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1.1 Generalities

We will here in particular be interested in transformations of certain classes of (differen-

tial) operators from linear to curvilinear coordinates.

1.1.1 Coordinates

Be {a;},j € {1...3} an arbitrary set of linear or curvilinear coordinates'. We express a

position vector in a 3-dimensional vector space as
3
#=Y a (1)
Jj=1

and the total differential of the position vector accordingly as

3 ox
di=Y —do; (2)
j—Zl da;

1.1.2 Scalar Fields

Be f ascalar and differentiable field, allowing us to write the total differential in terms of

a set of coordinates

3
J
df =Y, a%idocj 3)

1.2 Cylindrical Coordinates

We define a local orthonormal basis of cylindrical coordinates as in Fig. 1.2 which are
related to cartesian coordinates as follows: Accordingly we obtain from elementary geo-

metrical considerations:

X = pcose “4)
y = psing 5)
z = 2 (6)
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Figure 1: Cylindrical coordinates

1.2.1 Elementary transformations and position vectors

A position vector can therefore be written in terms of cylindrical coordinates as

X = (pcos@)é,+ (psinQ)é, + (z)é; 7
and we ensuingly obtain
ox . R
» = (cos@)é;+ (sing)é,
a} . — -
3~ (Psin@)ét(peose)e
ox -
A (®)
and therefore the corresponding norms (scaling factors)
a—)
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I
ox
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ox
—I|| = 1:=h 9
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This allows us to write the orthonormal local tripod in terms of the new cylindrical coor-
dinates as
?
ép = a—ﬁ = (cos@) é;+ (sin@) €,
X
al
i
S5 2 . S -
Cp = T T (sin@) €+ (cos@)é)
al
oF
6, = % _—3¢ (10
oF
oz ’ )




Consequently, the original tripod can be expressed as

e = (cos@)é, —(sin@) ey
éy = (sin@)é,+ (cos@)éy
e, = ¢ (11)
Finally we rewrite the position vector from Eq. (7) as
X =pép+zé; (12)
and the total differential from Eqgs. (2), (8) and (11) as
ox ox ox
dX¥ = —dp+=—do+—d
* op P o0 o+ 9.¢

1.2.2 Line Elements

Elements for multidimensional integration can be easily obtained from the determined
scaling factors, Eq. (9). We obtain for line elements

dly = hdp=dp
dly = hydo=pdo
dl, = hydz=dz, (14)

surface elements for integration over a slice (orthogonal or longitudinal) or the curved

surface of the cylinder, respectively,

dS,uee = dlydly =hihydpde = pdpde
dS.ue = dlpdl, = hihydpdz = dpdsz (15)
dSune = dlpdl, = hyh3 dodz = pdeds (16)

and finally for the volume element

dV = dlydlydl, = hyhyhy dpdedz = pdpdeds. (17)

1.2.3 The Gradient Operator

In terms of cylindrical coordinates the gradient operator g;ad = V can be written as
W:(%f) é’p+(§f) ap+(§f> 2, (18)
p ) z

Since V can be related to the total differential of a scalar field according to df = % fdx
(which in a slightly improper but intuitive form can be written as Z—iﬁ =V f). Using the
result from Eq. (13) we obtain

Vfdi= (%f)pdp+p(§f>(p d<p+(%f)zdz (19)
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We now employ the general form of the total differential of the scalar field Eq. (3)

_of ,  of ,  of
df = 354P T 5599 T 3,

and compare coefficients between Eqs. (19) and (20) to obtain

)

do+ =—dz (20)

of -
3~ ° (%)
¢ ®
a —
o _ (V/) 1)
oz z
This yields the gradient operator in cylindrical coordinates acting on a scalar field
Y 19 -0
Vf—epag+€¢pa£+eza§ (22)
We realize that the gradient operator in curvilinear coordinates can in general be written
as \
> 1 of
V=) éi—— (23)
jZ’l 'h j oo j

ox

where h; = ‘W are scaling factors in the respective coordinate system (for example in
J

cylindrical coordinates they are given in Eq. (9)). This is also readily verified in cartesian

coordinates.

1.2.4 The Divergence Operator

Once the gradient operator in curvilinear coordinates is known, the divergence operator
acting on a vector field can be deduced in the following manner:

We introduce an auxiliary scalar field g = g(x1,x2,x3) = g(p,®,x3) and calculate the
integral over the product of the test vector field F and g;ad g

/ﬁ(xl,n,xs) - gradg(x1,x2,x3) dV = /ﬁ(P,(P,)%) -gradg(p,9,x3) dV (24)
1% 1%
both in cartesian and cylindrical coordinates, remembering that the result must of course

be identical. For the left-hand side of Eq. (24) we obtain straightforwardly

/ Fogradgdv — / / / P28 dxldxde3+ / / / P28 8 dxidradxs + / / / F3—dx1dx2dx3
2

14

oF,
= //Flg a’xzdx3—///—1g dx1dx>dxs
ax1
oF
+//F2g dxldx3—///—2g dxidxrdx3
0x2
oF
+//F3g dxldxz—///—3g dxidxrdx3
0x3
= — / / / (divF)g dxidxadxs
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choosing g such that the terms integrated by parts vanish?. The right-hand-side of Eq.
(24) becomes

L o og d og
/F-gradng = /// (p,0,2) (epap p ai—l— Za)pa’pd(palz

14

B og 1 _ og og
_ / / / PFygs dpdgds-+ / / / Foge pdpdgdz-+ / / / £S5 pdpdod:

- //prgd(pdz—///(Fpg—l—p%i; )dpd(pdz
+//F<pgdpdz—/// —2g dpdodz
+//szg dpd@—///pa—;g dpdedz

— / / / pr g pdpdodz

-/ / S pdpded:
[ [ | S=x ppaga:
(o

with vanishing terms integrated by parts. From Eqs. (26) and (27) the identity of the

integrands yields the divergence of the vector field Fin cylindrical coordinates

2 7 oF,
V-F:%%(pr)—Fl 2

JF,
530 o (28)

1.2.5 The Curl Operator

Here we want to deduce a general expression for the curl operator in any locally orthonor-
mal curvilinear coordinate system, and then extract special cases such as cylindrical co-

ordinates. We express the curl of a vector field F as
. oL 3
rotF = VxF=Vx|Y Fg;
i=1
Vx (F1é))+V x (Fé)+V x (F38) (29)

due to the linearity of the vector product. Replacing f by oy in Eq. (23) we infer

3 3
= S o1 "
Vou=) €5 ==) €8 = (30)

2TODO: Some more detailed mathematical comments are required on this point.

(27)



and so the first term of Eq. (29) can be written as
Vx (Fé) =V x (Flhﬁ?ocl). 31)
We now employ the following identity>
ot (q>ﬁ) - <g7adq>> ¥ F+o (ﬁrﬁ) (32)
which allows us to reformulate Eq. (31)
Vx (F2) = [§(F1h1)} x (%oq)“ﬁhl (?x%oq). (33)

Since the curl of a gradient vanishes, rBtgr?zd f =0 for any scalar field f, Eq. (33) reduces
to

% X (Flgl) = [6 (Flhl):| X (60(1) . (34)
We now substitute Eq. (30) into Eq. (34) and obtain

Vx (Fé) = [6(1:1;11)] X Z—i (35)

We now use the general expression of the gradient given in Eq. (23) rewritten for the
scalar field Fh; to reformulate Eq. (35) to

3 —
V x (F = i — —
X ( 161) L_Zl €j hj aa] hy
1 d(Fih) 1 1 o(Fihy) 1
— - ( 1 1)__53_ ( 1 1)_ (36)
hy 0oz h hy doy Iy
In an analogous fashion the two remaining terms of Eq. (29) are obtained as
- 1 d(Fhy) 1 1 d(Fhy) 1
Vx(FRé) = —é— — 4 é3— — 37
% ( 282) €l h3 aO(3 hz e3h1 aoc1 hz ( )
- . 1 a(F3h3) 1 .1 8(F3h3) 1
V X (F: = —é———"— —_— 38
X ( 363) ezhl aocl h3 €l h2 aOCQ h3 ( )
Adding the three terms yields the general expression of the curl operator
rotF = VxF
_ er [ Jd(F3h3) B d(Fhy)
hohj 00 003
n e (Jd(Fihp) B d(F3h3)
h1h3 80(.3 8061
ey (d(Fah) B d(Fihy)
hihy 00 o0
| hla hz?z h353
— 9 9 9
- h1h2h3 a(Xl aOCQ 80(3 (39)

Fihy Fhy Fihs

3This equation can easily be proven to be correct in cartesian coordinates. Since we do not want general

expressions to depend on coordinate frames, it has to be valid in general.
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where we have written the curl conveniently using a determinant. Note that the term
hihyh3 in the prefactor is just the determinant of the Jacobian matrix for the coordinate
transformation.

Eq. (39) is a powerful and general expression from which the explicit form of the curl
operator can be deduced with ease for different coordinate systems. In the present case of
cylindrical coordinates, the scaling factors are 7y = 1, hp = p, and 3 = 1 and so the curl

of a vector field F becomes

VX F =2, <% A a(g)) 12, (a(ai") _ ag;z)) 2.l (a(g?) _ a(glg»)) 40)
in cylindrical coordinates.
1.2.6 The Laplacian Operator
By definition, the Laplacian operator of a scalar field f is given as
Af = div(gradf) (41)

Using the expression in Eq. (28) for the divergence of a vector field gr_&d f we obtain

19 - 1o, - 0, -
Af = 255 (Pleradfy) + 02 (srad o+ 3 (sradf)- (“2)
From Eq. (22) the components of the gradient of f are
- _of
(gradf)p = 3
- 19f
d = —=—=
(gradfly = S50
- 0
(gradf), = a—jzf (43)

and therefore the Laplacian operator becomes

19/ 9f\ 10 19df d0of
Af =—=—|P3- ) T3~ +t-0 44
/ pap<pap)+pa<ppa<p+az8z “4)
or
: —
ar=12 (p3)+ 255+ % 45)

1.3 3-Dimensional Spherical Polar Coordinates

Central-field problems are typically formulated and solved in spherical polar coordinates.

We define from elementary geometrical considerations



x = rsindcos@
y = rsinUsinQ
z = rcosd (46)

which allows us to write a position vector as:

X = (rsindcos@)é, + (rsinVsin@) é, + (rcos V) é;

1.3.1 Elementary transformations and position vectors

It follows

oF
or
OF
%
oF
99

and therefore the scaling factors become

The orthonormal local tripods can thus be deduced as:

(47)
(sindcos @) é, + (sinVsin@) é, + (cos V) €,
(rcosVdcos @) €y + (rcosVsing) é, — (rsind) €,
— (rsin¥sin@) €, + (rsindcos @) &, (48)
ox
2= 1=n
‘ or !
ox
—_— = = h
‘ 90 e
a—#
‘ £ = rsin®:=h3. (49)
i
gi = sin ¥ cos @&, + sin V' sin Q€ +- cos Ve,
X
or
&
312 = cos VD cos Pé, + cos B sin @é, — sin V¢,
X
al
&
L) o o
] = sin ©¢, +cos e, (50)
P




The original tripod is then expressed as:

€ = sinYcos Qe+ cosPcosVéy — sin Qe
éy = sinVsin@é, +sin@cos €y + cos Pég
é, = cosve, —sinVéy (51

We obtain for a position vector in spherical polar coordinates

X=ré, (52)
by using Egs. (47) and (51). In the following we deduce, in analogy with subsection 1.2.3
the differential operators in spherical polar coordinates.
1.3.2 Line Elements

Elements for multidimensional integration can be easily obtained from the determined

scaling factors, Eq. (49). We obtain for line elements

dl, = hidr=dr
dly = hyd®=rdd
dly = hido=rsindde. (53)

The interesting surface element is the one over the curved sphere, for which we obtain
dSunee = dlydly = hah3ddde = r* sin®dddde. (54)

The other possibilities are simply slices of the sphere which can be treated by using the
calculus from cylindrical coordinates. The volume element finally reads

dV = dl,dlydly = hyhyhy drddde = r* sinddrddde. (55)

1.3.3 The Gradient Operator

With the help of the general expression for the gradient operator in curvilinear coordi-
nates, Eq. (23), and the obtained scaling factors in Egs. (49) the gradient operator can be

formulated without additional calculation:

vsr_=z29f 2 10f [ > 1 9df
Vf_erg—i—eﬁ;%—i—eq)rsinﬂyp (56)

1.3.4 The Divergence Operator

As expounded in subsection 1.2.4 we start from an expression

— / / / divFg dxidxadx; = / / / F(r,9,¢)-gradg dV (57)
B S ,0g 1_ og 1 _ dg\ ,.
= ///F(l",ﬁ,([)) (€r$+;€ﬁ%+m€¢%) r Slnﬁdrdﬁd(p
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where the expression in Eq. (56) has been used for writing the gradient. Integrating by
parts and comparing with the left-hand side of Eq. (57) we deduce the final expression

for the divergence in spherical polar coordinates:

O B_109/2 10 (q L)
VF—r—za—r(i" Fr)+rsinﬁ%(81nﬁFﬁ>+rSinﬁa_(pF(p (58)

1.3.5 The Curl Operator

We use the second form in Eq. (39) as a starting point for deriving the curl operator.
In spherical polar coordinates the scaling factors are determined as hy = 1, hp = r, and

h3 = rsin, and we immediately find

oo _z |1 9 (o oF, - 1( 1 0F, 9 » 1(9 oF,
VXF =é5r5 (%(SmﬂFw) - a—q'?) + &9 (m a6 o’ F(p)> + &gy (m(rFﬁ) - W)

1.3.6 The Laplacian Operator

We again determine the Laplacian operator as Af := diV(grzzd f). Using the expression
for the divergence in Eq. (58) and replacing the vector field by the gradient of a scalar
field f, given in Eq. (56) the Laplacian operator is derived as

_ 19 (.29 1 9 (winnof 1 9f
Af =35 <r m) + Zsino 35 (Smﬁ%> t 2oy 992 (60)

Note that the radial part is often written differently, but the form given here is the one

most commonly used in the literature.

1.4 4-Dimensional Spherical Polar Coordinates

The definition of spherical coordinates in 4-dimensional real space (R*) can be inferred

by analogy from the 2-dim. and 3-dim. cases:

X1 = rcosQ;

Xy = rsin@cos®;

X3 = rsin@psin@;cos @3

X4 = rsin@psin@;sin@3 61)

which allows us to write a position vector as:

1.4.1 Elementary transformations and position vectors

It follows and therefore the scaling factors become The orthonormal local tripods can thus
be deduced as: The original tripod is then expressed as: We obtain for a position vector

in spherical polar coordinates
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1.4.2 Line Elements

Elements for multidimensional integration can be easily obtained from the determined
scaling factors, Eq. (49). We obtain for line elements The interesting surface element is
the one over the curved sphere, for which we obtain The other possibilities are simply
slices of the sphere which can be treated by using the calculus from cylindrical coordi-

nates. The volume element finally reads
1.4.3 The Gradient Operator

1.4.4 The Divergence Operator

where the expression in Eq. (56) has been used for writing the gradient. Integrating by
parts and comparing with the left-hand side of Eq. (57) we deduce the final expression
for the divergence in spherical polar coordinates:

1.4.5 The Curl Operator

1.4.6 The Laplacian Operator

We again determine the Laplacian operator as Af := div(g;ad f). Using the expression
for the divergence in Eq. (58) and replacing the vector field by the gradient of a scalar
field f, given in Eq. (56) the Laplacian operator is derived as

1.5 Elliptical Coordinates

We define a local orthonormal basis of elliptical coordinates as in Fig. ?? which are

related to cartesian coordinates as follows:

x = acoshucosv (62)

y = asinhusinv (63)
1.5.1 Elementary transformations and position vectors
A position vector can therefore be written in terms of elliptical coordinates as
X = (acoshu cosV)é+ (asinhu sinv)é, (64)

and we ensuingly obtain

a—)

a—x = (asinhucosVv)é,+ (acoshusinv)é,
u

ox RO . -

N (—coshu sinv)é,+ (asinhu cosv)é,

11



Using the relation

sinh? u cos>V 4 cosh? u sin?v = sinh? u+ sin®v

which can be obtained with the help of

we get

1.5.2
1.5.3
1.54
1.5.5

1.5.6

cosh? u— sinh? u = 1

sinv+cos’v = 1
ox 1
‘ a—x ‘ ’ = a (sinhz,u-i- sinzv) =M
u

ox O N B

Sl = (sinh®u+sin“v)? = hy
Line Elements
The Gradient Operator

The Divergence Operator
The Curl Operator

The Laplacian Operator
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