what non-relativistic transformation laws would tell
us. The propagation of the detector in coordinates of K’ follows

x′D = xD − vt (1.18)
8Fizeau, Michelson-Morley, Joos
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Figure 1.6:

v
K

y

x

z

x
D

x’

y’

z’

K’
A light pulse is emitted from the origin of K at
time t = 0. At this instant the origins of K and
K’ coincide, so t = t′ = 0. The detector is fixed in
frame K at position xD. K’ moves with constant
velocity v relative to the light source.

for any time instant t. So at the specific instant t = tD we can write
this as

x′D = ctD − vtD (1.19)

since xD = ctD. Slightly reformulated we have

x′D = (c− v)tD (1.20)

Since time is absolute (independent of the inertial frame) in Newto-
nian/Galilean physics, meaning tD = t′D, this can be written as

x′D = (c− v)t′D (1.21)

The last expression means nothing else than that the light propagates
with the velocity c− v seen from the frame K’ which is in accord with
our classical (non-relativistic) view of physics. However, postulate 4
and the corrolary enforce that the speed of light is also c in frame K’!
Therefore, for general positions and instances in time, we write

x = ct

x′ = ct′ (1.22)
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Obviously, at this point there is the clear departure from the non-
relativistic notion: According to the Galilei transformation we would
expect x′ = (c − v)t′. Eq. (1.22) also tells us that since after some
propagation of the pulse xD 6= x′D it follows that tD 6= t′D which means
that the detection event does not happen simultaneously in frames K
and K’.

From all of this we get

D : (x, 0, 0, t) = (ct, 0, 0, t)

D : (x′, 0, 0, t′)
′
= (ct′, 0, 0, t′)

′ (1.23)

and the rest is calculation. Introducing this result into Eq. (1.15) we
obtain

ct′ = b(v) (ct− vt) = b(v) (c− v)t

ct = b(v) (ct′ + vt′) = b(v) (c + v)t′. (1.24)

Multiplication of the two equations eliminates the time coordinates and
yields

c2tt′ = b(v)2 (c2 − v2)tt′

b(v)2 =
c2

c2 − v2
(1.25)

b(v) = ±
√

1

1− v2

c2

(1.26)

The sign ambiguity is resolved through an additional consideration.
Taking v = 0 in the first line of Eq. (1.16) gives x′ = b(0)x. But in
this case x′ = x ⇒ b(0) = +1, so we must use the positive sign for
consistency. We can write

b(v) =
1√

1− v2

c2

=
1√

1− β2
=: γ(v) (1.27)
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with β := v
c and γ the Lorentz factor. Introduction of the Lorentz

factor into the preliminary transformation Eq. (1.16) results in

t′ =
1√

1− v2

c2

[
t +

x

v

(
1− v2

c2
− 1

)]
and so

x′ =
x− vt√

1− v2

c2

y′ = y

z′ = z

t′ =
t− x v

c2√
1− v2

c2

(1.28)

as the final form of the Lorentz transformation of coordinates. This
type of transformation is called a “Lorentz boost” (rotation-free Lorentz
transformation).

At this point the verification of the Lemma from subsection 1.1.1.1
is in place. In y and z the Lorentz transformation is trivially linear.
The transformations in x and t

x′ = γx− γvt
t′ = γt− γx v

c2

are linear, too, since γ, v, t are constant in x (first line) and γ, v, x are
constant in t (second line)9. Therefore, the Lorentz transformation is
manifestly a linear transformation.

It is also immediately evident that for relative velocities very small
compared to the speed of light, v << c, the Galilei transformation

9x and t are of course independent coordinates in frame K.
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from non-relativistic physics is approximately obtained: x− vt√
1− v2

c2


v<<c

≈ x− vt

 t− x v
c2√

1− v2

c2


v<<c

≈ t (1.29)

However, since in non-relativistic physics no limit for relative velocities
exists, this can only be considered an approximation for special cases.
In order to obtain a non-relativistic limit of the theory as such, we have
to allow for arbitrary relative velocities v.

Formally, we take the speed of light to infinity in expressions involv-
ing velocity ratios10

lim
c−→∞

x− vt√
1− v2

c2

= x− vt

lim
c−→∞

t− x v
c2√

1− v2

c2

= t. (1.30)

This defines the non-relativistic limit of a physical theory.
Before continuing, we will here take a look at the important Lorentz

factor.

1.1.2 Lorentz Factor γ

Fig. (1.7) displays the function γ(v) = 1√
1−v2

c2

.

10In electromagnetism, this limit can also be taken, although the dependency on factors v
c is more subtle. For

example, Em = −µ ·B ∝ v·v′

c2 . The factors 1
c become “visible” in the Gaussian unit system, and magnetic moment

as well as magnetic field are proportional to velocities of charged particles. This means that magnetism does not
exist in the non-relativistic limit of electromagnetism!
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Figure 1.7:
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• lim
v→0

γ(v) = 1

• lim
v→c

γ(v) = +∞

• γ(v > c) ∈ IC

It is to be noted that for a relative velocity v > c between inertial
frames the Lorentz factor becomes a complex number. From Eq. (1.28)
it would then be directly inferred that x′ ∈ IC, too. But this would be in
contradiction with the basic notion that observables (such as lengths)
should be real numbers. We, therefore, take this finding as a first
indication that relative velocities greater than the speed of light are
not possible.

1.1.2.1 Corollaries

It is interesting to inspect the direct consequences of the Lorentz boost
in Eq. (1.28) in terms of two aspects:

1. Time is absolute in non-relativistic physics. However, if one consid-
ers a time interval in frame K’ (at fixed position x′) and transforms
the time interval as measured in coordinates of K, then (transfor-
mation from K’ to K):

∆t = t2 − t1 = γ t′2 + γ x′
v

c2
− γ t′1 − γ x′

v

c2
= γ∆t′ (1.31)
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This means that generally ∆t′ 6= ∆t. In other words, the passage
of time depends on the relative motion between inertial frames,
and the phenomenon is generally called time dilation.

2. We know that length is conserved under Galilei transformations.
Under Lorentz boosts, let us consider a spatial interval in K’, ∆x′ =

x′2−x′1, measured at fixed time t′ in K’. An observer in K measures

∆x = x2 − x1 = γ x′2 + γ vt′ − γ x′1 − γ vt = γ∆x′ (1.32)

Since for the relative velocity v 6= 0 we have γ > 1, it follows that
the observed length (in K’) appears shorter than the measured
length in K. Fixed lengths in the direction of relative movement
are, therefore, not conserved and this phenomenon is generally
called length contraction.

Various situations can be investigated under these two aspects and
interpreted in terms of length contraction and time dilation in special
relativity, but the details depend crucially on the specific setup.

1.1.3 Addition Theorem for Velocities

1.1.3.1 Derivation

Newtonian mechanics is invariant under Galilei transformations, and
the addition theorem of velocities in the non-relativistic context is well
known:

v3 = v1 + v2 (1.33)

We will now deduce the corresponding law in the framework of special
relativity based on the Lorentz transformation. Fig. (1.1.3.1) shows
the setup of the thought experiment.

We wish to deduce the relative velocity between frames K and K”.
The starting point is Eq. (1.28) with the Lorentz transformation in its
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(K) (K’) Inertial frames K, K’ and K” with axes
aligned. Origins coincide at t = t′ = t′′ =
0.

original form. The two Lorentz boosts can thus be written as

x′ = γ1(x− v1t) x′′ = γ2(x′ − v2t
′)

t′ = γ1(t− xv1
c2

) t′′ = γ2(t′ − x′v2
c2

)

K→ K’ K’→ K”
(1.34)

where individual Lorentz factors γj(vj) = 1√
1−

v2
j

c2

have been introduced.

Inserting the first transformation into the second corresponds to trans-
forming coordinates from K → K” and results in

x′′ = γ1γ2 x
(

1 +
v1v2

c2

)
− γ1γ2 t(v1 + v2)

t′′ = γ1γ2 t
(

1 +
v1v2

c2

)
− γ1γ2

x

c2
(v1 + v2) (1.35)

after convenient regrouping of terms11. However, the Lorentz transfor-
mation relating K → K” can also be written in a general form:

x′′ = γ3(x− v3t)

t′′ = γ3

(
t− xv3

c2

)
(1.36)

where v3 is the relative velocity of these two frames. Comparing coef-
ficients of x and t in Eqs. (1.35) and (1.36) results in (two times) the
following conditions:

γ3 = γ1γ2

(
1 +

v1v2

c2

)
(1.37)

γ3 v3 = γ1γ2(v1 + v2) (1.38)
11We could also obtain these two equations by calculating the matrix product L̃(v2)L̃(v1) and then acting with

the new matrix onto the SpaceTime coordinates
(
x
t

)
.
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Inserting the first into the second of these conditions directly gives

v3 γ1γ2

(
1 +

v1v2

c2

)
= γ1γ2(v1 + v2)

v3 =
v1 + v2

1 + v1v2
c2

(1.39)

the addition theorem for velocities in special relativity for relative
movement along aligned coordinate axes. Based on it a satisfactory ex-
planation and interpretation of the experiments carried out by Fizeau,
Michelson and Morley and others is possible.

1.1.3.2 Corollaries

A number of interesting consequences of the addition theorem for ve-
locities shall be discussed at this point. Considering the properties of
the Lorentz factor we have seen that vj > c is generally unacceptable.
So we assert that vj ≤ c is always true and investigate its consequences.

• v3 ≤ c.
Proof. lim

v1,v2→c
v3 = 2c

2 = c. And also lim
v2→c

= v1+c

1+
v1
c

= c(v1+c)
v1+c = c.

• lim
c→∞

v3 = v1 + v2

which establishes the addition theorem for velocities in the non-
relativistic limit.

1.1.4 Properties of the Lorentz Transformation

The first and foremost question concerns the invariance of physical laws
under coordinate transformations. For example, Newton’s second law
is invariant under spatial rotations. So what does the obtained LT
represent?
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We may write the one-dimensional Lorentz boost given in Eq. (1.28)
also as a matrix equation,

x′

y′

z′

t′

 =


γ 0 0 −vγ
0 1 0 0

0 0 1 0

− v
c2
γ 0 0 γ



x

y

z

t

 (1.40)

where the vector space we will henceforth call SpaceTime has been in-
troduced. It is the natural generalization of the usual three-dimensional
coordinate space IR3 to include the time coordinate, so Minkowski
SpaceTime is defined as IR4.

Since the y and z coordinates are left unaffected by the boost, we may
for the present case simplify the matrix equation to two dimensions:(

x′

t′

)
=

(
γ −vγ
− v
c2
γ γ

)(
x

t

)
= L̃ x (1.41)

We find that

• det(L̃) = 1

• x′2 6= x2; non-conservation of the scalar product, naïvely defined
as in usual IR2

• L̃T L̃ 6= 1 and so L̃T 6= L̃−1.

This means that L̃ is not an orthogonal matrix. So clearly L̃ does not
represent a rotation in Minkowski SpaceTime. Note also that the phys-

ical dimensions of the SpaceTime vector
(
x

t

)
are not homogeneous.

In order to obtain an orthogonal transformation in SpaceTime Minkowski
introduced a trick: He defined one SpaceTime vector component as
imaginary, i.e. we have the SpaceTime coordinates {ict, x} instead of
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{x, t}. Then the Lorentz transformation becomes(
x′

ıct′

)
=

(
γ ıvcγ

−ıvc γ γ

)(
x

ıct

)
= L x (1.42)

The reader can easily verify that this version of the Lorentz boost is
identical to the original one above, Eq. (1.41). However, the Space-
Time vector components are now physically homogeneous. In addition,
the following properties of the transformation matrix with respect to
Minkowski coordinates can be shown straightforwardly:

• det(L) = 1

• x′2 = x2; conservation of the scalar product12

• LT = L−1; orthogonality

• v −→ −v ⇒ L −→ L−1; inverse transformation property

The conservation of the scalar product can also be written as

x′2 = x2 (1.43)
x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2 (1.44)

by taking all three spatial components. This finding has a direct phys-
ical interpretation. If at t = 0 a light pulse is emitted from the origin
of inertial frame K, then its radial position at time t is

r =
√
x2 + y2 + z2 = ct (1.45)

⇒ x2 + y2 + z2 − c2t2 = 0. (1.46)

In coordinates of K’, where the origins coincide at t = t′ = 0, we infer
from the constancy of the speed of light in all frames (Postulate 4):

x′2 + y′2 + z′2 − c2t′2 = 0 (1.47)
12The scalar product in Minkowski space is here (!) defined with the usual Euclidian metric tensor, so here 112.
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Equating the two above expressions reproduces the conservation of the
scalar product under Lorentz transformation.

In fact, the Lorentz invariant x2 +y2 +z2−c2t2 comprises a so-called
Lorentz scalar. We will come back to a more general discussion of
Lorentz scalars in a later section.

Note that the scalar product can also be written as x2 + y2 + z2 +

(ıct)2 which comprises the natural form of a scalar product in a four-
dimensional space.

1.1.5 Minkowski Metric

The modern standard representation of the Lorentz transformation is
different from both the ones we have established in subsection 1.1.4.
Let us review the scalar product of the SpaceTime vector

(
x′

ıct′

)
with

itself (Eq. (1.42)):

(
x′ ıct′

) ( x′

ıct′

)
=

(
x ıct

) ( γ −ıvcγ
ıvc γ γ

) (
1 0
0 1

) (
γ ıvcγ
−ıvc γ γ

) (
x
ıct

)
=

(
x ıct

) ( γ2 − v2

c2
γ2 0

0 −v2

c2
γ2 + γ2

) (
x
ıct

)
=

(
x ıct

) ( 1 0
0 1

) (
x
ıct

)
= x2 − c2t2 (1.48)

where we have used the usual 3-dimensional Euclidean metric for the
scalar product, a unit matrix13.

But it is possible to write the same scalar product for real-valued
coordinate axes by changing the form of the metric14.

The Euclidean metric in two-dimensional flat space is defined as

g =

(
ex · ex ex · ey
ey · ex ey · ey

)
=

(
1 0
0 1

)
(1.49)

13in the present case 2-dimensional.
14Likewise, the scalar product over two vectors in a vector space when changing from orthogonal to non-orthogonal

axes can be conserved by introducing an accompanying change of the metric.
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Now a coordinate transformation is characterized by the corresponding Jacobian matrix J15. Suppose we
define the coordinate transformation as follows:

u′ = u

v′ = ıv (1.53)

Then we get the Jacobian of the transformation as

J =

(
∂u′

∂u
∂u′

∂v
∂v′

∂u
∂v′

∂v

)
=

(
1 0
0 ı

)
(1.54)

The conservation of the scalar product under coordinate transformation is achieved by transforming the
metric, since (

u′ v′
)
g

(
u′

v′

)
=
(
u v

)
JT g J

(
u
v

)
(1.55)

and so we can define a new metric as

g′ = JT g J =

(
1 0
0 −1

)
(1.56)

for the scalar product. And so we have

(
u′ v′

)
g

(
u′

v′

)
=
(
u v

)
g′
(
u
v

)
(1.57)

which means that the scalar product is conserved under coordinate transformation if the metric tensor is

transformed accordingly.

In special relativity coordinates this means(
x ıct

) ( 1 0

0 1

) (
x

ıct

)
=
(
x ct

) ( 1 0

0 −1

) (
x

ct

)
where the new non-unity metric for the scalar product has been intro-
duced. Moreover, as we have seen earlier, for the conservation of the
scalar product x2 − c2t2 = x′2 − c2t′2 (Eq. (1.44)) the global sign is

15in the following way: The total differentials for the set of coordinates can be written as

du′ =
∂u′

∂u
du+

∂u′

∂v
dv (1.50)

dv′ =
∂v′

∂u
du+

∂v′

∂v
dv (1.51)

where du′ = u′1 − u′2 is an infinitesimal interval along u′. u′2 = 0 is just a special case of this. Arranging this in
matrix form makes the Jacobian matrix appear:(

du′

dv′

)
=

(
∂u′

∂u
∂u′

∂v
∂v′

∂u
∂v′

∂v

)(
du
dv

)
(1.52)

The rest follows from there. See texts on metric tensors for more information.
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irrelevant; what matters is only the relative sign between spatial and
time coordinates. So we are free to choose the metric according to(

ct x
) ( 1 0

0 −1

) (
ct

x

)
= c2t2 − x2 (1.58)

where the “minus” sign is on the spatial coordinate instead. This metric
has become the modern standard16. We will call

g =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (1.59)

modern Minkowski metric, for the four dimensions of SpaceTime,
and use it from here onward. Moreover, in the new basis of Space-
Time (where the time coordinate also becomes the first coordinate)
the Lorentz transformation matrix changes. The reader can easily ver-
ify the equivalence of the two representations:(

ıct′

x′

)
=

(
γ −ıvcγ
ıvcγ γ

) (
ıct

x

)
with complex axes (1.60)(

ct′

x′

)
=

(
γ −v

cγ

−v
cγ γ

) (
ct

x

)
with real axes (1.61)

From now on we use the designation Λ(v) :=

(
γ −v

cγ

−v
cγ γ

)
for

Lorentz boosts.

1.1.6 Lorentz transformation in Terms of Rapidity

There is a convenient way of expressing the Lorentz boost which is
useful in the context of combined Lorentz transformations and the
Lorentz group. If we define the “rapidity”

16It has been the standard for at least 50 years. A landmark text that still uses the old unit metric is Bethe and
Salpeter, “Quantum Mechanics of One- and Two-Electron Atoms”.
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Φx := arctanh
(v
c

)
(1.62)

then it follows that
v

c
= tanh Φx

v2

c2
=

cosh2 Φx − 1

cosh2 Φx

γ = cosh Φx
v

c
γ = sinh Φx (1.63)

and so we obtain for the modern representation of the Lorentz trans-
formation(

γ −v
cγ

−v
cγ γ

) (
ct

x

)
=

(
cosh Φx − sinh Φx

− sinh Φx cosh Φx

) (
ct

x

)
(1.64)

It is then a straightforward exercise to prove the following identity:

Λ(Φx1)Λ(Φx2) = Λ(Φx)

with
Φx1 + Φx2 = Φx (1.65)

Eq. (1.65) shows that the double boost occurring, e.g., in the derivation
of the velocity addition theorem can — using the rapidity parameter —
be written conveniently as a new Lorentz transformation where the new
rapidity Φx simply is the sum of the two original rapidities. This re-
sembles the formal situation for the addition of velocities in Newtonian
mechanics using the Galilei transformation.
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1.2 Four-Vectors in SpaceTime

1.2.1 Inverse Lorentz Transformation

If we want to represent the Lorentz boost from frame K’ into frame K,
we need the inverse Lorentz transformation matrix. It can be derived
straightforwardly from Eq. (1.61) to be(

ct

x

)
=

(
γ v

cγ
v
cγ γ

) (
ct′

x′

)
. (1.66)

Therefore, Λ−1(v) = Λ(−v). This result is physically intuitive, since
the origins of K and K’ propagate in opposite directions relative to
the respective other frame. It is easily verified that Λ−1(v) Λ(v) =

Λ(v) Λ−1(v) = 114 for the four-dimensional case. We are now in the
position to introduce general four-vectors in Minkowski SpaceTime.

1.2.2 Four-Vectors (Co- and Contravariant)

1.2.2.1 Position four-vector

We have already given the time coordinate in SpaceTime physical di-
mension of length (through the multiplication with the speed of light),
and so, with x0 = ct, it is suggested to introduce a position four-
vector as

x :=


x0

x1

x2

x3

 With components {xµ} (1.67)

where the x0 is the time-like component and xk, k ∈ {1, . . . , 3} are
the cartesian space-like components17. Then we can write the Lorentz
boost also as

x′ = ΛK→K’ x (1.68)
17In the present case of the position vector, the time-like component is actually time itself and the space-like

components represent space itself.
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or, using component notation,

x′ν =

3∑
µ=0

Λνµ xµ ∀ν ∈ {0, . . . , 3} (1.69)

This is the Minkowski-space equivalent of the transformation law of a
vector, a three-tensor of rank 1, in real space! Here we transform a
four-vector in Minkowski space.

From now on, we will use Einstein summation convention which
is defined as a sum in Minkowski space (or coordinate space) over
duplicate indices in any given term. Then,

x′ν = Λνµ xµ. (1.70)

From the above it immediately follows that
∂x′ν
∂xµ

= Λνµ. (1.71)

Conversely, from Eq. (1.70), we have(
Λ−1
)
κν
x′ν =

(
Λ−1
)
κν

Λνµ xµ

= δκµ xµ

= xκ(
Λ−1
)
µν
x′ν = xµ. (1.72)

and so
∂xµ
∂x′ν

=
(
Λ−1
)
µν
. (1.73)

1.2.2.2 General Contra- and Covariant Four-Vectors

Let us now take a first look at fields in special relativity. Be ϕ(x) a
scalar differentiable field with x the position four-vector in frame K.
We regard the derivative with respect to coordinates in K’, i.e.,

∂ϕ(x)

∂x′µ
=
∂ϕ(x)

∂xκ

∂xκ
∂x′µ

(1.74)
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since ϕ (x(x′)), where in the second equality the chain rule and Einstein
summation have been used. This means that we can write for the
differential operator

∂

∂x′µ
=

∂

∂xκ

∂xκ
∂x′µ

=
∂

∂xκ

(
Λ−1
)
κµ

(1.75)

where we have used Eq. (1.73). If we compare this result with Eq.
(1.70), we see a difference: The components of the position four-vector
are transformed from K to K’ via the transformation matrix Λ, but the
components of the derivative vector with respect to position transform
— also from K to K’ — via the inverse transformation matrix Λ−1! This
implies that there are, generally speaking, two types of four-vectors in
relativity theory18:

1. The contravariant components of four-vectors transform from
K to K’ as to the above Lorentz transformation. They are, by
convention, written with upper indices, aµ.

2. The covariant components of four-vectors transform from K to
K’ as to the inverse Lorentz transformation. They are conversely
written with lower indices, bν.

Let us now consider the scalar product of a covariant four-vector with
a contravariant four-vector in Minkowski SpaceTime. For consistency
with general matrix algebra, we will here consider covariant vectors
as row vectors, i.e., x′µ = xν

(
Λ−1
)ν
µ
and always sum over repeated

upper and lower indices. Then

b′µa
µ′ = bν

(
Λ−1
)ν
µ

Λµ
κ a

κ

= bν δ
ν
κ a

κ (1.76)
= bν a

ν = bµ a
µ. (1.77)

18The reader may argue that this situation actually already exists in non-relativistic physics for position and
gradient vectors, for example. This is true, but for a Euklidean metric there is no difference between the contra-
and covariant components of a vector!
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We find that the scalar product of a covariant with a contravariant
vector is invariant under Lorentz transformation. bν a

ν is therefore
called a Lorentz scalar. It can without difficulties be shown that
aµ
′
b′µ = aνbν, and so the scalar product of any contravariant with any

covariant four-vector is also a Lorentz scalar.
The result in Eq. (1.77) for general four-vectors will be of utmost

importance in the construction of relativistic theories.

1.2.2.3 Relationship Between Contra- and Covariant Four-Vectors

In Eq. (1.58) we had agreed that the scalar product involves the “mod-
ern metric”, {gµν}. It shall by definition have the property gµν = gµν.
From this it directly follows that

(gg)κµ = gµν g
νκ = δκµ (1.78)

where δκµ is the usual Kronecker delta symbol19.
Let us now see how contra- and covariant components of a four-

vector are related to each other. The expression bν a
ν is a Lorentz

scalar. So is bν aν. Since these two Lorentz scalars are made up of the
same four-vectors, they should be identical. We now suppose that

bν aν = bµ g
µν gνκ a

κ (1.79)

which can simply be calculated, using Eq. (1.78):

bµ g
µν gνκ a

κ = bµ δ
µ
κ a

κ = bµ a
µ = bν a

ν (1.80)

By comparing Eqs. (1.79) and (1.80) we have the following relation-
ships between co- and contravariant indices of a given four-vector:

bν = bµ g
µν (1.81)

aν = gνκ a
κ (1.82)

19In the case of diagonal matrices we do not have to care about which index is the row and which is the column
index, so we use this simplified notation.
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In other words, contravariant and covariant vectors of the same type
differ in their signs on the space-like components. For the case of the
position four-vector we have explicitly

xµ=0 = ct (1.83)
xµ=1 = x (1.84)
xµ=0 = ct (1.85)
xµ=1 = −x (1.86)

Choosing the vector components with upper indices to correspond to
non-relativistic notation is a plain matter of convention. This means
that the previous formulation of the position four-vector in the usual
non-covariant notation will now be changed. We choose the same four-
vector to be defined by its contravariant components (upper indices),
as

x :=


x0

x1

x2

x3

 With components {xµ} (1.87)

As a known example, consider the scalar product of the position
vector with itself. Obviously,

x′µ x
µ′ = xµ

′
x′µ = xν xν = xν x

ν (1.88)
(ct′)2 − (x′)2 − (y′)2 − (z′)2 = (ct)2 − x2 − y2 − z2

which is just identical to Eq. (1.58), confirming the logical consistency
of the formalism.

The generalization of these concepts to rank-n four-tensors is straight-
forward and will be useful for the reformulation of electrodynamics and
in the framework of general relativity, as well as in many other fields
of physics.
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1.2.3 SpaceTime Diagrams

The phenomenological consequences of the Lorentz tranformation can
be conveniently visualized through a technique already introduced by
Minkowski: SpaceTime diagrams. A reduction to two dimensions –
time and one spatial dimension – is sufficient for many purposes.

Figure 1.8:
ct

x

event
ct

x

0

0

S

An event is represented by a point in SpaceTime
with coordinates {ct0, x0}.

Figure 1.9:

ct

x

S

x1

worldline
An observer/object at rest at position x1 is repre-
sented by a worldline in the SpaceTime diagram.
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Figure 1.10:

ct

xx1x0

S

worldline
of moving object

θ

ct

ct0

1

An object moving in x-direction with velocity v in
coordinates of S. This velocity follows from graphical
observation: tanϑ = x1−x0

ct1−ct0 = v(t1−t0)
c(t1−t0) = v

c
. So ϑ =

arctan
(
v
c

)
.

Since 1 ≥ v
c
≥ 0 we have

max
(
arctan

(
v
c

))
=

max(ϑ) = π
4
.

Figure 1.11:
ct

xx1x0

ct1

light cone

S

E

E’
Emission of a light pulse as event at {ct0, x0} and
propagation of the light pulse in frame S. Event
E cannot be causally connected with an event
at {ct0, x0}, because information cannot propa-
gate faster than with c. Event E ′ can be causally
connected with an event at {ct0, x0} because it
is inside the light cone.

As a simple illustration for the scenario with event E, imagine a
distant observer appearing within δt = εt around t0 at xE > x1. The
observer cannot see the light pulse because he has “disappeared” before
the light pulse can reach his position.

1.2.4 Space-, Light-, and Time-Like Four-Vectors

With the establishments of the preceding subsections we can revisit
four-vectors in the context of SpaceTime diagrams and come to a couple
of interesting conclusions.
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Figure 1.12:

dx  =cdt0

1dx  =dx

{x }(1)
µ

{dx }
µ

{x }(2)
µ

ct

x

S

{

{

SpaceTime distance dx

Two events (1) and (2) and their SpaceTime distance
represented by vectors in a two-dimensional vector
space.

From Fig. (1.12) we infer that

dx0 = x0(1)− x0(2) = c(t1 − t2) = cdt

dx1 = x1(1)− x1(2) = x1 − x2 = dx.

20 The scalar product of the four-vector dx with itself is then

D := (ds)2 = dxµdxµ = dxµ gµν dx
ν

=
(
c(t1 − t2) x1 − x2

) ( 1 0

0 −1

) (
c(t1 − t2)

(x1 − x2)

)
=
(
c(t1 − t2) x1 − x2

) ( c(t1 − t2)

−(x1 − x2)

)
(1.89)

= c2(t1 − t2)2 − (x1 − x2)2. (1.90)

D is a Lorentz scalar (it is the scalar product of a contra- and a co-
variant four-vector), i.e., all of our following conclusions are Lorentz
invariant. We distinguish three general cases:

D = 0 From this it follows that c2(t1− t2)2 = (x1−x2)2 which means that
ds is on a light cone.
Four-vectors v with vµvµ = 0 are called “light-like” four-vectors.

20The notation dx0 here means dxµ=0.
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D < 0 This would correspond to the case shown in Fig. (1.12) if we would
assume the events to be the points chosen for illustration. Then,
if we suppose that for the Lorentz-transformed spatial components
xk1
′ − xk2

′
= 0 ∀k ∈ {1, . . . , 3}, then ⇒ D = c2(t′1 − t′2)2 ≥ 0

which is in contradiction with the assumption. This means that
given D < 0 there is no reference frame K’ in which the two events
occur at the same position and chronologically.
On the other hand, if t′1 − t′2 = 0 ⇒ D = −(x′1 − x′2)2 ≤ 0.
Therefore, a reference frame K’ exists such that the two events
occur simultaneously but at different positions. D is ensuingly
a “space-like” interval21. Note that in this case event 1 is outside
the light cone based in event 2.
Four-vectors v with vµvµ < 0 are called “space-like” four-vectors.

D > 0 In this case, if t′1 − t′2 = 0, i.e., in a frame S’ the two events occur
simultaneously, then ⇒ D = −(x′1 − x′2)2 ≤ 0 contradicts the
assumption and the two events cannot occur simultaneously in any
K’.
However, if xk1

′− xk2
′
= 0→ D = c2(t′1− t′2)2 > 0 is possible which

means that there exists a frame K’ in which the two events occur
at the same point in space and chronologically. They can be
causally connected (inside the respective light cone).
Four-vectors v with vµvµ > 0 are called “time-like” four-vectors.

21to be distinguished from the space-like components of a four-vector which is quite a different thing
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1.3 Relativistic Mechanics

The new (Einsteinian) view of space and time, or rather SpaceTime,
entails that most of the physics that had been invented thus far had
to be re-written in order to be in accord with the principles of special
relativity. The new relativistic theories should be constructed such
that their non-relativistic limit gives rise to the “old”, classical version
of pre-Einsteinian physical theory.

We will begin with mechanics. Newton’s mechanics was known to
be Galilei, but not Lorentz invariant. The evident program is thus to
formulate a Lorentz invariant rendering of classical22 mechanics. This
shall be attempted by retaining the structure of the equations of motion
and by replacing the ordinary three-vectors by four-vectors in Space-
Time.

1.3.1 Proper Time

In non-relativistic mechanics velocity is written as

vx =
dx

dt
. (1.91)

We can guess that the relativistic version of velocity might involve the
four-vector x and a four-vector v which should have the same trans-
formation properties as x. But we know from Eq. (1.28) that time is
obviously not a Lorentz scalar, t′ 6= t for a simple boost. In order to
make v a contravariant vector, as we would expect it to be, we will
have to formulate a Lorentz invariant quantity “dt”.

We have seen as a result of the Michelson-Morley experiment using
the Lorentz boost transformation that a time interval ∆t′ in a clock’s
frame (time interval measured by the experimenters on Earth at a fixed

22I use the “international meaning” of ‘classical’ which is ‘non-quantum’ and not ’non-relativistic non-quantum’.
In other words, we are going to develop relativistic classical mechanics.
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position in K’) relates to the time interval ∆t for the same two events
in an observer frame

K’

y

x

z
x’

z’

y’

v
K

perfect clock A perfect (unaffected by any violent ac-
celeration and undestroyable) clock in its
rest frame K’, moving with velocity v rel-
ative to a laboratory observer in K.

as to
∆t′ =

1

γ(v)
∆t. (1.92)

If we define v(t) as the relative velocity in the infinitesimal time inter-
val dt, we can generalize to time-dependent velocities and, therefore,
accelerations. From now on we will call

dτ := dt′ =
1

γ(v)
dt (1.93)

the proper time differential in the rest frame of the clock. Let’s take
a closer look at the properties of dτ .

For this we calculate the scalar product of the four-distance ds in S
with itself23:

(ds)2 = dxµ dxµ = dxµ gµν dx
ν = (cdt)2 − dx2 − dy2 − dz2

=

[
c2 − dx2

dt2
− dy2

dt2
− dz2

dt2

]
dt2

=
(
c2 − v2

)
dt2 = c2

(
1− v2

c2

)
dt2

= c2 1

γ(v)2
dt2 = c2dτ 2 (1.94)

23Getting from the second to the third line can be seen by taking the scalar product of v = dx
dt ex+ dy

dt ey + dz
dt ez+

with itself. The resulting velocity is the speed of “something” in the coordinates of frame K, so this might be a
clock at rest in K’, and that is the reason why we can take this velocity as the one used in the Lorentz factor γ!
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where in the last equality we have used Eq. (1.93).
However, we know that ds2 = ds′2 is a Lorentz scalar, see Eqs. (1.90)

and (1.77). And since the speed of light, c, is the same in all reference
frames, it follows that dτ 2, and therefore also dτ , have to be Lorentz
scalars as well.

The physical interpretation of this finding is that the proper time
interval (in the clock’s frame) has to be the same for all observers. We
can now proceed to building relativistic mechanics based on the proper
time differential, dτ .

1.3.2 Four-Velocity and Four-Acceleration

1.3.2.1 Four-Velocity

The obvious generalization of Eq. (1.91) in terms of four-vector quan-
tities and the proper time differential is{

dxµ

dτ

}
=: {uµ} (1.95)

Now, by construction, the components uµ transform like the compo-
nents of a contravariant four-vector, xµ, because dτ is Lorentz invariant.
However, Eq. (1.95) is a sort of “mixed” expression, since τ refers to a
clock’s rest frame whereas xµ is a coordinate of an arbitrary frame 24.

We derive the components of velocity in a general frame K as follows:

uµ =
dxµ(t)

dτ
=
dxµ(t)

dt

dt

dτ
= γ(v)

dxµ(t)

dt
(1.96)

where the chain rule has been used with t regarded as a function of τ .
Note that now we are considering the situation with a general three

velocity v =
3∑
j=1

vjej in coordinates of K. The γ factor is then more

precisely γ(v := ||v||).
24We may choose it to be the laboratory frame.
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Summary for the velocity four-vector25:

{
u0

uk

}
≡
{
γc

γvk

}
∀k ∈ {1, . . . , 3} (1.97)

It is immediately obvious that in the non-relativistic limit the space-
like components of velocity turn into the usual velocities with respect
to reference frame K. The time-like component does not exist as com-
ponent of a four vector in non-relativistic theory.

Let’s have a look at the scalar product of the velocity four-vector with
itself. We know from Eq. (1.77) that this product u2 = uµ uµ = uµ u

µ

has to be a Lorentz scalar. The direct calculation gives

uµ uµ = uµ gµν u
ν = γ(||v||)2(c2−v2

x−v2
y−v2

z) =
c2

c2 − v2
(c2−v2) = c2.

(1.98)
It is confirmed that u2 is a Lorentz scalar. Furthermore, since c2 > 0

it follows that u is a time-like four-vector.
u0 is the time-like and uk a space-like component of the velocity four-

vector. Its slope in SpaceTime is, therefore, γc
γvx

= c
vx
, taking only one

spatial direction for simplicity. However, from the discussion around
Fig. (1.10) it is evident that this slope corresponds to the slope of the
worldline of a moving particle in SpaceTime which is also c(t1−t0)

vx(t1−t0) = c
vx
.

We conclude that the velocity four-vector is tangent to the worldline
of a moving particle in SpaceTime which explains why the four-vector
u is time like.

25Bear in mind that we here have the contravariant component of a four-vector on the left-hand side and the
component of usual velocity in non-relativistic notation on the right-hand side.
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1.3.2.2 Four-Acceleration

Following the same principles, it is a straightforward exercise to formu-
late four-acceleration.

{bµ} =

{
duµ(t)

dτ

}
bµ =

duµ(t)

dτ
=
duµ(t)

dt

dt

dτ
= γ(v)

duµ(t)

dt
(1.99)

Using the results for four-velocity we can calculate the individual com-
ponents of four-acceleration.

b0 = γ(v(t))
c dγ(v(t))

dt
= γ(v(t)) c

dγ(v)

dv

dv

dt
with v = ||v||

d||v||
dt

=
1

||v||

(
v · dv

dt

)
dγ(v)

dv
= γ3 ||v||

c2

⇒ b0 =
γ4

c

(
v · dv

dt

)
Similarly,

bk = γ(v)
duk

dt

= γ(v)
d

dt

(
γ(v(t)) vk(t)

)
= γ(v)

{[
||v||
c2

γ3 vk(t)
1

||v||

(
v · dv

dt

)]
+ γak

}
= γ(v)

[
γ3

c2
vk

(
v · dv

dt

)
+ γak

]
bk =

γ4

c2
vk

(
v · dv

dt

)
+ γ2ak.

Summary for the acceleration four-vector:
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{bµ} =

{
γ4

c

(
v · dvdt

)
γ4

c2
vk
(
v · dvdt

)
+ γ2ak

}
∀k ∈ {1, . . . , 3}

(1.100)

In the non-relativistic limit, we simply obtain:

lim
c→∞

b0 = 0

lim
c→∞

bk ≡ ak

It can be shown that bµbµ < 0 which means that four-acceleration is a
space-like four-vector. However, it isn’t really necessary to prove this
since we can derive the result indirectly:

Using Eq. (1.98) we can also determine the Minkowski scalar product
between four-velocity and four-acceleration. First it is noted that

d

dτ
(uµuµ) =

(
d

dτ
uµ
)
uµ + uµ

(
d

dτ
uµ

)
=

(
d

dτ
uµ
)
uµ + uµ

(
d

dτ
gµν u

ν

)
=

(
d

dτ
uµ
)
uµ + uν gνµ

(
d

dτ
uµ
)

=

(
d

dτ
uµ
)
uµ + uµ

(
d

dτ
uµ
)

= 2bµuµ

bµuµ =
1

2

d

dτ
(uµuµ) =

1

2

d

dτ
c2 =

γ

2

d

dt
c2 = 0 (1.101)

This means that in Minkowski SpaceTime four-velocity and four-acce-
leration are always orthogonal four-vectors.
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1.3.3 Relativistic Version of Newton’s Equation of Motion

We can now proceed to formulating the fundamental law of dynamics
in the domain of special relativity. For this, a further definition is
required.

We do not know at this point, how mass behaves under Lorentz
transformation, but this will be derived. So we define that m0 be the
mass of a particle in its rest frame, which is then by definition a
Lorentz scalar. This means that rest mass of a particle never changes,
just like proper time is invariant of the state of movement of a relative
observer.

In view of Newton’s equation of motion from non-relativistic theory,

m a =
∑
i

Fi = F (1.102)

where there is only one “type” of mass of a particle which never changes,
irrespective of any state of motion and force is a three-vector, we define

m0 b
µ = Kµ (1.103)

to be the µth SpaceTime component of the relativistic fundamental
law of dynamics. m0b

µ necessarily transforms like a contravariant
four-vector since m0 is a Lorentz scalar. Likewise, Kµ is a component
of a contravariant four-vector which verfies the homogeneity of the
equation in that respect. {Kµ} is called Minkowski’s force four-
vector.

Obviously, the guiding principles for this definition are the replace-
ment of three- by four-vectors and the conservation of the form of the
equation of motion in the relativistic domain. Nevertheless, the conse-
quences of this formulation have to conform with experimental tests.

For the analysis of the new equation we resort to relations developed
earlier. In subsection 1.3.1 it has been shown that for the proper time
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differential dτ = 1
γ(v) dt. Furthermore, using Eq. (1.99), Eq. (1.103)

yields

m0
duµ

dτ
= m0γ(v)

duµ

dt
= Kµ (1.104)

1.3.3.1 Space-Like Part of the Equation of Motion

Using Eq. (1.97) the space-like part of Eq. (1.104) becomes

m0 γ(v)
d

dt
(γ(v) vk) = Kk

d

dt
[γ(v)m0 vk] =

1

γ(v)
Kk (1.105)

This equation is reminiscent of the temporal change of the quantity
of movement, linear momentum, in non-relativistic mechanics which is
related to the force acting on the particle:

dp

dt
= F (1.106)

The immediate implication is that we can postulate how relativistic
linear momentum should be formulated. However, before doing so, let
us complete the discussion of Minkowski’s force four-vector.

First, in accord with this finding, it is postulated that

Kk :≡ γ(v)Fk (1.107)

for the relation between four- and three-force components. Again, com-
ponents Kk and Fk become equivalent in the non-relativistic limit of
relativistic theory (also notation-wise, considering our convention).

1.3.3.2 Time-Like Part of the Equation of Motion

Now it is time to derive the time-like component of the Minkowski
force vector. For this, we multiply the relativistic fundamental law of
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dynamics, Eq. (1.103), by gµν uν (including summation according to
Einstein convention) and obtain

m0 b
µ = Kµ

m0 gµν u
ν bµ = gµν u

νKµ

m0 u
ν gνµ b

µ = Kµ gµν u
ν

m0 uµ b
µ = K0 u0 −

3∑
k=1

Kk uk

We can now readily use earlier results. For one thing, uµ bµ = 0 ac-
cording to Eq. (1.101). For the other, the definition in Eq. (1.107) and
the form of the velocity four-vector in Eq. (1.97) entail the identity

3∑
k=1

Kk uk = γ(v)F · γ(v)v, and so we arrive at

K0 u0 − γ2 F · v = 0 (1.108)
K0 γ c = γ2 F · v

K0 =
γ

c
F · v (1.109)

In summary, Minkowski’s force four-vector is thus written as

{Kµ} =

{ γ
c F · v
γFk

}
∀k ∈ {1, . . . , 3} (1.110)

In the non-relativistic limit we find:

lim
c→∞

K0 = 0

lim
c→∞

Kk = Fk.

With the above equations (1.100) and (1.110) Newton’s equation of
motion can be rewritten in relativistic form. The full relativistic me-
chanical equation of motion is thus given as
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m0 b
µ = Kµ (1.111)

m0
γ4

c

(
v · dv

dt

)
=

γ

c
F · v

m0

[
γ4

c2
vk

(
v · dv

dt

)
+ γ2ak

]
= γFk

where the first line is the covariant notation with contravariant com-
ponents of four-vectors, the second line is the time-like component and
the third line are the space-like components (∀k) of the equation of
motion.

It is quite evident that this equation describes physics different from
Newton’s law. Focussing on the space-like part and neglecting the first
term on the l.h.s. leads to

m0γak = Fk.

This approximate equation differs from the non-relativistic law of mo-
tion through the presence of the γ factor. Moreover, the first contri-
bution scales differently with γ and cannot compensate for this change
as simple acceleration problems (like a particle in an external electric
field) demonstrate.
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1.4 Relativistic Formulation of Classical Electrodynamics

Let us briefly look at the reformulation of classical electrodynamics
in terms of the new quantities for relativistic theory, four-tensors and
Lorentz scalars.

1.4.1 A Digression on Units

A few comments concerning the choice of units for the following sec-
tions are in place. We replace the standard S.I. units in the following
by Gaussian-based S.I. units which corresponds to making the replace-
ments for the electric and magnetic field as well as the charge density

E → E√
4πε0

B → B

√
µ0

4π

ρ → ρ
√

4πε0 (1.112)

Then, for instance, Faraday’s law of induction

∇× E = −∂B

∂t
(S.I.) (1.113)

becomes
1√

4πε0

∇× E = −
√
µ0

4π

∂B

∂t

∇× E = −1

c

∂B

∂t
(Gaussian S.I.) (1.114)

with √µ0ε0 = 1
c . We furthermore see that in the Gaussian system the

electric and magnetic fields have the same units.
Since q ∝ ρ, Coulomb’s law becomes

F12 =
q1q2

r2
12

e12 (1.115)
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We will also be interested in Ampère’s law:

∇×B = µ0J + µ0ε0
∂E

∂t
(1.116)

With the replacements defined in Eq. (1.112) Ampère’s law is written
as √

µ0

4π
∇×B = µ0

√
4πε0 J +

µ0ε0√
4πε0

∂E

∂t
√
µ0ε0 ∇×B = 4πµ0ε0 J + µ0ε0

∂E

∂t

∇×B =
1

c

(
4πJ +

∂E

∂t

)
(1.117)

1.4.2 Continuity Equation

This is a simple – but important – example to begin with. The continu-
ity equation of electrodynamics is derived from applying the theorem
of Gauss and Ostrodradsky26 to the relation between charged current
density flux through a surface and change of total charge in a volume
delimited by that surface:

∂ρ(r, t)

∂t
= −∇ · J(r, t) (1.118)

Note that the continuity equation takes the same form in the Gaussian
unit system.

Before proceeding, we introduce a new quantity, the four-vector of
charged current density

{Jµ} =

{
J0 = cρ

Jk ≡ Jk

}
22 ∀k ∈ {1, . . . , 3}.

(1.119)
26Which can be proven for any vector field on purely geometric grounds.
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The above form of the four-vector seems to be an ad hoc assumption at
this stage. However, considering that classical current density is charge
density times velocity, we see that Eq. (1.119) has the same structure as
the velocity four vector in Eq. (1.97). Note that the physical dimension
of the time-like component of this four-vector is

[
Q
L3 × L

T

]
, i.e., charge

density times velocity, which is the same as dim[J ].
We now reformulate Eq. (1.118), using ∂0 = ∂

∂x0 = 1
c
∂
∂t:

1

c

∂

∂t
cρ + ∇ · J = 0

∂

∂x0
cρ +

3∑
j=1

∂

∂xj
J j = 0

∂0J
0 +

3∑
j=1

∂jJ
j = 0

∂µJ
µ = 0 (1.120)

Eq. (1.120) is manifestly written in covariant form, with either side of
the equation a Lorentz scalar. In other words, the continuity equation
of electrodynamics is Lorentz invariant, even though the individual
terms (∂µ and Jµ) transform as four-vectors. This also means that
charge conservation is independent of the inertial frame in which it is
regarded.

It is an instructive exercise to show that the continuity equation
of electrodynamics is not Galilei invariant. This can be achieved, for
example, by using the Galilei boost transformation in Eqs. (12) and
the elucidations from section 0.2.

22Note that the same symbol “J” is used for denoting four-vectors and three-vectors, so the identity Jk ≡ Jk
means the equivalence between the contravariant four-vector component Jk and Jk in non-relativistic notation,
NOT the equivalence with the covariant components of J .
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1.4.3 Maxwell’s Equations

We begin by defining a four-vector of the electromagnetic potential:

{Aµ} =

{
A0

Ak

}
≡
{
V

Ak

}
∀k ∈ {1, . . . , 3}

(1.121)

where V is the usual scalar potential and A is the vector potential
(where again the same symbol is used in covariant and non-relativistic
notation).

Further, we require what is called the tensor of the electromag-
netic field

F µν := ∂µAν − ∂νAµ (1.122)

F is here defined as a rank-2 four-tensor with two contravariant indices.
Covariant (or mixed) components of this tensor can be derived by using
the metric tensor. Evidently, the left- and the right-hand side of Eq.
(1.122) transform in the same manner under Lorentz transformation,
but of course F is not a Lorentz scalar.

The elements of the field tensor shall be determined for two examples.

F 01 = ∂0A1 − ∂1A0 = ∂0A
1 + ∂1A

0

=
∂

∂x0
A1 +

∂

∂x1
A0 =

∂

∂x
V +

1

c

∂

∂t
Ax

= −
(
−∇V − 1

c

∂A

∂t

)
x

= −Ex

using a combination of the structure equations of electrodynamics in
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the last step27. As a second example consider

F 12 = ∂1A2 − ∂2A1 =
∂

∂x1
A2 − ∂

∂x2
A1

= − ∂

∂x1
A2 +

∂

∂x2
A1 = − ∂

∂x
Ay +

∂

∂y
Ax

= − (∇×A)z
= −Bz

and so on for the remaining elements. Obviously, F µµ = 0, and so the
field tensor takes on the form

{F µν} ≡


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (1.124)

We now postulate that the inhomogeneous Maxwell equations
(Gauss’s and Ampère’s law) can be written in a very elegant and
compact form:

∂µ F
µν =

4π

c
Jν (1.125)

This shall be verified by two examples. First, setting ν = 0:

∂0F
00 + ∂1F

10 + ∂2F
20 + ∂3F

30 =
4π

c
J0

0 +
∂

∂x
Ex +

∂

∂y
Ey +

∂

∂z
Ez =

4π

c
cρ

∇ · E = 4πρ (1.126)
27Writing the electric field as

E = −∇V − 1

c

∂A

∂t

∇×E = −∇×∇V − 1

c

∂

∂t
∇×A

∇×E = −1

c

∂B

∂t
(1.123)

leads to the Maxwell-Faraday equation.
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which is nothing else than Gauss’s law in differential form28. Now we
set ν = 1:

∂0F
01 + ∂1F

11 + ∂2F
21 + ∂3F

31 =
4π

c
J1

1

c

∂

∂t
(−Ex) + 0 +

∂

∂y
Bz +

∂

∂z
(−By) =

4π

c
Jx (1.127)(

∇×B− 1

c

∂E

∂t

)
x

=
4π

c
Jx (1.128)

which is one cartesian component of Ampère’s law.
The power in the formulation of Eq. (1.125) lies in the fact that

it is written in a homogeneous way in terms of four-vectors (∂µ F µν

transforms like a contravariant four-vector) which makes it Lorentz
covariant, i.e., form invariant with respect to Lorentz transformations.
This is by no means obvious in the original formulation of Maxwell’s
equations.

28It is easily checked that the S.I. form of Gauss’s law ∇ · E = ρ
ε0

becomes Eq. (1.126) upon making the
replacements from Eqs. (1.112).
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1.5 Relativistic Mass and Linear Momentum

We have seen in the preceding section that the equation of motion
of classical mechanics has been generalized to Minkowski space and
is formulated in terms of four-vectors. In the following subsections
we want to investigate the consequences of this generalization. We
begin from a space-like component of the relativistic equation of motion
(1.103) and rewrite it:

m0 b
k = Kk

m0
duk

dτ
= γ Fk

m0
duk

dt
= Fk

d (m0 γ vk)

dt
= Fk

where the definition of four-acceleration (1.99), the proper time differ-
ential (1.93), and the obtained expression for four-velocity (1.97) have
been used. Form equivalence with Eq. (1.106) and dimensional analysis
suggest to define relativistic linear momentum as

pk ≡ m0 γ vk. (1.129)

So we have established the space-like components of the linear-momentum
four-vector. Before completing the four-vector it is instructive to in-
spect Eq. (1.129) more closely.

1.5.1 Relativistic Mass

In the framework of classical Newtonian mechanics p = mv where m
is the inertial mass of a given particle or body. Since in Eq. (1.129)
vk is the velocity of the particle in frame K and pk the associated
momentum, the implication is that

m := γ m0 (1.130)



72 CHAPTER 1. SPECIAL THEORY OF RELATIVITY

should be regarded as the particle’s relativistic inertial mass in
frame K, instead of simply the the rest mass m0 of the particle. This
is a profound difference and means that, since γ = γ(v) is a function
of the velocity of the particle in frame K, so is its mass. The finding is
illustrated in Fig. (1.13). Note that rest mass is a Lorentz scalar, i.e.,

Figure 1.13:

K’

K

y

x

z

m

x’

z’

y’

v

0 A massive particle with rest mass m0 in frame K’
moves with velocity v relative to frame K. Its rela-
tivistic mass in coordinates of frame K is γ(v)m0.

it does not depend on any state of movement. However, in coordinates
of frame K, the particle “behaves” as if it had an increased mass, its
relativistic or dynamic mass (or observed mass)29. It can be anticipated
that also the expression for the energy of the particle in K should differ
from that in frame K’, but that is yet to be substantiated.

1.5.2 Relativistic Linear Momentum

With these conclusions in mind, the relativistic generalization of linear
momentum is straightforward. Since the space-like components are
proportional to the dynamic particle mass and its velocity in frame K,
the time-like component results by analogy and using the expression
for the velocity four-vector in Eq. (1.97):

p0 = m0 γ c = m0 u
0 (1.131)

29The concept of relativistic mass is not a fundamental requirement. In fact, many authors argue against its
introduction since it is sufficient to consider relativistic momentum modified by the γ factor. However, dynamic
mass is a useful way of thinking about various situations for instance in the physics of an atom.
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Summary for the linear momentum four-vector:

{pµ} =

{
p0

pk

}
=

{
m0 u

0

m0 u
k

}
≡
{
mc

mvk

}
∀k ∈ {1, . . . , 3} (1.132)

As a check for consistency, we take the proper-time derivative of linear
momentum,

d

dτ
pµ = m0

d

dτ
uµ = m0 b

µ = Kµ (1.133)

where the relativistic equation of motion (1.103) has been used. We
thus obtain a law analogous in form to its non-relativistic counterpart.
We can also verify Lorentz covariance on this last equation. Since d

dτ is a
Lorentz scalar, the l.h.s. (left-hand side) transforms like a contravariant
four vector, and so does the r.h.s.

1.6 Relativistic Energy

We now start from the time-like component of the relativistic funda-
mental law of dynamics (1.103) and obtain

m0 b
0 = K0

m0
du0

dτ
=

γ

c
F · v

m0 γ
du0

dt
=

γ

c
F · v

d

dt

(
m0 γ(v) c2

)
= F · v (1.134)

where the expression for the proper time differential (1.93) and the
time-like component of four-velocity (1.97) have been used.

Integrating Eq. (1.134) over time results in∫
d

dt

(
m0 γ(v) c2

)
dt =

∫
F · vdt (1.135)

m0 γ(v) c2 =

∫
F · dx (1.136)
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using vdt = dx.
Now, since work is W =

∫
F ·dx the quantity on the left-hand side

must correspond to relativistic energy,

E := m0 γ c
2. (1.137)

It still has to be clarified which kind of energy is represented by E.
Using the expression for relativistic inertial mass, Eq. (1.130), the
relativistic energy can also be written in its (publicly) famous form:

E = mc2 (1.138)

The physical meaning of this equation is that every energy corresponds
to a mass and every mass corresponds to an energy, with the Lorentz
scalar c2 being the conversion factor.

The most startling consequence of this expression becomes evident
when the special case for a particle at rest with respect to frame K is
considered. Then, ||v|| = 0 and so γ(||v||) = 1 and therefore m = m0.
In that case,

E = E0 := m0 c
2 (1.139)

and we find that the rest mass of a body corresponds to an energy! We
call E0 the rest energy of a particle of rest massm0. This implies that
energy should be convertible into rest mass (energy) and vice versa30.

It is very important to analyze the expression Eq. (1.137) before
taking any further steps. m0 and c are Lorentz scalars, but the Lorentz
factor γ is a function of velocity. We Taylor expand the Lorentz factor

30When formulating this equation, Einstein regarded it true from pure formal aesthetics, but considered believing
in its veracity in practice as an “act of faith”. It had to be confirmed by experiment, which happened in the decades
to come.
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about v0 = 0, resulting in

γ(v) =

∞∑
n=0

1

n!

dnγ(v)

dvn

∣∣∣∣
v=v0

(v − v0)n (1.140)

= 1 +
1

2

v2

c2
+

3

8

v4

c4
+O

((v
c

)6
)

(1.141)

We again see that in the non-relativistic limit, c→∞, the Lorentz fac-
tor becomes 1. The above representation as a Taylor expansion is often
useful in order to represent leading relativistic effects by truncating the
expansion at some appropriate order.

Using the expansion Eq. (1.141) in Eq. (1.137) one obtains

E = m0 c
2 +

1

2
m0v

2 +
3

8
m0v

2 v
2

c2
+O

((v
c

)4
)

(1.142)

In this form relativistic energy can be straightforwardly analyzed:
1
2 m0v

2 Beginning with the known term, this represents the kinetic
energy of a body with inertial mass m = m0 as in non-
relativistic classical mechanics.

m0 c
2 As a consequence, this term is of relativistic origin. It is
evidently a Lorentz scalar, and it relates to an energy of the
body independent of kinematics. It is, therefore, called the
rest energy of the particle.

3
8 m0v

2 v2

c2
Since this contribution vanishes in the non-relativistic limit,
it is also of relativistic origin and represents the leading rel-
ativistic correction to the particle’s kinetic energy.

O
((

v
c

)4
)
Consequently, all following terms are also relativistic correc-
tions to the particle’s kinetic energy.
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1.6.1 Relativistic Energy-Momentum Relation

We will now establish an equivalent to the energy-momentum relation
from non-relativistic mechanics which reads

T =

(
pN
)2

2m0
with pN = m0 v. (1.143)

In the relativistic régime we realize that we can identify one relation-
ship between relativistic momentum and relativistic energy right away.
From Eqs. (1.132) and (1.138) it follows that the time-like component
of the relativistic momentum four-vector is

p0 ≡ mc =
E

c
(1.144)

which means that relativistic energy appears on the time-like compo-
nent of the linear momentum four-vector, such that we can recast it in
another (equivalent form):

{pµ} =

{
E
c

pk

}
∀k ∈ {1, . . . , 3} (1.145)

The derivation of the relativistic energy-momentum relation is then just
a formal exercise. We start from two equivalent forms of the momentum
Lorentz scalar p2 = pµpµ = p0p0 +

∑
k

pkpk:

p2 =
E2

c2
− p2

p2 = m2
0 γ

2 c2 −m2
0 γ

2 v2 (1.146)

where the second relation follows from Eqs. (1.129) and (1.132). The
first relation can be rewritten as

E2 = c2
(
p2 + p2

)
(1.147)
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and inserting the second relation into it yields

E2 = c2
(
m2

0 γ
2 c2 −m2

0 γ
2 v2 + p2

)
= p2 c2 + m2

0 c
2
(
γ2 c2 − γ2 v2

)
= p2 c2 + m2

0 c
2

(
c2

1− v2

c2

− v2

1− v2

c2

)

= p2 c2 + m2
0 c

4

(
c2

c2 − v2
− v2

c2 − v2

)

and so we obtain
E2 = p2 c2 + m2

0 c
4. (1.148)

Taking the positive square root gives

E =
√

p2 c2 + m2
0 c

4 (1.149)

which is known as the relativistic energy-momentum relation.
Note that the first term under the square root is the square of linear
three-momentum, not to be confused31 with the scalar product of four-
momentum in Eq. (1.146).

At the time of its first appearance, there was no dispute about tak-
ing into account the positive square root only, although formally the
negative square root could also be permissible. After all, the notion
of negative energy of a free particle seems queer. This point became a
remarkable twist in the history of physics and will be picked up again
later on in the context of relativistic quantum mechanics.

A number of interesting conclusions can be drawn from Eq. (1.149)
when considering various possible cases, for which it is equally valid.
The first distinction concerns the body’s rest mass, m0.

31Some texts use unclear notation on this point.
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1.6.1.1 Particles with zero rest mass

As a first observation, we note that this case is particular to relativistic
theory. The notion of a particle with zero mass makes no sense in
non-relativistic mechanics. Due to the intimate relationship between
energy and mass in Eq. (1.138), however, we must take this possibility
seriously here.

Omitting the rest-mass term from Eq. (1.149) yields

E = ||p|| c. (1.150)

However, we know that relativistic three-momentum is

p = m0 γ(v) v

so the energy of the “particle” seems to be zero, except if the particle
is allowed to travel at the speed of light in frame K, in which case
the γ factor tends to infinity! The problem obviously remains not
fully resolved in classical relativistic mechanics, but a first glance at
quantum mechanics in this context reveals an interesting connection:

Inserting de Broglie’s relation (p = h
λ) and Planck-Einstein’s relation

(E = hν) which are valid for de Broglie matter waves, where h is
Planck’s constant, into Eq. (1.150) we obtain

hν =
h

λ
c

ν =
c

λ

which is the well-known relationship between frequency and wavelength
for waves propagating according to Maxwell’s equations32.

We conclude that the theory ofmassless particles is necessarily a
relativistic quantum theory. We will make a first step toward this

32Note that trying to make the same argument based on non-relativistic momentum p = mv does not lead to
a consistent theory. In that case, since λ = h

mc , supposing propagation at the speed of light, the wavelength for
a particle whose mass tends to zero becomes infinite which is in contradiction with observation. In other words,
non-relativistic quantum mechanics “works” for massive particles at lower velocities.
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theory in later sections (for massive particles), but a conclusive answer
for massless particles will have to await the introduction of relativistic
quantum field theory.

1.6.1.2 Massive Particles

For massive particles we can discuss two limiting cases:

v << c. From Eq. (1.142) in this approximation it follows that

E ≈ m0 c
2 +

(
pN
)2

2m0
for m0 6= 0 (1.151)

v ≈ c. According to Eq. (1.132) for the linear relativistic three-momentum
we can write

p2 c2 = m2
0γ

2 v2c2 = m2
0c

4 v2

c2 − v2
(1.152)

Now since v2

c2−v2 >> 1 with the applied condition it follows that
here p2 c2 >> m2

0c
4 and it can be approximated

E ≈ ||p|| c for m0 6= 0 (1.153)

in this limit. As a consequence, for very large relative velocities
the rest energy becomes negligible as a contribution to the total
relativistic energy.

Summary. Relativistic energy as a function of linear momentum for
vanishing (e.g. for the photon) and non-vanishing rest mass is depicted
in Fig. (1.14).
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Figure 1.14:

1.6.2 Energy-Mass Equivalence: Mass Defect

In order to deepen the understanding of Eqs. (1.138) and (1.149) we
will consider the following thought experiment. Be there a system at
rest with respect to a frame K’ that moves with velocity v relative to
a laboratory frame K, Fig. (1.15).

Figure 1.15:
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During a short time span ∆t′ the system
emits radiation of energy E ′ in K’ sym-
metrically such that its total momentum
in K’ does not change, i.e., it remains at
rest in K’.

Such an emission process may, for example, occur in the formation of
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an atomic nucleus from its constituent nucleons (protons and neutrons).
The energy is released in form of ejected particles (neutrons, α particles
etc.) including kinetic energy, and radiation.

Since the energy pulse is emitted in a spherically symmetric manner
its total 3-momentum in K’ is zero33. Then the momentum four-vector
for the released energy pulse takes on the following form in K and K’,
respectively:

Momentum four-vector in K:

{pµ} =

(
Erad

c
, p1 ≡ p, 0, 0

) Momentum four-vector in K’:{
pµ′
}

=

(
E ′rad
c
, 0, 0, 0

)
Of course, the momentum four-vector {pµ′} has to be related with

{pµ} through a Lorentz transformation. In the present case we want
to transform from K’ to K, so we use Λ−1(v) = Λ(−v) with respect to
Eq. (1.66). The transformation of momentum for the boost then reads

Λ(−v)

(
p0′

rad
p1′

rad

)
=

(
p0
rad
p1
rad

)
(
γ v

cγ
v
cγ γ

) ( E′rad
c

0

)
=

(
γ
E′rad
c

v
c γ

E′rad
c

)
=

(
p0
rad
p1
rad

)
(1.154)

The resulting four-vector has to be identical with the original formu-
lation of the momentum four-vector in frame K. Let us inspect the
relevant space-like component of three-momentum. We find

p1
rad = prad =

v

c
γ
E ′rad
c

(1.155)

which is the momentum (in K) corresponding to the energy of the ra-
diation pulse in K’. However, the system did not change its momentum
in K’, due to the assumed symmetrical emission. This implies that its

33For instance, photons have momentum p = h
λ .
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velocity relative to the laboratory has also not changed. What are the
consequences?

At this point, it is imperative to exploit principles of symmetry.
The system of our thought experiment is isolated. Therefore, it is
invariant to a spatial translation and so its total momentum in
a given frame is conserved.

The basic form of momentum in accord with Eq. (1.132) for the
system is

psys = msys γ(vsys) vsys (1.156)
for the component of interest, where msys here is the rest mass of the
system. This quantity has to be conserved due to symmetry. But
Eq. (1.155) forces us to consider the momentum of the radiation pulse
that is non-zero in the balance of momentum in K. And since relative
velocity does not change due to the pulse, the only way to compensate
is by a loss of rest mass of the system due to the emission of radiation!
Formally, momentum conservation in K is thus written as

psysbefore = psysafter + prad

msysbefore γ v = msysafter γ v +
v

c
γ
E ′rad
c

(1.157)

from which it follows that

msysbefore = msysafter +
E ′rad
c2

. (1.158)

The energy of the radiation pulse divided by the square of the speed
of light is the rest mass lost by the system due to the emission of
the radiation pulse of energy E ′. The system has, therefore, suffered a
mass defect, defined as

E ′rad
c2

= msysbefore −msysafter (1.159)

Note that the mass defect is Lorentz invariant because E ′rad refers to
the rest frame of the system.
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Table 1.1: Nuclear mass, mass defect and ratio for some sample nuclides

Nuclide Mass [u] Mass defect [u] Mass defect [u]
Mass [u]

4He 4.002603 0.029279 0.0073
12C 12.000000 0.095646 0.0080
59Fe 58.934874 0.540247 0.0092
225Ra 225.023611 1.803782 0.0080

u = 931.49410242(28) [MeV
c2

]
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1.7 Relativistic Kinematics of Particle Interactions

With the developments of the previous sections it is possible to study
collisions of bodies in the classical (non-quantum) regime. We can even
take a look at particle decays, although we here surpass the classical
notion of a particle34. A number of general assumptions are made that
lead to important simplifications:

1. External forces have no influence on the collision process.
This implies the conservation of total energy and total momentum
(before and after the process) which will be rewritten in relativistic
form.

2. We here do not consider the details of the collision process
at very short range. For example, the collision of two neutrons
could be studied at the level of the constituent quarks which would
require a deeper understanding of the bound state of the neutron.

Let us first set the stage by re-iterating the principles of such collisions
in non-relativistic theory. Generally, primes (’) denote properties after
the process, no primes denote properties before the process.

1.7.1 Non-relativistic collision processes

1.
∑
j

mj =
∑
j

m′j

Total mass of all intervening particles (j) is conserved. Bodies
may break up in the process (or stick together), but the sum of the
inertial masses always remains the same.

2.
∑
j

pj =
∑
j

p′j

All components of total momentum are conserved. This immedi-
34Particles generally have finite lifetimes and the decay of a particle is a complicated quantum process where the

probability of decay per unit of time plays an important role.
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ately follows from the fact that there are no external forces, by
assumption (consider Noether’s theorem).

3. Kinetic energy T may or may not be conserved.
Of course, total energy is conserved, but a process may be such
that kinetic energy of incident bodies is converted to some form
of internal energy (such as vibrational energy, alas, heat). The
relevant distinctions are made in the following.

• Elastic collisions. These are characterized by a conservation of
total kinetic energy∑
j

Tj =
∑
j

T ′j

There is no conversion of kinetic energy into internal energy or vice
versa.

• Inelastic collisions. Here total kinetic energy is not conserved.
We distinguish between two cases:

1. “Sticky” collisions, in which kinetic energy decreases:∑
j

Tj >
∑
j

T ′j

2. “Explosive” collisions, in which kinetic energy increases:∑
j

Tj <
∑
j

T ′j

If there are no internal degrees of freedom available – such as is
the case for elementary particles – then the non-relativistic physics
picture breaks down.

1.7.2 Relativistic collision processes

As before, external forces are irrelevant, and the conservation laws can
now be written in four-vector form. For this, we use the momentum
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four-vector from Eq. (1.145) before and after the collision:
∑
j

Ej
c∑

j

pj

 =


∑
j

E′j
c∑

j

p′j

 (1.160)

Note that here Ej = E0j + Tj is the total relativistic energy, the sum
of rest energy and relativistic kinetic energy of the particle.

Also as before, kinetic energy may or may not be conserved, depend-
ing on whether a conversion into or from internal energy is character-
istic of the collision. The corresponding distinctions are in this context
made as follows:

• Elastic collisions. These are characterized by a conservation of
total rest and kinetic energy∑
j

E0j =
∑
j

E0
′
j∑

j

Tj =
∑
j

T ′j

There is no conversion of kinetic energy into internal (rest) energy
or vice versa.

• Inelastic collisions. Here neither total kinetic energy nor internal
(rest) energy are conserved:

1. “Sticky” collisions, in which the decrease of total kinetic energy
is accompanied by an increase of total rest energy:∑
j

Tj >
∑
j

T ′j∑
j

E0j <
∑
j

E0
′
j

This is the typical scenario in collider physics where very heavy
particles are created from lighter particles using their great in-
cident kinetic energies.
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2. “Explosive” collisions, where it is the other way around:∑
j

Tj <
∑
j

T ′j∑
j

E0j >
∑
j

E0
′
j

The discussion of several exemplifying cases is useful for two reasons:
First, examples make the peculiarities of relativistic kinematics very
clear. Second, the treatment of concrete cases reveals the sometimes
particular techniques of calculation.

1.7.2.1 “Sticky” Two-body Frontal Collision

The first example is very simple. We imagine two particles (or pieces of
clay) of equal rest mass m0 at high velocity, v = 3

5 c, in frontal collision
under the sole assumption that the two bodies form a single body after
collision (extreme sticky collision). We wish to determine what the rest

Figure 1.16:
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mass, M , of the resulting body will be.
We start out by giving the 3-momentum for the two particles in K

(the lower index is here a particle index)

p1 = m0 γ1 v1

p2 = m0 γ2 v2

Since by assumption v2 = −v1 it follows that γ1 = γ2 and, therefore,

p2 = −p1 (1.161)

Momentum conservation now dictates that

p1 + p2 = pM

From this and Eq. (1.161) it follows that

pM = 0⇒ γM = 1⇒M = M0

If the relativistic mass of the resulting body equals its rest mass in
frame K, then its relativistic energy is

EM = M0 c
2

We now invoke the conservation of energy, i.e., the relativistic energies
before and after the collision have to be identical:

E1 + E2 = M0 c
2 (1.162)

Since γ1 = γ2 := γ we have

E1 = m0 γ c
2 = E2

The γ factor for the incident particles is calculated as γ = 1√
1− 9

25
c2

c2

=

1√
16
25

= 5
4 and so the total energy becomes

E1 + E2 = 2m0 γ c
2 =

5

2
m0 c

2
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Therefore, with Eq. (1.162),

M0 c
2 =

5

2
m0 c

2

⇔M0 =
5

2
m0 (1.163)

The essential observation is that the final rest mass is 5
2 m0 which sur-

passes the initial rest mass which is 4
2 m0. In other words, since the

kinetic energy of the created particle is zero, the complete kinetic
energy of the incident particles has been converted into rest
energy of the resulting particle35.

1.7.3 Spontaneous Two-body Decay

Suppose now that the initial particle has a finite lifetime36. So this is
an example of a relativistic explosive “collision”. Under the assumption
that it decays into two particles of equal rest mass, what will the ve-
locities of these be in K? Similar to the above example, we start out
from momentum conservation:

pM = 0 = p1 + p2

⇒ p1 = −p2 (1.164)
and the created particles necessarily are ejected “back to back”. Since

35Had we taken two lumps of clay in the non-relativistic picture, then this possibility would not be all that
astonishing since we could imagine that the incident kinetic energy has been converted into internal energy, say
heat, represented by the vibrational energy of the clay molecules. Relativity allows, however, that a body is created
that has no obvious substructure (or at least not one we know of today). This is astonishing: Particles orders of
magnitude heavier than the sum of the incident particles can be created, and this happens copiously at accelerator
facilities.

36Clearly, this is a departure from the classical worldview. We here enter a semi-quantum theory in which excited
states may decay into more stable states and thus have finite lifetimes.
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Figure 1.17:
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their rest masses are assumed to be equal,

γ1 v1 = −γ2 v2

⇒ 1

γ2
||v1|| =

1

γ1
||v2||

⇒
(
c2 − v2

2

)
v2

1 =
(
c2 − v2

1

)
v2

2

⇔ v2
1 = v2

2

⇒ γ1 = γ2 (1.165)

The velocities and gamma factors of the two resulting particles are
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identical, not surprisingly. Due to energy conservation

M0c
2 = 2m0 γ c

2

⇔ γ =
1√

1− v2

c2

=
M0

2m0

⇒ c2

c2 − v2
=

M 2
0

(2m0)2

⇔ c2 − v2 =
(2m0)2 c2

M 2
0

⇔ v = c

√
1−

(
2m0

M0

)2

(1.166)

where only the positive root is taken since we understand v = ||v||.
Thus, we find the condition

M0 ≥ 2m0 (1.167)

since otherwise velocity becomes imaginary. This result implies that
there is a threshold energy ET , a minimum energy of the incident
particle, defined as

ET = M0 c
2 := 2m0c

2 (1.168)

for the two-body decay into two particles of identical rest mass to take
place. A surplus of energy in the form of initial kinetic energy is not
an obstacle.

This result is of general importance as it helps exclude possible de-
cay processes in particle physics based on the rest masses of the in-
volved particles alone. A good example is the deuteron d with md =

1875.6 [MeV
c2

]. The presumed decay process d −→ p+n is kinematically
impossible since mp + mn = 1877.9 [MeV

c2
] which makes the deuteron a

stable particle.
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1.7.4 Pion Decay and Special Methods

As a final example which also introduces a clever technique for solving
problems of this kind, we consider the decay of the π-meson (or simply
pion) π− (≡ du, C = −1,mπ− = 139.57 [MeV

c2
]) into a muon µ− (C =

−1,mµ− = 105.66 [MeV
c2

]) and a muon-antineutrino37 νµ (C = 0,mνµ ≈
0), i.e.,

π− −→ µ− + νµ (1.169)

Neutrinos and their antiparticles have — for all practical purposes —
zero rest mass and thus propagate with the speed of light. The par-
ticular question of the velocity of the resulting muon is interesting
here. Moreover, we want to express this velocity solely in terms of the
known parameters of the problem which are the rest masses and the
speed of light.

First, a useful little theorem can be derived. Three-momentum and
energy of a given particle in the lab frame are

p = m0 γ v

E = m0 γ c
2

and so by division of these two identities
p

E
=

v

c2

⇔ v =
pc2

E
(1.170)

In other words, if the momentum and energy of a particle are known,
so is its velocity. We write this expression specifically as a norm for the
muon quantities

||vµ|| =
||pµ||c2

Eµ
(1.171)

and evaluate it.
37It has to be an anti-neutrino due to conservation laws that will be discussed further down the road.
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An elegant trick to obtain the required momentum and energy is
to work from the Minkowski-space scalar product four-conservation.
Four-conservation is for the present case written in terms of the relevant
momentum four-vectors:

pπ =

(
p0
π = Eπ

c

pπ

)
= pµ + pν =

(
p0
µ + p0

ν =
Eµ
c + Eν

c

pµ + pν

)
⇔ pν = pπ − pµ (1.172)

Based on the last identity we calculate the scalar product of the anti-
neutrino four-momentum with itself:

p2
ν = p2

π + p2
µ − 2pπ · pµ (1.173)

The various terms in Eq. (1.173) are now calculated one by one.

1. Since the problem is treated in the rest frame of the pion its three-
momentum is zero and so, using the relativistic energy-momentum
relation Eq. (1.149), Eπ =

√
p2
πc

2 + m2
πc

4 = mπc
2 = E0π . Now we

do the four-scalar product

p2
π =

E2
0π

c2
=
m2
πc

4

c2
= m2

πc
2 (1.174)

2. The created muon cannot be expected to have zero momentum in
K. The corresponding calculation for the next term is, therefore,

p2
µ =

E2
µ

c2
− ||pµ||2 =

||pµ||2 c2 + m2
µc

4

c2
− ||pµ||2 = m2

µc
2 (1.175)

3. With the above findings the Minkowski scalar product between
muon and pion four-momenta is easily obtained as

pπ · pµ =
Eπ

c

Eµ

c
− pπ · pµ =

mπc
2

c

Eµ

c
− 0 = mπ Eµ (1.176)

By theory (see Eq. (1.77)) pπ · pµ = (pπ)λ (pµ)λ is a Lorentz scalar,
as will become evident in the following.
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4. Finally, the left-hand side of Eq. (1.173) gives, using the energy-
momentum relation for massless particles Eq. (1.150),

p2
ν =

E2
ν

c2
− ||pν||2 =

||pν||2 c2

c2
− ||pν||2 = 0 (1.177)

With the results from calculations 1 . . . 4 Eq. (1.173) becomes

0 = m2
πc

2 + m2
µc

2 − 2mπ Eµ

⇔ Eµ =
m2
π + m2

µ

2mπ
c2 (1.178)

and so we have obtained an expression for the first ingredient required
to evaluate Eq. (1.171). A similar calculation leads to the momentum
of the muon:

pµ = pπ − pν
⇒ p2

µ = p2
π + p2

ν − 2pπ · pν

⇔ m2
µc

2 = m2
πc

2 + 0− 2
Eπ

c

Eν

c
− pπ · pν (1.179)

pπ = 0 and thus Eπ = mπc
2. Furthermore, since the anti-neutrino

is massless, Eν = ||pν|| c = ||pµ|| c. The latter identity follows from
momentum conservation

pπ = 0 = pµ + pν

⇔ pµ = −pν

⇒ ||pµ|| = ||pν|| (1.180)

Putting all of this together yields for Eq. (1.179)

m2
µc

2 = m2
πc

2 − 2mπ ||pµ||c

⇔ ||pµ|| =
−m2

µ + m2
π

2mπ
c (1.181)
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The velocity of the created muon results from the combination of Eqs.
(1.171), (1.178), and (1.181) to be

||vµ|| =
−m2

µ+m2
π

2mπ
c3

m2
π+m2

µ

2mπ
c2

=
m2
π −m2

µ

m2
π + m2

µ

c (1.182)

which depends only on the rest masses of the involved particles.
Using these known masses, vµ ≈ 0.271 c.
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Chapter 2

(A Brief) Introduction to Elementary
Particles

2.1 Standard Model Phenomenology

I shall here give a very brief overview of some important developments
and discoveries in general physics and elementary particle physics rele-
vant to the introduction to nuclear physics that will follow suite. Some
of the material for the following section is taken from D. Griffiths, “In-
troduction to Elementary Particles”.

2.1.1 Historical Notes

In 1932, the world of elementary particles was simple: The only known
particles were the heavy proton (p) and neutron (n), the light elec-
tron (e), and the carrier of electromagnetic interactions, the photon
(γ). What followed in the next three decades was a period of intense
discovery of formerly unknown particles. The world of physics was
swamped with discoveries in such a manner that Willis Lamb (‘Lamb
shift’) joked in 1955: “For some time, a Nobel Prize was given out for
the discovery of a new particle. Nowadays, someone who finds a new
particle should be fined 10.000 $.”

Until the 1950s, experimental particle physics was largely confined
to the study of cosmic radiation and its atmospheric products. In 1952

97
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the first modern particle accelerator went into activity, the ‘Brookhaven
Cosmotron’ on Long Island, just outside New York. It could accelerate
particles up to roughly 1 [GeV] kinetic energy (for comparison, the
Large Hadron Collider currently reaches 6500 [GeV] kinetic energy per
beam.)

2.1.2 Mesons

Mesons are “medium-weight” particles, hypothesized by H. Yukawa in
1934, that play a role in nuclear physics. To understand Yukawa’s idea
we take a look at a general parameterization of the four known forces of
nature in terms of their range. Neglecting force constants, the following
proportionality holds:

Fi ∝
e−

r
a

r2
(2.1)

where r is the distance between bodies and a is a range parameter that
roughly takes on the following values:

i: electromagnetic, gravitational a −→∞
i: strong a ≈ 1 [fermi] = 10−15 [m]
i: weak a ≈ 10−16 . . . 10−17 [m]

So for electromagnetism and gravity the force follows a 1
r2 law. For

the strong and the weak interactions it becomes very small when r

becomes greater than characteristic nuclear/nucleon length scales (the
proton radius is roughly rp ≈ 0.88× 10−15 [m]).

Based on these experimental notions and basic quantum mechanical
arguments, Yukawa proposed that there should be a particle that is
exchanged between nucleons, responsible for the stability of an atomic
nucleus. The nuclide 4He (2p, 2n), was known to be stable, despite
the electromagnetic repulsion of the two protons. A “strong” nuclear
force, surpassing the electromagnetic force in strength at nuclear length
scale, had to be responsible for this. With the idea of the range of
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the interaction being inversely related to the rest mass of the force
mediator, Yukawa argued that a quite heavy particle should be the
mediator of the strong force.

Quantum theory demands that on a time scale ∆t there is an uncer-
tainty of measured energy according to

∆E ∆t ≥ ~
2

(2.2)

Since energy is related to mass, the rest mass of the mediator particle
could be estimated from the time scale of its transmission. Using the
proton radius rp, a minimum value for this time scale is

∆t >
rp
c
≈ 0.33× 10−23 [s] (2.3)

With mπ the mass of Yukawa’s meson, the energy fluctuation is given
as ∆E = mπc

2, and so

mπc
2 ∆t >

~
2

⇒ mπ >
10−34

2× 9× 0.33× 1016 × 10−23
[S.I.]

≈ 0.185× 10−27 [S.I.]

which translates into an upper bound for the rest mass of the π meson

mπ > 104

[
MeV
c2

]
(2.4)

Today, the rest mass of the π mesons is known to be ≈ 135
[MeV
c2

]
which shows that Yukawa’s estimate was quite good. Comparing this
rest mass with the rest masses of electron and proton, me ≈ 0.51

[MeV
c2

]
and mp ≈ 940

[MeV
c2

]
, the term “middle weight”, or meson, is explained.
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The π was detected in 1947
through cosmic radiation.

2.1.3 Antimatter - Dirac Equation

The most active period concerning the detection of antimatter parti-
cles was between 1930 and 1956. What does a course on ‘relativity
and nuclear physics’ have to do with antimatter? Well, the existence
of antimatter particles was predicted by Dirac as a consequence of
his famous equation, and it happens to be the equation of motion of
nucleons (as well as of all other massive fermions, like electrons). So in
my mind, a 3rd-year course on nuclear physics cannot get around the
Dirac equation.

Let us, however, begin with the developments that lead to this equa-
tion. The first steps were taken by Oskar Klein and Walter Gordon.

2.1.3.1 Klein-Gordon Theory

2.1.3.1.1 Derivation of the Klein-Gordon Equation

Starting point is the time-dependent Schrödinger equation (SEQ):

ı~
∂

∂t
Ψ(x, t) = Ĥ Ψ(x, t) (2.5)

is a differential equation first order in time and second order in space
and, therefore, cannot be Lorentz covariant. To understand this con-
sider the one-dimensional SEQ for a free particle, slightly rewritten:

~
(
ı
∂

∂t
+

~
2m

∂2

∂x2

)
Ψ(x, t) = 0 (2.6)
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We know that ∂µ∂µ is a Lorentz scalar, so a ∂
∂t + b ∂2

∂x2 with constant
a, b cannot be one.

As a first step, Klein and Gordon took the time derivative of Eq.
(2.5)

ı~
∂2

∂t2
Ψ(x, t) = Ĥ

∂

∂t
Ψ(x, t). (2.7)

Note that we are working with a time-independent Hamiltonian oper-
ator in the Schrödinger picture. After introduction of Eq. (2.5) in the
form ∂

∂t Ψ(x, t) = 1
ı~ Ĥ Ψ(x, t) into the right-hand side of Eq. (2.7) we

get

ı~
∂2

∂t2
Ψ(x, t) =

1

ı~
Ĥ2 Ψ(x, t). (2.8)

This is so far not a deviation from non-relativistic quantum physics,
and Eq. (2.8) is still not homogeneous in time and space derivatives
when considering the non-relativistic energy-momentum relation1.

Now, Klein and Gordon argued that Einstein’s energy of a particle
in relativistic mechanics is E = ±

√
p 2c2 + m2

0c
4. With the usual pre-

scription for the momentum operator in quantum theory, p −→ −ı~ ∇̂
from which p̂2 = −~2 ∇2. Making the corresponding replacement in
the Hamiltonian in Eq. (2.8) and considering rest energy simply as a
multiplicative constant,(

~2 ∂
2

∂t2
− ~2c2 ∇2 + m2

0c
4

)
Ψ(x, t) = 0(

1

c2

∂2

∂t2
−∇2 +

m2
0c

2

~2

)
Ψ(x, t) = 0, (2.9)

which is equivalent to the procedure in non-relativistic quantum me-
chanics where the non-relativistic energy momentum relation is used
at this point.

1One might ponder over using the square root directly in Eq. (2.5), but this results in operator roots and a
mathematically quite complicated equation.
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In Minkowski space with a metric tensor

{gµν} = {gµν} :=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (2.10)

and real-valued coordinates, so {xµ} :=

(
x0 = ct

x

)
, the time deriva-

tive can be written like
1

c

∂

∂t
=

1

c

∂x0

∂t

∂

∂x0
=

1

c
c
∂

∂x0
=

∂

∂x0
=: ∂0 (2.11)

and thus Eq. (2.9) becomes(
∂2

∂x2
0

−
∑
k

∂2

∂x2
k

+
m2

0c
2

~2

)
Ψ(x, t) = 0(

∂µ∂µ +
m2

0c
2

~2

)
Ψ(x) = 0 (2.12)

the Klein-Gordon equation where in the last step the position four-
vector x replaces the coordinates x, t in the argument of the wave
function. The operator 2 = ∂µ∂µ is called the d’Alembertien. The
KG equation is manifestly Lorentz covariant, i.e., it retains its form
under Lorentz transformations. As can be shown straightforwardly, its
solutions correspond to the correct relativistic energies of free particles
of rest mass m0. Note also that in the limit m0 −→ 0 Eq. (2.12) yields
the wave equation of electromagnetism.

2.1.3.1.2 Problems with Klein-Gordon Theory

It was, however, quickly realized that Klein and Gordon could not claim
victory in having solved the problem of formulating the fundamental
equation of relativistic quantum mechanics. The KG wave function
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ΨKG(x) is a scalar field, but fermions have spin and a scalar wavefunc-
tion cannot describe two spin degrees of freedom, i.e., spin projection
“up” and spin projection “down”. Perhaps particle spin could just be
multiplied onto the wavefunction like in Schrödinger-Pauli theory. But
this is certainly not satisfactory. The graver problem with Eq. (2.12)
is, however, as follows.

In analogy to Schrödinger theory the conservation of the probability
density is assured by it satisfying a continuity equation with an ap-
propriate probability current density. For Klein-Gordon theory, this
current density is

jµ :=
ı~

2m0

[
ψ∗ (∂µψ)− (∂µψ)∗ ψ

]
(2.13)

which shall be demonstrated.
Proof.

∂µj
µ =

ı~
2m0

[
(∂µψ

∗) (∂µψ) + ψ∗ (∂µ∂
µψ)− (∂µ∂

µψ)
∗
ψ − (∂µψ)

∗
(∂µψ)

]
(2.14)

The last term in Eq. (2.14) can be rewritten as
− (∂µψ)∗ (∂µψ) = − (∂νg

νµψ)∗ (∂κgκµ ψ) = − (∂νψ)∗ gνµgµκ (∂κψ)

= − (∂νψ)∗ δνκ (∂κψ) = − (∂νψ)∗ (∂νψ)

= − (∂νψ
∗) (∂νψ) (2.15)

and so cancels with the first term. Using the KG equation Eq. (2.12)
in the second and third terms of Eq. (2.14) results in

∂µj
µ =

ı~
2m0

[
ψ∗
(
−m

2
0c

2

~2
ψ

)
−
(
−m

2
0c

2

~2
ψ∗
)
ψ

]
=

ı~
2m0

[
−m

2
0c

2

~2
+
m2

0c
2

~2

]
ψ∗ψ = 0 (2.16)

which shows that the chosen probability current density in Eq. (2.13)
indeed leads to a consistent KG theory. Since the probability current
density four vector has the form given in Eq. (1.119) the KG probability
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density is the time-like component of Eq. (2.13)

ρKG =
j0

c
=

ı~
2m0c

[
ψ∗
(
∂0ψ

)
−
(
∂0ψ

)∗
ψ
]

=
ı~

2m0c

[
ψ∗
(

1

c

∂

∂t
ψ

)
−
(

1

c

∂

∂t
ψ

)∗
ψ

]
. (2.17)

The solutions of the KG equation are of plane-wave type and can be
written as

ψKG(x) = Aeı(ωt−k·x) + Be−ı(ωt−k·x) (2.18)

which when inserted into the KG equation yields the energy-momentum
relation of relativistic theory. Using Eq. (2.18) in the representation of
the KG density, Eq. (2.17), results in

ρKG ∝ −|A|2 + |B|2 (2.19)

which is not hard to demonstrate. this means that the KG prob-
ability density could, depending on specific initial conditions which
determine the coefficients A and B, become negative! This, however,
is in stark contradiction with the fundamentals of quantum mechanics
where probability density is always positive definite!

Historically, the KG equation was, therefore, regarded as a complete
failure and discarded2.

2.1.3.2 Dirac Theory

2.1.3.2.1 Derivation of the Dirac Equation

Dirac realized that the essential problem with the KG equation was
the fact that it was a second-order differential equation. Thus, his idea
was to formulate a Lorentz covariant first-order differential equation
that treated space and time coordinates on an equal footing.

2As a little historical anecdote, a participant at one of the Solvay conferences in Brussels at the time is reported
to have asked Dirac what he was currently working on. Dirac replied “I’m trying to construct a relativistic wave
equation for the electron.” Participant: “But Klein and Gordon already solved that problem!” They had not, and
Dirac knew full well.
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He started out by introducing a set of general parameters {γµ}, the
properties of which had to be determined, to see if the square root of
the d’Alembertien could be developed in such a way that it takes on
the form of a Lorentz scalar3. By postulate,

2 = ∂0∂0 −
∑
k

∂k∂k =: γµγν ∂µ∂ν

= γ0γ0 ∂0∂0 + γ1γ1 ∂1∂1 + γ2γ2 ∂2∂2 + γ3γ3 ∂3∂3

+
{
γ0, γ1

}
∂0∂1 +

{
γ0, γ2

}
∂0∂2 +

{
γ0, γ3

}
∂0∂3

+
{
γ1, γ2

}
∂1∂2 +

{
γ1, γ3

}
∂1∂3 +

{
γ2, γ3

}
∂2∂3

where {, } is the anti-commutator. This would be correct if

{γµ, γν} = 0 ∀µ 6= ν (2.20){
γ0, γ0

}
= 2 (2.21){

γk, γk
}

= −2 ∀k ∈ {1 . . . 3} (2.22)

For example, since
{
γ0, γ0

}
= 2(γ0)2 = 2 ⇒ γ0 = 1 which is in ac-

cord with the above decomposition. The quantities γ are today known
as Clifford numbers and the equations (2.20), (2.21), (2.22) as the
conditions for a Clifford algebra, in this case the Clifford algebra of
Dirac theory.

Let’s take a look at the first condition, Eq. (2.20). If γκ is just
a complex scalar, γκ ∈ IC, then {γµ, γν} = 2γµγν = 0, since scalars
commute. This can only be solved by setting γµ = 0 ∀µ (or likewise
γν = 0 ∀ν) which does not lead to a valid set of parameters. Dirac
concluded that the set {γµn×n} had to be n × n matrices in order to
arrive at anticommutators that yield zero!

Dirac’s first try was to use the set {1,σ} which form a basis for all
complex 2 × 2 matrices. However, neither this choice leads to a valid

3Remember that 2 = ∂µ∂µ and so
√

2 6= ∂µ and 6= ∂µ. 2 is a Lorentz scalar, and so is
√

2, but ∂µ and ∂µ are
not Lorentz scalars!
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decomposition of the d’Alembertien4.
Dirac found the simplest set to be

γ0 :=

(
1 0

0 −1

)
γk :=

(
0 σk

−σk 0

)
(2.23)

where the spin-Pauli matrices have been introduced5. Now it is straight-
forward to rewrite the d’Alembertien as(

∂0∂0 −
∑
k

∂k∂k

)
114 = γµ γν ∂µ∂ν = γµ∂µ γ

ν∂ν = (γµ∂µ)2 (2.24)

and so √
2 114 = γµ∂µ (2.25)

Note that we here have obtained 2 as the product of two (formally)
Lorentz scalars in a four-dimensional vector space. This is no longer
the same thing as the Minkowski space scalar product ∂µ∂µ between
the derivative four-vectors.

A direct consequence of this astonishing finding is that the wave-
function onto which such an operator acts cannot be a scalar function.
It has to be a four-component vector-like quantity.

Dirac now formulated his famous equation. We first rewrite the KG
equation as (

~2∂µ∂µ + m2
0c

2
)

Ψ(x) = 0 (2.26)
The square root of the first operator becomes in Dirac’s formulation√

~2∂µ∂µ 114 = ~γµ∂µ (2.27)

and so, with the four-momentum operator6 p̂µ = ı~∂µ, we can formulate
the Dirac equation for a free particle of rest mass m0

4It can be shown in a general manner that only matrices with dimension multiples of 4 are possible solutions.
So, for example, dimension 8 matrices can be constructed, but the resulting theory is identical to the dimension 4
theory in physical content.

5This set of matrices is called the “standard representation” of Dirac matrices. Other representations related
through unitary transformations of the standard matrices are possible as well.

6Note that p̂0 = ı~ 1
c
∂
∂t and p

0 = E
c which reproduces the correspondence principle from quantum mechanics for

the energy operator p0c −→ p̂0c = ı~ ∂
∂t . Likewise, p̂

k = −ı~ ∂
∂xk .
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(−ı~ γµ ∂µ + m0c 114) Ψ(x) = 0 (2.28)

which is a matrix equation where the wavefunction becomes a four-
component spinor that depends on the position four-vector x (which
contains the time coordinate). We indeed have a first-order differential
equation where space and time coordinates are treated on an equal
footing, i.e., in a four-vector.

Of course, we have to solve and interpret this equation and talk
about what a spinor exactly is.

Using the standard representation the Dirac equation can be written
out more explicitly as

{
−ı~

[
γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3

]
+m0c114

}
Ψ(x) = 0{

−ı~

[(
112 02
02 −112

)
∂

∂x0
+

3∑
k=1

(
02 σk
−σk 02

)
∂

∂xk

]
+m0c

(
112 02
02 112

)}(
ΨU (x)

ΨL(x)

)
= 0. (2.29)

The second line follows from the realization that the γ matrices have
a 2×2 block structure, and so the entire equation can be written in this
so-called “bi-spinor” form. The associated 2-spinors are called “upper”
(ΨU(x)) and “lower” (ΨL(x)) 2-spinors. Their significance will become
clear when solutions of the free-particle Dirac equation are investigated.

Now, since in position-space representation p = −ı~∇ it is conve-
nient to rewrite the term involving the spin-Pauli matrices using the
scalar product between the 3-vector of the Pauli matrices and the 3-
vector of momentum, σ · p = σxp̂x + σyp̂y + σzp̂z,7 and the Dirac
equation becomes

7Note, e.g., that the product of a Pauli matrix with a scalar momentum operator is well defined: σxp̂x =(
0 1
1 0

)
p̂x =

(
0 p̂x
p̂x 0

)
.
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[
−
(

112 02
02 −112

)
ı~

∂

∂t
+ c

(
02 σ · p
−σ · p 02

)
+m0c

2

(
112 02
02 112

)] (
ΨU (x)

ΨL(x)

)
= 0[

−
(

112 02
02 112

)
ı~

∂

∂t
+ c

(
02 σ · p

σ · p 02

)
+m0c

2

(
112 02
02 −112

)] (
ΨU (x)

ΨL(x)

)
= 0 (2.30)

where the whole equation has been multiplied first by c and then

from the left by
(

112 02

02 −112

)
.

2.1.3.2.2 Dirac Equation for Stationary States

We now focus on stationary states and separate off the time-dependence
in the usual way:

Ψ(x) = Ψ(x) Ψ(t) = Ψ(x) e−
ı
~Et (2.31)

which yields, considering that −ı~ ∂
∂t e
− ı

~Et = −E e− ı
~Et,[

c

(
02 σ · p

σ · p 02

)
+

(
m0c

2112 02

02 −m0c
2112

)]
Ψ(x) = E114 Ψ(x)

(2.32)
The Dirac equation has been introduced as a relativistic covariant equa-
tion of motion for massive fermions of spin s = 1

2.

• Relativistic covariant wave equation that treats spatial and time
variables on equal footing.

• Correct relativistic energy eigenvalues of the free particle, E =

±
√

p2c2 + m2
0c

4

• Positive definite probability density, ρD > 0

2.1.3.2.3 Interpretation of the Dirac Equation
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As will be shown, the energy eigenvalues of the free fermion according
to Dirac theory are found as

E = ±
√

p2c2 + m2
0c

4. (2.33)

The four-dimensional spinor space allows for four solutions, two of
which correspond to positive and two of which correspond to nega-
tive energy. The negative energies that only appeared to be a
vague possibility earlier are confirmed to be physical reality
in Dirac theory. They are a mathematical consequence of the
introduction of a first-order Lorentz-covariant differential equation.

m  c0

2

−m  c0

2

E

0

typical bound−state energy

The spectrum of the free fermion ac-
cording to Dirac theory. As in non-
relativistic QM the possible energies
are continuous (gray zones), but here
for ||p|| = 0 we have the rest energy
of the particle,m0c

2, or−m0c
2 for the

branch of negative energies.

The so-called “Dirac gap” (impossible energies for a free particle)
is defined as Egap = m0c

2 − (−m0c
2) = 2m0c

2. Dirac originally for-
mulated the equation for an electron, so let’s take m0 = me. Then
Egap,e ≈ 1.02 [MeV]. The total energy (kinetic + potential) of an elec-
tron bound in the potential of a proton is −13.61 [eV] (non-relativistic
ground state), about 5 orders of magnitude smaller than Egap,e! This is
a negative energy for a bound state in non-relativistic theory. In Dirac
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theory we have to add the rest energy of the electron, and a resulting
bound-state energy8 is indicated in the above figure (not to scale; to
scale it would have to be much closer to the rest energy bar.).

Like in non-relativistic theory of the hydrogen atom there is a dis-
crete spectrum of bound states and a continuous spectrum of scattering
states. In relativistic theory these have E ≥ m0c

2, and in addition
there is a continuous spectrum of negative-energy states! Is this a
problem? It is.

For if the “ground state” is no longer the true ground state, i.e.,
there exist states of lower energy, then the following decay process is
quantum-mechanically allowed:

p + e −→ p + e + γ (2.34)

The electron could, under emission of a photon of very high energy,
transfer to a state of negative energy. This could go on and on, until
the hydrogen atom has lost all its energy into radiation. Matter would
no longer be stable9.

Dirac’s “Sea” and “Hole theory”

In response to the devastating property of his new equation that pre-
dicted that matter should radiate and be unstable, Dirac came up with
the following solution: He postulated that all states of negative
energy should be occupied by the same type of fermions in vac-
uum, and this postulate became known as Dirac sea. This sea should
be perfectly homogeneous and have (among others) the following prop-

8Of course this result can be obtained by solving the Dirac equation for an electron bound to a proton, but this
is a long way to go (much too long for the present course), so I only talk about the result here. In any case, the
velocity of an electron in the hydrogen atom is relatively small, so relativistic corrections are small as well. The
relativistic total energy – modulo rest energy – is very close to the non-relativistic total energy.

9At the time, Dirac’s new theory drew fierce criticism from great contemporary physicists. Werner Heisenberg
pounded “Dirac’s theory is surely the saddest chapter of modern physics!”
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erties:

msea = +∞
Qsea = −∞ (for electrons)

Esea = −∞

Due to its homogeneity no charged particles immersed into it would
experience the presence of the sea. And since we ever only measure
energy differences in physical processes, never absolute energies, the
total infinite energy was not a problem, either. The sea can thus be
regarded as a background that has just the right properties to make
matter stable.

For it was known that no two identical fermions can occupy the same
microstate (Pauli exclusion principle). This means that an electron
in any state of positive energy (including its rest energy) could no
longer decay to a state of negative energy since all of those were already
occupied.

More than this, Dirac postulated as a direct consequence of the
existence of the sea: If say photons were produced of total energy
Eγ > Egap,e the following process could occur:

2γ −→ e + “hole′′ (2.35)

The radiation quanta could “kick” an electron out of the non-observable
sea, i.e., excite it to a positive energy and in addition create a hole in the
sea10. Since the hole corresponds to a “missing electron”, its properties
must be – according to Dirac –

mhole = me

Qhole = −Qe

Ehole = −Ee

10These radiation quanta could even be produced at very short time scales according to ∆E∆t ≥ ~
2 , fluctuations

of the vacuum that polarize it; a fundamental idea of quantum field theory was born. However, it took another 30
years for this theory to be fully developed and fleshed out.



112 CHAPTER 2. (A BRIEF) INTRODUCTION TO ELEMENTARY PARTICLES

A hole in the sea has the same inertia as a particle in vacuum, amissing
charge corresponds to the negative particle charge, and the missing
energy corresponds to the negative particle energy. Dirac’s interpre-
tation was that the hole in the sea had to represent a new particle
of equal mass as the electron but of opposite charge (and of positive
energy, since it represented the missing of negative energy).

This was one of the boldest and also one of the most spectacular
predictions made in science. The particle representing the hole, the
“positron”, as it was called, was found in cosmic radiation by Anderson
and Blackett in 1931, five years after Dirac’s prediction of its exis-
tence. Since this prediction was not restricted to electrons and any
other fermion could replace the electron in the argument, the finding
led to the prediction of antimatter, i.e., that every type of particle
should have a partner with identical mass, but opposite charge. Some
particles should therefore be their own antiparticles, like the photon.
This concept was later extended to the more general principle of “charge
conjugation”, Ĉ.

2.1.4 Neutrinos

The basic discoveries in neutrino physics were made between 1930 and
1962. The fundamental observation concerns nuclear β decay, where
β stands for an electron. At the time, the β decay of an atomic nucleus
A into an atomic nucleus B

A −→ B + e (2.36)

was understood in terms of the fundamental process

n −→ p + e (2.37)

i.e., a neutron of nucleus A decays into a proton (a bound proton, so we
obtain a new nucleus) and an electron. With the techniques developed
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earlier, we are in the position to calculate the energy of the emitted
electron, see section 1.7.4. The result of the calculation is, at nuclear
level,

Ee =
m2
A −m2

B + m2
e

2mA
c2 (2.38)

Note that this is a fixed value in terms of constants, just like the energy
of the emitted muon in section 1.7.4 was. The difference is that here
we have two emitted massive particles instead of just one.

Now this theoretical result can be compared to the actual observation
in experiment.

Te [keV]

E e<<

# counts

10 155

− E
0

Observed kinetic energy of the emit-
ted electron in the β decay of tritium
A=3
Z=1H −→ 3

2He + e.
A here is the nucleon number and Z is the proton

number.

In almost all events the electron’s
energy is lower than the limiting
energy calculated via Eq. (2.38).

This meant that if conservation of energy should remain valid there
is energy unaccounted for in the above β decay11. Pauli proposed
that an unknown additional emitted particle with charge Q = 0 should
account for the missing energy. Fermi figured out that this new particle
must have zero rest mass, and thus the neutrino was born. So the

11When confronted with this, Niels Bohr thought that the conservation of energy should be abandoned! However,
Bohr was opposed to many things at the time, not only to Fermi’s neutrino, but also to Dirac’s theory, Yukawa’s
meson, and even Feynman’s approach to Quantum Field Theory ...
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correct fundamental process can be written as

n −→ p + e + ν (2.39)

In fact, it was only later realized that it had to be an antineutrino that
is produced here12.

In the course of these discoveries a general rule was established for
particle physics processes:
Crossing symmetry: If a certain reaction is observed then crossed
reactions are also possible, where crossed means that a particle is
placed on the other side of the reaction and conjugated into its an-
tiparticle.

For example, a crossed reaction of the fundamental process Eq.
(2.39) would be

p + ν −→ n + e+ (2.40)
An electron is here “crossed” into a positron. Cowan and Reynes ob-
served this process in 1955 with solar antineutrinos, and they detected
neutron and positron (e+) formation in the reaction.

In 1953 Konopinski and Mahmoud established the conservation law
L = L′ of lepton number, L, in particle reactions. This can be
regarded as an equivalent to charge conservation, Q = Q′. A brief
survey of lepton numbers:

L particle type
0 all hadrons

+1 e−, µ−, ν
−1 e+, µ+, ν

Thus, lepton number changes sign when a particle is converted into its
antiparticle. In fact, charge conjugation affects all quantum numbers
but does not change momentum or energy. Lepton number conserva-
tion can be easily confirmed in all of the above processes.

12Neutrinos and their antiparticles have spin and differ in helicity, a concept we might talk about later. Also,
conservation laws that were found later on dictated that it had to be an antineutrino of the first generation.
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Further confirmations of L conservation followed. Two crossed reac-
tions with respect to Eq. (2.39) are

p+ + ν −→ n + e+

ν + n −→ p+ + e− (2.41)

both of which were observed (L = L′ = −1 in the first case and
L = L′ = +1 in the second case). On the other hand,

ν + n −→ p+ + e− (2.42)

which would violate lepton number was never observed.
Unfortunately, this was not the end of the story for the leptons. The

decay of the muon according to

µ− −→ e− + γ (2.43)

is kinematically allowed (the muon is heavier than the electron) and
conserves lepton number, but this decay was never observed. It was
proposed to introduce a conservation law that distinguishes between
the three generations, generation 1: electron e−, generation 2: muon
µ−, generation 3: tau τ−, i.e., generational lepton numbers Le, Lµ,
Lτ . Then Eq. (2.43) would be forbidden since Lµ = 1 6= L′µ = 0 and
Le = 0 6= L′e = 1. Using a huge amount of antineutrinos produced in
pion decays and testing their reactions with protons, in was in 1962
established that

νµ + p+ −→ µ+ + n

(2.44)

with Lµ = L′µ = −1 and Le = L′e = 0 takes place whereas

νµ + p+ −→ e+ + n

(2.45)
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with Lµ = −1 6= L′µ = 0 and Le = 0 6= L′e = −1 never does. The true
decay channels of the muon and its antiparticle are

µ− −→ e− + νe + νµ (2.46)
µ+ −→ e+ + νe + νµ (2.47)

where Lµ and Le are both conserved. We conclude on the first two
generations of the lepton family (1962 - 1976) with a summary of their
quantum numbers:

lepton L Le Lµ
e− 1 1 0

νe 1 1 0

µ− 1 0 1

νµ 1 0 1

antilepton L Le Lµ
e+ −1 −1 0

νe −1 −1 0

µ+ −1 0 −1

νµ −1 0 −1

2.1.5 Flavor

2.1.5.1 Strangeness and Baryon Number

Between 1947 and 1960 more new hadrons entered the scene, and their
observed behavior allowed for an extension of the conservation laws
known thus far. The heavy meson K0 (composed of a linear combina-
tion of a strange s and an antidown d quark and vice versa) and the
baryon Λ(uds) decay under weak interaction as follows:

K0 −→ π+ + π− (2.48)
Λ −→ p+ + π− (2.49)
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The K0 has meson number +1, just like the π+. So the π− has me-
son number −1 since it is the antiparticle of the π+. This means that
meson number is generally not conserved. The same conclusion
can be drawn from the decay of the Λ. On the left-hand side meson
number is 0, but on the right-hand side meson number is −1. These
new relatively heavy mesons were called “strange” particles (the quark
decomposition became known only later!), mainly because their cre-
ation – driven by the strong interaction – is a relatively fast process,
but their decay – driven by the weak interaction – is relatively slow;
the difference is orders of magnitude.

On the other hand, baryon number, B, is conserved13. The
conservation of B can also be verified on Eq. (2.39). Some important
baryon numbers:

B particle type
0 all leptons, all mesons

+1 p+, n, Λ

−1 p−, n

The antiproton p− ≡ p was first produced in the following inelastic
collision:

p+ + p+ −→ p+ + p+ + p+ + p− (2.50)

Note that this is a “sticky” relativistic collision. Conservation of Q
(total charge), B, Le and Lµ are easily verified.

Ongoing investigations and results and the early days of the quark
model affirmed that a new quantum number could be introduced, called
“strangeness” (S), that was conserved in processes driven by the
strong interaction, but not conserved in processes driven by the

13B is almost always conserved in particle processes. It took another while to find a rare exception which is
connected to charge-parity (CP) violation (the K0 meson decays in 0.2% of events under violation of CP.). In order
to formalize this we need to understand how to write the operators Ĉ (charge conjugation) and P̂ (space inversion)
in the framework of Dirac theory. This is the subject of more advanced chapters.
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weak interaction. Examples:

π−(du) + p+(uud) −→ K+(us) + Σ−(dds) (2.51)

This is a strong-interaction process. We observe B = B′ = +1, Q =

Q′ = 0, and S = 0 + 0 = S ′ = 1 + (−1). The strange quark, s, was
given S = −1 and its antipartner s has S = +1. So strangeness is
conserved.

Now consider again the weak decay in Eq. (2.49). S = −1 6= S ′ = 0

and strangeness is not conserved.

2.1.5.2 The Eightfold Way

The situation having become ever more chaotic, Gell-Mann and Ne’eman
in the period of 1961 - 1964 invented an ordering scheme called the
“EightfoldWay” that not only helped understand particle phenomenol-
ogy but that also made successful predictions of so far unknown parti-
cles!

Gell-Mann and Ne’eman realized that the eight lightest baryons
could be organized into an octet, according to charge and strangeness.

The octet of light baryons.
The quark decomposition
for the “new” baryons
is Θ−(dss), Θ0(uss),
Σ0(uds), Σ+(uus).

Likewise, the ten next heavier baryons form a decuplet where iso-
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axes of charge and strangeness are the same as in the octet scheme.
The decuplet of heav-
ier baryons. The quark
decomposition of these
baryons is ∆−(ddd),
∆0(udd), ∆+(uud),
∆++(uuu), Σ∗−(dds),
Σ∗0(uds), Σ∗+(uus),
Θ∗−(dss), Θ∗0(uss),
Ω−(sss).

Two things are remarkable about the baryon decuplet diagram. The
first is that the Ω− forming the lower corner was not known at the
time of its making. It was a prediction that was shortly afterwards
confirmed!

Second, some of these baryons have the same quark decomposition
as the lighter baryons, for example Θ∗−(dss) and Θ−(dss). The differ-
ence is that in the Θ∗− the three quarks are confined in an excited
state which is denoted by the asterisk (∗). So we would expect them,
according to Eq. (1.138), to have different rest mass. Indeed,

mΘ∗− = 1533

[
MeV
c2

]
; S = 3/2

mΘ− = 1321

[
MeV
c2

]
; S = 1/2

In addition, they have different spin quantum numbers S. Similarly,
the proton p+(uud) has rest massmp+ = 938

[MeV
c2

]
whereas the excited

∆+(uud) has m∆+ = 1232
[MeV
c2

]
.

This raises an important question: When do we consider an excited-
state particle as a different particle? We might compare the situation
with atomic physics and ask whether an excited hydrogen atom, H∗,
should not be regarded as a different particle, too, compared to
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H, since it has higher rest mass than H. However, typical atomic
excitation energies are on the order of [eV], and the rest energy of the
proton is E0,p+ = 938 [MeV]. This is a difference of about 9 orders of
magnitude! In the above baryons, on the other hand, rest energy and
excitation energy are in the same order of magnitude, O(E0) ≈ O(E∗).
This is why we here speak of a different particle whereas for excited
atoms we do not.

Finally, the lightest mesons
are organized into ameson
nonet. The η particles
are linear combinations of
(uu), (dd), and (ss) states,
the π0 of (uu) and (dd)

states.

2.1.5.3 Quark model and Eightfold Way

In 1964 Murray Gell-Mann and George Zweig introduced the solution
to the question as of how the above Eightfold-Way diagrams emerge
from a deeper, underlying structure.
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Three quarks and their antipartners, organized as above into trian-
gular diagrams, can account for the observed bound states of baryons
and mesons14. In essence, the quark model conjectures that

1. All (anti)baryons are composed of 3 (anti)quarks.

2. All mesons are composed of one quark and one antiquark.

Quarks are confined15 into bound states and are never observed indi-
vidually.

2.1.5.4 Problems With the Quark model – and Some Solutions

The first problem with the quark model is that they are not detectable
individually. However, scattering experiments on baryons show (similar
to the early scattering experiments by Rutherford on atoms) that there
are three localized mass “concentrations” in a baryon, pointing to the
quark decomposition.

The second problem becomes obvious when thinking about the exis-
tence of, for example, the ∆++(uuu) particle (see the baryon decuplet
diagram). It has total spin S = 3

2 and is composed of three identical
particles, u quarks, which each have s = 1

2. This means that at least
two of these quarks must have identical quantum numbers, ms(i) = 1

2,
which, however, is forbidden by the Pauli exclusion principle!

In 1964 Greenberg proposed a solution to this problem. First of all,
particles had been given the following “flavor” quantum numbers:

14There is quite a bit more to be said here, for example why the corners of the baryon octet diagram are
“missing” compared to the baryon decuplet diagram. For answering this we would have to analyze the irreducible
representations of color SU(3) ⊗ spin SU(2).

15Just like us, these days ...
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Quantum number Name Example
U “upness” u, U = +1

D “downness” d, D = +1, U = 0

S “strangeness” s, S = −1, U = 0, etc.
C “charm” c, C = +1, U = 0, etc.
B “bottomness” b, B = −1, U = 0, etc.
T “topness” t, T = +1, U = 0, etc.

which add up in composed particles, so U = 0 for the π0 meson. In
addition to flavor, Greenberg hypothesized that quarks come in “col-
ors”, i.e., “red”, “green”, and “blue”. These are additional properties
that are chosen in analogy with the property of light being colorless
when all three wavelengths are mixed. Likewise, all occurring particles
are “colorless”. This solves the problem: If the three u quarks in the
∆++(uuu) have three different colors, then no two of them can have
the same total set of quantum numbers. For consistency, the mesons
are colorless, too. For example, the π0 (uu, dd) is colorless when the
quark-antiquark pair has the same color. “red” + “antired” −→ color-
less, likewise for blue and green pairs.

This may sound very daring, but Greenberg’s idea of course makes
observable predictions. For example, a corrolary is that bound states
consisting of two quarks (or two antiquarks) should not exist, because
they would not be colorless. Likewise for bound states consisting of
four quarks or four antiquarks. Indeed, no such particles have been
observed16.

The introduction of flavor and color made further predictions that
were later on spectacularly confirmed, for example with the discovery
of the Ψ (cc) and D+ (cd) particles in 1974 and 1976.

16In a very recent discovery, however, tetraquarks, composed of two quark-antiquark pairs – for example the
bound system (ccss) – have been detected at CERN (arXiv:2103.01803 [hep-ex]).
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2.1.5.5 Standard Model

I want to conclude this chapter with a summary of the known particles
composing the Standard Model of elementary particles.

Leptons Quarks Force mediators Higgs
e− e+ d d γ (photon, EM) H

νe νe u u W±, Z0 (vector bosons, weak)
µ− µ+ s s 8 gluons (strong)
νµ νµ c c

τ− τ+ b b

ντ ντ t t

There are 37 particles altogether. The 8 gluons are classified accord-
ing to their color transmission (rr, rg, rb, gg, gb, gr, bb, br, bg). The di-
mension of this set is 9, and they span two irreducible representations of
color SU(3), dim(Γ1) = 1 and dim(Γ2) = 8. The totally symmetric Γ1

representation is not observed in nature, leaving 8 linear combinations
of color transmissions.
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Chapter 3

Introduction to Nuclear Physics

This final chapter gives an introduction to some important aspects of
nuclear physics. Various sources have been used, among them Grif-
fith’s book (see above), the monograph by Povh, Rith, Scholz, Zetsche,
Rodejohann “Particles and Nuclei”, and the interactive website
https://www.nndc.bnl.gov/nudat3/ of the Brookhaven National Lab-
oratory that I highly recommend1.

3.1 General Definitions

Let us begin with some terms and definitions. A nuclide (french: nu-
cléide) is understood as a bound state composed of A nucleons (p+, n)
among which there are Z protons (p+). This is a non-redundant and
the standard definition, although sometimes the number of protons and
neutrons is given. The information can be assembled into a symbol
for the nuclide

X
A

Z

(Q)

N

X denotes an element of the periodic table of
elements (H, He, Li, . . .)
N is the number of neutrons, N = A− Z

Sometimes, when the nuclide is understood to be an atomic nucleus
1The images in the manuscript have been created with the preceding version nudat2.
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and electrons are present in the bound state, the total charge Q =

Z−#e− of the system can be given as well, depending on context. For
example, the α particle is denoted as the nuclide 4

2He2. As an example
where it is useful to add the total charges, reconsider the earlier weak
decay of tritium which in terms of its fundamental process was given
by Eq. (2.39). In nuclear notation at nucleon level this can now be
written as

3
1H2 −→ 3

2He+
1 + e− + νe (3.1)

A neutron of tritium has decayed into a proton (which remains bound),
and so A does not change. However, the proton number has changed
and so we consider the product to be a nucleus of helium, not hydrogen.
3
1H2 is electrically neutral and has 1 electron. So does 3

2He+
1 , but now we

have 2 protons and so Q = +1 (denoted +). Note also the conservation
laws, Le = L′e = 1 and B = B′ = 3.

Further definitions:

• Isotopes are nuclides which have the same proton number, so
Z = Z ′. 4

2He and 3
2He are, therefore, isotopes. They always share

the same element symbol.

• Isotones are nuclides which have the same neutron number, so
N = N ′ = A − Z = A′ − Z ′. 4

2HeN=2 and 3
1HN=2 are, therefore,

isotones.

• Isobars are nuclides which have the same nucleon number, so
A = A′. 3

2He and 3
1H are, therefore, isobars.

Another important quantity is the nuclear binding energy. It is
defined as

Ebind =
[
Zm1

1H + (A− Z)mn −mA
ZX

]
c2 (3.2)

where m1
1H is the rest mass of a hydrogen atom, mn is the rest mass

of a neutron, and mA
ZX is the rest mass of the neutral atom X under
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consideration2.

Compare the nuclear binding energy Eq. (3.2) with the mass defect
given in Eq. (1.159). If the mass defect is multiplied by c2 then we
can say thatmsysbeforec

2 corresponds to the rest energy of the separated
Zm1

1H hydrogen atoms plus the rest energy of the separated (A−Z)mn

neutrons, and msysafterc
2 corresponds to the rest energy of the bound

nucleus composed of all these particles. In other words, the energy
“lost”, E ′rad in the formation of the nucleus is its binding energy.

Ebind is a positive quantity, Ebind > 0.

Nuclear binding energies
per nucleon for common
(abundant) isotopes of a
given nuclide. The same
trend as for the mass de-
fect in Table 1.1 is ob-
served.

3.2 Strong Isospin

A glance at a few of the simplest nuclides reveals an interesting fact.
The following snapshot is from the aforementioned website at Brookhaven
and shows the lower left corner of a (Z,N) diagram.

2Electron masses are generally included in this definition because neutral atoms are easier to “weigh” than ions
and electrons are so light compared to nucleons.
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Black nuclides are sta-
ble (very long lifetimes),
colored nuclides decay
in different ways (we
will come back to that
later). and an empty
space means this nu-
clide has an unmeasur-
ably short lifetime.

We see that 2
1H (p+, n) is stable, but two protons or two neutrons

do not form a bound state. Since there is no electrostatic repulsion
between them it seemed particularly strange that two neutrons do not
bind to each other. How can this be explained?

In a 1932 classic paper Werner Heisenberg came up with an explana-
tion. It is based on the observation that the rest masses of the proton
(938.3

[MeV
c2

]
) and the neutron (939.6

[MeV
c2

]
) are almost the same. So

via Einstein’s mass-energy equivalence, Eq. (1.138), the near-identity
of their rest energies is a near-degeneracy of two different quantum-
mechanical states.

Heisenberg proposed to write these two energies as EI,MI
and EI,M ′I

where I satisfies the algebra of an angular momentum and MI is its
projection onto the quantization axis. Now, we know the theorem that
if
[
Ĥ, Îk

]
= 0 ∀k ∈ {1, 2, 3} then EI,MI

= EI,M ′I
. This in turn means

that the Hamiltonian also commutes with a corresponding rotation, the
generator of which is the operator Î:[

Ĥ, ÛI(δϕ)
]

= 0 (3.3)

where ÛI(δϕ) = e
ı
~ δϕ ên·Î.

The two nucleons can, therefore, be understood as two different
quantum-mechanical microstates that are related by a rotation in a
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corresponding space. Since the number of microstates is two, Heisen-
berg conjectured that they form the fundamental irreducible rep-
resentation of the Lie group SU(2), called Γ1/2, just like the spin of
a fermion does. Since there is no additional angular momentum in the
nucleon states but their degeneracy can be understood in terms of an-
gular momentum algebra, I is called isospin (like spin), and ÛI(δϕ)

is an infinitesimal rotation in the abstract isospin space which is the
analog of spin space.

This has interesting consequences. First, if there is a symmetry
(invariance of the Hamiltonian under isospin rotations) then there is a
conservation law (via Noether’s Theorem). The common force between
an ensemble of protons and neutrons is the strong interaction, so this
implies that [

Ĥstrong, ÛI(δϕ)
]

= 0 (3.4)

or in other words, the strong interaction conserves isospin via
Heisenberg’s equation of motion. This isospin is thus also called strong
isospin.

This is a lot to swallow. But let’s see if it helps us understand what
is going on with bound states among protons and neutrons. Remember
from the courses on symmetry that – without external fields – a spin
1/2 fermion has two degenerate states, |ms = 1/2〉 and |ms = −1/2〉
(that form the fundamental irreducible representation Γ1/2). If we have
two such particles, the spin eigenfunctions for the two-particle states
represent a non-degenerate singlet state and a threefold-degenerate
triplet state.

Now it is not hard to construct the isospin analog of the above find-
ing. The general convention is to denote the proton and neutron as the
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following isospin states:∣∣p+
〉
≡
∣∣∣∣I =

1

2
,MI =

1

2

〉
(3.5)

|n〉 ≡
∣∣∣∣I =

1

2
,MI = −1

2

〉
(3.6)

By theoretical analogy, a system composed of two nucleons is then
represented by one of the four possible isospin microstates:∣∣p+ p+

〉
≡ |I = 1,MI = 1〉 (3.7)

1√
2

[∣∣p+ n
〉

+
∣∣n p+

〉]
≡ |I = 1,MI = 0〉 (3.8)

|nn〉 ≡ |I = 1,MI = −1〉 (3.9)

This is the isospin triplet. Likewise,

1√
2

[∣∣p+ n
〉
−
∣∣n p+

〉]
≡ |I = 0,MI = 0〉 (3.10)

which is the isospin singlet. From the conclusions on the theory of
the Heisenberg Hamiltonian we know that if the interaction between
the particles is repulsive (case of electrons and electromagnetism) then
the spin triplet has lower energy. However, in the present case the
respective interaction is attractive (strong interaction), and so we
must conclude that here the isospin singlet is more stable3. And
since the states |p+ p+〉 and |nn〉 belong to the destabilized isospin
triplet we have an explanation for the non-existence of such states!

Perhaps all of this seems like magic to you. After all, in order for
the concept of strong isospin to be utterly convincing, it must manifest
itself in more than just the proton-neutron states. Take a look again
at the baryon octet diagram in the last chapter. The next four heavier

3The physical picture here is that the probability of finding two particles with the same isospin (projection) at
the same point in space is zero, and so their mutual strong attraction is reduced on the average.
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particles have rest masses

mΣ+(uus) = 1189.4

[
MeV
c2

]
mΣ0(uds) = 1192.5

[
MeV
c2

]
mΣ−(dds) = 1197.3

[
MeV
c2

]

which can be arranged into an almost fully degenerate isospin triplet
which transforms as to the 3-dimensional irrep ΓI=1 of isospin SU(2).
The fourth particle is

mΛ(uds) = 1115.6

[
MeV
c2

]

which forms an isospin singlet and transforms as to the 1-dimensional
irrep ΓI=0 of isospin SU(2).

Then we have an isospin doublet for Θ0 and Θ−, and the concept
carries on for the mesons where the π particles form an isospin triplet,
the η a singlet, and so on4.

Still not convinced? Take a look at the energetically lower part of
the spectrum of the following three isobaric nuclei:

4Isospin is a broken symmetry. It is very weakly broken for the lighter particles and the breaking becomes
greater for the heavier particles, essentially due to mass differences between the quarks of the Standard Model.
Furthermore, it is a symmetry under strong interaction but not under electromagnetic or weak interaction.



132 CHAPTER 3. INTRODUCTION TO NUCLEAR PHYSICS

Many-nucleon states
are classified as to to-
tal angular momen-
tum J and parity P .
The nuclear ground
state of 14

7 N is aligned
with E = 0.

Obviously, the spectra of 14
6 C and 14

8 O are very similar, but they
differ qualitatively from the spectrum of 14

7 N where many more states
are observed at low energies and the nuclear ground state is different.

Now consider the isospin of these nuclides. The projection quantum
numbers can be calculated because we know the number of protons and
neutrons in either case5:

MI(
14
6 C) = 6× (+

1

2
) + 8× (−1

2
) = −1

MI(
14
8 O) = 8× (+

1

2
) + 6× (−1

2
) = +1

MI(
14
7 N) = 7× (+

1

2
) + 7× (−1

2
) = 0

Since MI(
14
6 C) = −1 the lowest possible isospin quantum number for

this nuclide is I = 1. This is becauseMI = 0 does not exist here. So we
can say that Imin(14

6 C) = 1. Likewise, Imin(14
8 O) = 1 but Imin(14

7 N) = 0
5Remember that for coupling angular momenta Î =

∑
j

Î(j) vectorially and so MI =
∑
j

MI(j).
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because in the latter case MI = 0 exists.
So we find that the nuclides differ qualitatively at the level of isospin.

And since isospin is a symmetry of the strong interaction, the intrinsic
interactions in the 14

7 N nuclide differs from the other two nuclides6.
In the bigger picture stable nuclei are therefore those where the num-

ber of protons equals the number of neutrons. For the lighter nuclei
this general rule is very well fulfilled. As the nuclei become heavier,
the mean electromagnetic Coulomb repulsion between the protons in-
creases and gradually nuclei with growing neutron excess become the
most stable isotopes.

3.3 Radioactive Decay

3.3.1 Decay Types

The following snapshot from the Brookhaven website is centered around
a stable (black color) oxygen nuclide.

Nuclides around 17
8 O

display various ways of
decaying, indicated by a
color code.

All of the different decay modes are manifestations of radioactive
decay. We will discuss them one by one.

Stable nuclide. Its half-life7 is > 1015 seconds.
6The exact reasons for the appearance of additional states is a matter of details.
7To be defined rigorously later.
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As the neutron-to-proton ratio N
Z increases (to the lower right)

the nuclides become less stable. We are moving toward isospin
states that are further removed from the stable isospin singlets (as
discussed in the previous section). In this case the decay type is
beta (minus) decay of one of the neutrons. In terms of the
fundamental process it is denoted as

n −→ p+ + e− + νe (3.11)

The β− particle is synonymous with the electron. The proton typ-
ically remains bound in the nuclide.

If the neutron-to-proton ratio is increased even further, the nu-
clide decays by neutron emission. A neutron is ejected from the
nuclide, written in nuclear notation:

A
ZXN −→ A−1

Z XN−1 + 1
0n1 (3.12)

The “new” nuclide A−1
Z XN−1 is generally more stable than A

ZXN , but
it can further disintegrate via beta (minus) decay.

Unknown decay mode.

As the neutron-to-proton ratio N
Z decreases (to the upper left)

the nuclides decay via beta (plus) decay of one of the protons. As
a fundamental process on its own, this would not happen because
the rest mass of the neutron is greater than that of the proton (re-
view the discussion in subsection 1.7.3). However, the nucleus can
provide the required energy if the product nuclide has greater bind-
ing energy than the original nuclide. In nuclear notation β+(e+)

decay is written as
A
ZXN −→ A

Z−1YN+1 + e+ + νe (3.13)

The underlying fundamental process is

p+ −→ n + e+ + νe (3.14)
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If electrons are present (such as in an atom), a competing process
can occur which is called electron capture:

p+ + e− −→ n + νe (3.15)

Note that electron capture is a crossed reaction of the fundamental
process underlying β+(e+) decay.

As the neutron-to-proton ratio decreases even more, a proton is
ejected from the unstable nucleus, according to

A
ZXN −→ A−1

Z−1YN + 1
1H+

0 (3.16)

There are two more types of nuclear decay that are only observed
for heavy nuclei:

For nuclides with
Z > 50 and a rela-
tively small neutron-
to-proton ratio α-
decay is observed7:
A
ZXN −→ A−4

Z−2YN−2+4
2He2+

2

(3.17)

For nuclides with Z > 82 spontaneous fission may occur:
A
ZXN −→ A′

Z ′YA′−Z ′ +
A−A′
Z−Z ′WA−Z−(A′−Z ′) (3.18)

Here’s an example of spontaneous fission of Californium (Cf):
252
98 Cf154 −→ 140

54 Xe86 + 108
44 Ru64 + 4 1

0n1 (3.19)

In this case the fission into Xenon and Ruthenium is accompanied
by the emission of four neutrons.

7This criterion is confirmed in the region where stable nuclides still exist. In the above section, however, there
are no more stable structures among the nuclides of Bk (Berkelium), Es (Einsteinium), Fm (Fermium), etc.
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3.3.2 Half Life

An important quantity for classifying the stability of nuclides is their
half life, t1/2. The half life is the instant in time when half of an
ensemble N of particles (assumed to exist at t = 0) is still there. It
can be determined analytically if the so-called decay rate Γ is known.
The decay rate is the probability of decay per time unit9.

BeN(t) the number of particles at instant t and suppose that Γ(particle)>
0 is known. We define

∆N(t) := N(tf)−N(ti) < 0 ; tf > ti (3.20)

the change in number of particles which is linearly10 proportional to
the number of existing particles at t, the respective time interval ∆t,
and the decay rate. We can write

∆N(t) = −ΓN(t) ∆t (3.21)

or in differential form
dN(t)

dt
= −ΓN(t)

Ṅ = −ΓN(t)

The general solution of this linear homogeneous first-order differential
equation is

N(t) = N(t = 0) e
∫ t

0 −Γ dt′ = N(t = 0) e−Γ t (3.22)

The number of existing particles at instant t1/2 is, by definition,

N(t1/2) =
N(t = 0)

2
(3.23)

9In theory, this is the hard part. Γ can be calculated in the framework of Quantum Field Theory (QFT) invoking
Feynman’s calculus. If you are seriously interested, Griffith’s book on elementary particles explains how to do it, in
the final chapters. It does not explain the formal background of QFT, but how you get decay rates from Feynman
rules. This is by itself not an easy exercise.

10The assumption is made that no decay affects any other.
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Using this in Eq. (3.22) results in

N(t1/2) =
N(t = 0)

2
= N(t = 0) e−Γ t1/2

⇔ −Γ t1/2 = ln

(
1

2

)
= − ln

(
2

1

)
= − ln 2

t1/2 =
ln 2

Γ

So once the decay rate is known the half life is easy to calculate. The
following chart shows a section of the nuclide table with associated half
lives:

t1/2

Thorium 232
90 Th142 and Uranium 235

92 U143 are stable nuclides with t1/2 >
1015 [s]. The latter is used in induced nuclear fission where it absorbs
a neutron to briefly form 236

92 U144. This nuclide has a long half life of
≈ 1010 [s], but it is produced in an excited state which rapidly under-
goes fission and releases excess energy.

3.4 Nuclear Structure - Nuclear Shell Model


