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1.1 Generalities

We will here in particular be interested in transformations of certain classes of (differen-
tial) operators from linear to curvilinear coordinates.

1.1.1 Coordinates

Be {α j}, j ∈ {1 . . .3} an arbitrary set of linear or curvilinear coordinates1. We express a
position vector in a 3-dimensional vector space as

~x =
3

∑
j=1

α j~e j (1)

and the total differential of the position vector accordingly as

d~x =
3

∑
j=1

∂~x
∂α j

dα j (2)

1.1.2 Scalar Fields

Be f a scalar and differentiable field, allowing us to write the total differential in terms of
a set of coordinates

d f =
3

∑
j=1

∂ f
∂α j

dα j (3)

1.2 Cylindrical Coordinates

We define a local orthonormal basis of cylindrical coordinates as in Fig. 1.2 which are
related to cartesian coordinates as follows: Accordingly we obtain from elementary geo-
metrical considerations:

x = ρcosϕ (4)

y = ρsinϕ (5)

z = z (6)
1coordinate patches on differentiable manifolds
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Figure 1: Cylindrical coordinates

1.2.1 Elementary transformations and position vectors

A position vector can therefore be written in terms of cylindrical coordinates as

~x = (ρcosϕ)~ex +(ρsinϕ)~ey +(z)~ez (7)

and we ensuingly obtain

∂~x
∂ρ

= (cosϕ)~ex +(sinϕ)~ey

∂~x
∂ϕ

= −(ρsinϕ)~ex +(ρcosϕ)~ey

∂~x
∂z

= ~ez (8)

and therefore the corresponding norms (scaling factors)∣∣∣∣∣∣∣∣ ∂~x∂ρ

∣∣∣∣∣∣∣∣ = 1 := h1∣∣∣∣∣∣∣∣ ∂~x
∂ϕ

∣∣∣∣∣∣∣∣ = ρ := h2∣∣∣∣∣∣∣∣∂~x∂z

∣∣∣∣∣∣∣∣ = 1 := h3 (9)

This allows us to write the orthonormal local tripod in terms of the new cylindrical coor-
dinates as

~eρ =

∂~x
∂ρ∣∣∣∣∣∣ ∂~x
∂ρ

∣∣∣∣∣∣ = (cosϕ)~ex +(sinϕ)~ey

~eϕ =

∂~x
∂ϕ∣∣∣∣∣∣ ∂~x
∂ϕ

∣∣∣∣∣∣ =−(sinϕ)~ex +(cosϕ)~ey

~ez =
∂~x
∂z∣∣∣∣∣∣∂~x
∂z

∣∣∣∣∣∣ =~ez (10)
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Consequently, the original tripod can be expressed as

~ex = (cosϕ)~eρ− (sinϕ)~eϕ

~ey = (sinϕ)~eρ +(cosϕ)~eϕ

~ez = ~ez (11)

Finally we rewrite the position vector from Eq. (7) as

~x = ρ~eρ + z~ez (12)

and the total differential from Eqs. (2), (8) and (11) as

d~x =
∂~x
∂ρ

dρ+
∂~x
∂ϕ

dϕ+
∂~x
∂z

dz

= dρ~eρ +ρdϕ~eϕ +dz~ez (13)

1.2.2 Line Elements

Elements for multidimensional integration can be easily obtained from the determined
scaling factors, Eq. (9). We obtain for line elements

dlρ = h1dρ = dρ

dlϕ = h2dϕ = ρdϕ

dlz = h3dz = dz, (14)

surface elements for integration over a slice (orthogonal or longitudinal) or the curved
surface of the cylinder, respectively,

dSo-slice = dlρ dlϕ = h1h2 dρdϕ = ρdρdϕ

dSl-slice = dlρ dlz = h1h3 dρdz = dρdz (15)

dSsurface = dlϕdlz = h2h3 dϕdz = ρdϕdz (16)

and finally for the volume element

dV = dlρ dlϕdlz = h1h2h3 dρdϕdz = ρdρdϕdz. (17)

1.2.3 The Gradient Operator

In terms of cylindrical coordinates the gradient operator ~grad = ~∇ can be written as

~∇ f =
(
~∇ f
)

ρ

~eρ +
(
~∇ f
)

ϕ

~eϕ +
(
~∇ f
)

z
~ez (18)

Since ~∇ can be related to the total differential of a scalar field according to d f = ~∇ f d~x
(which in a slightly improper but intuitive form can be written as d f

d~x = ~∇ f ). Using the
result from Eq. (13) we obtain

~∇ f d~x =
(
~∇ f
)

ρ

dρ+ρ

(
~∇ f
)

ϕ

dϕ+
(
~∇ f
)

z
dz (19)
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We now employ the general form of the total differential of the scalar field Eq. (3)

d f =
∂ f
∂ρ

dρ+
∂ f
∂ϕ

dϕ+
∂ f
∂z

dz (20)

and compare coefficients between Eqs. (19) and (20) to obtain

∂ f
∂ρ

=
(
~∇ f
)

ρ

∂ f
∂ϕ

= ρ

(
~∇ f
)

ϕ

∂ f
∂z

=
(
~∇ f
)

z
(21)

This yields the gradient operator in cylindrical coordinates acting on a scalar field

~∇ f =~eρ
∂ f
∂ρ

+~eϕ
1
ρ

∂ f
∂ϕ

+~ez
∂ f
∂z (22)

We realize that the gradient operator in curvilinear coordinates can in general be written
as

~∇ f =
3

∑
j=1

~e j
1
h j

∂ f
∂α j

(23)

where h j =
∣∣∣ ∂~x

∂α j

∣∣∣ are scaling factors in the respective coordinate system (for example in
cylindrical coordinates they are given in Eq. (9)). This is also readily verified in cartesian
coordinates.

1.2.4 The Divergence Operator

Once the gradient operator in curvilinear coordinates is known, the divergence operator
acting on a vector field can be deduced in the following manner:

We introduce an auxiliary scalar field g = g(x1,x2,x3) = g(ρ,ϕ,x3) and calculate the
integral over the product of the test vector field ~F and ~gradg∫

V

~F(x1,x2,x3) · ~gradg(x1,x2,x3) dV =
∫
V

~F(ρ,ϕ,x3) · ~gradg(ρ,ϕ,x3) dV (24)

both in cartesian and cylindrical coordinates, remembering that the result must of course
be identical. For the left-hand side of Eq. (24) we obtain straightforwardly∫
V

~F · ~gradg dV =
∫ ∫ ∫

F1
∂g
∂x1

dx1dx2dx3 +
∫ ∫ ∫

F2
∂g
∂x2

dx1dx2dx3 +
∫ ∫ ∫

F3
∂g
∂x3

dx1dx2dx3

=
∫ ∫

F1g dx2dx3−
∫ ∫ ∫

∂F1

∂x1
g dx1dx2dx3

+
∫ ∫

F2g dx1dx3−
∫ ∫ ∫

∂F2

∂x2
g dx1dx2dx3

+
∫ ∫

F3g dx1dx2−
∫ ∫ ∫

∂F3

∂x3
g dx1dx2dx3 (25)

= −
∫ ∫ ∫

(div~F)g dx1dx2dx3 (26)
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choosing g such that the terms integrated by parts vanish2. The right-hand-side of Eq.
(24) becomes∫
V

~F · ~gradg dV =
∫ ∫ ∫

~F(ρ,ϕ,z)
(
~eρ

∂g
∂ρ

+
1
ρ
~eϕ

∂g
∂ϕ

+~ez
∂g
∂z

)
ρdρdϕdz

=
∫ ∫ ∫

ρFρ

∂g
∂ρ

dρdϕdz+
∫ ∫ ∫ 1

ρ
Fϕ

∂g
∂ϕ

ρdρdϕdz+
∫ ∫ ∫

Fz
∂g
∂z

ρdρdϕdz

=
∫ ∫

ρFρg dϕdz−
∫ ∫ ∫ (

Fρg+ρ
∂Fρ

∂ρ
g
)

dρdϕdz

+
∫ ∫

Fϕg dρdz−
∫ ∫ ∫

∂Fϕ

∂ϕ
g dρdϕdz

+
∫ ∫

ρFzg dρdϕ−
∫ ∫ ∫

ρ
∂Fz

∂z
g dρdϕdz

= −
∫ ∫ ∫ 1

ρ

∂

∂ρ

(
ρFρ

)
g ρdρdϕdz

−
∫ ∫ ∫ 1

ρ

∂Fϕ

∂ϕ
g ρdρdϕdz

−
∫ ∫ ∫

∂Fz

∂z
g ρdρdϕdz

= −
∫ ∫ ∫ (1

ρ

∂

∂ρ

(
ρFρ

)
+

1
ρ

∂Fϕ

∂ϕ
+

∂Fz

∂z

)
g ρdρdϕdz (27)

with vanishing terms integrated by parts. From Eqs. (26) and (27) the identity of the
integrands yields the divergence of the vector field ~F in cylindrical coordinates

~∇ ·~F = 1
ρ

∂

∂ρ

(
ρFρ

)
+ 1

ρ

∂Fϕ

∂ϕ
+ ∂Fz

∂z (28)

1.2.5 The Curl Operator

Here we want to deduce a general expression for the curl operator in any locally orthonor-
mal curvilinear coordinate system, and then extract special cases such as cylindrical co-
ordinates. We express the curl of a vector field ~F as

~rot ~F = ~∇×~F = ~∇×

(
3

∑
i=1

Fj~e j

)
= ~∇× (F1~e1)+~∇× (F2~e2)+~∇× (F3~e3) (29)

due to the linearity of the vector product. Replacing f by αk in Eq. (23) we infer

~∇αk =
3

∑
j=1

~e j
1
h j

∂αk

∂α j
=

3

∑
j=1

~e j
1
h j

δ jk =~ek
1
hk

(30)

2TODO: Some more detailed mathematical comments are required on this point.
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and so the first term of Eq. (29) can be written as

~∇× (F1~e1) = ~∇×
(

F1h1~∇α1

)
. (31)

We now employ the following identity3

~rot
(

ϕ~F
)
=
(

~gradϕ

)
×~F +ϕ

(
~rot~F

)
(32)

which allows us to reformulate Eq. (31)

~∇× (F1~e1) =
[
~∇(F1h1)

]
×
(
~∇α1

)
+F1h1

(
~∇×~∇α1

)
. (33)

Since the curl of a gradient vanishes, ~rot ~grad f = 0 for any scalar field f , Eq. (33) reduces
to

~∇× (F1~e1) =
[
~∇(F1h1)

]
×
(
~∇α1

)
. (34)

We now substitute Eq. (30) into Eq. (34) and obtain

~∇× (F1~e1) =
[
~∇(F1h1)

]
×~e1

h1
. (35)

We now use the general expression of the gradient given in Eq. (23) rewritten for the
scalar field F1h1 to reformulate Eq. (35) to

~∇× (F1~e1) =

[
3

∑
j=1

~e j
1
h j

∂(F1h1)

∂α j

]
×~e1

h1

= ~e2
1
h3

∂(F1h1)

∂α3

1
h1
−~e3

1
h2

∂(F1h1)

∂α2

1
h1

(36)

In an analogous fashion the two remaining terms of Eq. (29) are obtained as

~∇× (F2~e2) = −~e1
1
h3

∂(F2h2)

∂α3

1
h2

+~e3
1
h1

∂(F2h2)

∂α1

1
h2

(37)

~∇× (F3~e3) = −~e2
1
h1

∂(F3h3)

∂α1

1
h3

+~e1
1
h2

∂(F3h3)

∂α2

1
h3

(38)

Adding the three terms yields the general expression of the curl operator

~rot~F = ~∇×~F

=
~e1

h2h3

(
∂(F3h3)

∂α2
− ∂(F2h2)

∂α3

)
+

~e2

h1h3

(
∂(F1h1)

∂α3
− ∂(F3h3)

∂α1

)
+

~e3

h1h2

(
∂(F2h2)

∂α1
− ∂(F1h1)

∂α2

)

=
1

h1h2h3

∣∣∣∣∣∣∣
h1~e1 h2~e2 h3~e3

∂

∂α1

∂

∂α2

∂

∂α3

F1h1 F2h2 F3h3

∣∣∣∣∣∣∣ (39)

3This equation can easily be proven to be correct in cartesian coordinates. Since we do not want general
expressions to depend on coordinate frames, it has to be valid in general.
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where we have written the curl conveniently using a determinant. Note that the term
h1h2h3 in the prefactor is just the determinant of the Jacobian matrix for the coordinate
transformation.

Eq. (39) is a powerful and general expression from which the explicit form of the curl
operator can be deduced with ease for different coordinate systems. In the present case of
cylindrical coordinates, the scaling factors are h1 = 1, h2 = ρ, and h3 = 1 and so the curl
of a vector field ~F becomes

~∇×~F =~eρ

(
1
ρ

∂(Fz)
∂ϕ
− ∂(Fϕ)

∂z

)
+~eϕ

(
∂(Fρ)

∂z −
∂(Fz)

∂ρ

)
+~ez

1
ρ

(
∂(ρFϕ)

∂ρ
− ∂(Fρ)

∂ϕ

)
(40)

in cylindrical coordinates.

1.2.6 The Laplacian Operator

By definition, the Laplacian operator of a scalar field f is given as

∆ f := div( ~grad f ) (41)

Using the expression in Eq. (28) for the divergence of a vector field ~grad f we obtain

∆ f :=
1
ρ

∂

∂ρ

(
ρ( ~grad f )ρ

)
+

1
ρ

∂

∂ϕ
( ~grad f )ϕ +

∂

∂z
( ~grad f )z. (42)

From Eq. (22) the components of the gradient of f are

( ~grad f )ρ =
∂ f
∂ρ

( ~grad f )ϕ =
1
ρ

∂ f
∂ϕ

( ~grad f )z =
∂ f
∂z

(43)

and therefore the Laplacian operator becomes

∆ f =
1
ρ

∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
ρ

∂

∂ϕ

1
ρ

∂ f
∂ϕ

+
∂

∂z
∂ f
∂z

(44)

or
∆ f = 1

ρ

∂

∂ρ

(
ρ

∂ f
∂ρ

)
+ 1

ρ2
∂2 f
∂ϕ2 +

∂2 f
∂z2 (45)

1.3 3-Dimensional Spherical Polar Coordinates

Central-field problems are typically formulated and solved in spherical polar coordinates.
We define from elementary geometrical considerations
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x = r sinϑcosϕ

y = r sinϑsinϕ

z = r cosϑ (46)

which allows us to write a position vector as:

~x = (r sinϑcosϕ)~ex +(r sinϑsinϕ)~ey +(r cosϑ)~ez

(47)

1.3.1 Elementary transformations and position vectors

It follows

∂~x
∂r

= (sinϑcosϕ)~ex +(sinϑsinϕ)~ey +(cosϑ)~ez

∂~x
∂ϑ

= (r cosϑcosϕ)~ex +(r cosϑsinϕ)~ey− (r sinϑ)~ez

∂~x
∂ϕ

= −(r sinϑsinϕ)~ex +(r sinϑcosϕ)~ey (48)

and therefore the scaling factors become∣∣∣∣∣∣∣∣∂~x∂r

∣∣∣∣∣∣∣∣ = 1 := h1∣∣∣∣∣∣∣∣ ∂~x
∂ϑ

∣∣∣∣∣∣∣∣ = r := h2∣∣∣∣∣∣∣∣ ∂~x
∂ϕ

∣∣∣∣∣∣∣∣ = r sinϑ := h3. (49)

The orthonormal local tripods can thus be deduced as:

~er =
∂~x
∂r∣∣∣∣∣∣∂~x
∂r

∣∣∣∣∣∣ = sinϑcosϕ~ex + sinϑsinϕ~ey + cosϑ~ez

~eϑ =
∂~x
∂ϑ∣∣∣∣∣∣ ∂~x
∂ϑ

∣∣∣∣∣∣ = cosϑcosϕ~ex + cosϑsinϕ~ey− sinϑ~ez

~eϕ =

∂~x
∂ϕ∣∣∣∣∣∣ ∂~x
∂ϕ

∣∣∣∣∣∣ =−sinϕ~ex + cosϕ~ey (50)
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The original tripod is then expressed as:

~ex = sinϑcosϕ~er + cosϕcosϑ~eϑ− sinϕ~eϕ

~ey = sinϑsinϕ~er + sinϕcosϑ~eϑ + cosϕ~eϕ

~ez = cosϑ~er− sinϑ~eϑ (51)

We obtain for a position vector in spherical polar coordinates

~x = r~er (52)

by using Eqs. (47) and (51). In the following we deduce, in analogy with subsection 1.2.3
the differential operators in spherical polar coordinates.

1.3.2 Line Elements

Elements for multidimensional integration can be easily obtained from the determined
scaling factors, Eq. (49). We obtain for line elements

dlr = h1dr = dr

dlϑ = h2dϑ = r dϑ

dlϕ = h3dϕ = r sinϑdϕ. (53)

The interesting surface element is the one over the curved sphere, for which we obtain

dSsurface = dlϑdlϕ = h2h3 dϑdϕ = r2 sinϑdϑdϕ. (54)

The other possibilities are simply slices of the sphere which can be treated by using the
calculus from cylindrical coordinates. The volume element finally reads

dV = dlr dlϑdlϕ = h1h2h3 drdϑdϕ = r2 sinϑdrdϑdϕ. (55)

1.3.3 The Gradient Operator

With the help of the general expression for the gradient operator in curvilinear coordi-
nates, Eq. (23), and the obtained scaling factors in Eqs. (49) the gradient operator can be
formulated without additional calculation:

~∇ f =~er
∂ f
∂r +~eϑ

1
r

∂ f
∂ϑ

+~eϕ
1

r sinϑ

∂ f
∂ϕ

(56)

1.3.4 The Divergence Operator

As expounded in subsection 1.2.4 we start from an expression

−
∫ ∫ ∫

div~Fg dx1dx2dx3 =
∫ ∫ ∫

~F(r,ϑ,ϕ) · ~gradg dV (57)

=
∫ ∫ ∫

~F(r,ϑ,ϕ)
(
~er

∂g
∂r

+
1
r
~eϑ

∂g
∂ϑ

+
1

r sinϑ
~eϕ

∂g
∂ϕ

)
r2 sinϑdrdϑdϕ
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where the expression in Eq. (56) has been used for writing the gradient. Integrating by
parts and comparing with the left-hand side of Eq. (57) we deduce the final expression
for the divergence in spherical polar coordinates:

~∇ ·~F = 1
r2

∂

∂r (r
2 Fr)+

1
r sinϑ

∂

∂ϑ
(sinϑ Fϑ)+

1
r sinϑ

∂

∂ϕ
Fϕ (58)

1.3.5 The Curl Operator

We use the second form in Eq. (39) as a starting point for deriving the curl operator.
In spherical polar coordinates the scaling factors are determined as h1 = 1, h2 = r, and
h3 = r sinϑ, and we immediately find

~∇×~F =~er
1

r sinϑ

(
∂

∂ϑ
(sinϑFϕ)− ∂Fϑ

∂ϕ

)
+~eϑ

1
r

(
1

sinϑ

∂Fr
∂ϕ
− ∂

∂r (r Fϕ)
)
+~eϕ

1
r

(
∂

∂r (r Fϑ)− ∂Fr
∂ϑ

)
(59)

1.3.6 The Laplacian Operator

We again determine the Laplacian operator as ∆ f := div( ~grad f ). Using the expression
for the divergence in Eq. (58) and replacing the vector field by the gradient of a scalar
field f , given in Eq. (56) the Laplacian operator is derived as

∆ f = 1
r2

∂

∂r

(
r2 ∂ f

∂r

)
+ 1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂ f
∂ϑ

)
+ 1

r2(sinϑ)2
∂2 f
∂ϕ2 (60)

Note that the radial part is often written differently, but the form given here is the one
most commonly used in the literature.

1.4 4-Dimensional Spherical Polar Coordinates

The definition of spherical coordinates in 4-dimensional real space (R4) can be inferred
by analogy from the 2-dim. and 3-dim. cases:

x1 = r cosϕ1

x2 = r sinϕ1 cosϕ2

x3 = r sinϕ1 sinϕ2 cosϕ3

x4 = r sinϕ1 sinϕ2 sinϕ3 (61)

which allows us to write a position vector as:

1.4.1 Elementary transformations and position vectors

It follows and therefore the scaling factors become The orthonormal local tripods can thus
be deduced as: The original tripod is then expressed as: We obtain for a position vector
in spherical polar coordinates
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1.4.2 Line Elements

Elements for multidimensional integration can be easily obtained from the determined
scaling factors, Eq. (49). We obtain for line elements The interesting surface element is
the one over the curved sphere, for which we obtain The other possibilities are simply
slices of the sphere which can be treated by using the calculus from cylindrical coordi-
nates. The volume element finally reads

1.4.3 The Gradient Operator

1.4.4 The Divergence Operator

where the expression in Eq. (56) has been used for writing the gradient. Integrating by
parts and comparing with the left-hand side of Eq. (57) we deduce the final expression
for the divergence in spherical polar coordinates:

1.4.5 The Curl Operator

1.4.6 The Laplacian Operator

We again determine the Laplacian operator as ∆ f := div( ~grad f ). Using the expression
for the divergence in Eq. (58) and replacing the vector field by the gradient of a scalar
field f , given in Eq. (56) the Laplacian operator is derived as

1.5 Elliptical Coordinates

We define a local orthonormal basis of elliptical coordinates as in Fig. ?? which are
related to cartesian coordinates as follows:

x = acoshµ cosν (62)

y = asinhµ sinν (63)

1.5.1 Elementary transformations and position vectors

A position vector can therefore be written in terms of elliptical coordinates as

~x = (acoshµ cosν)~ex +(asinhµ sinν)~ey (64)

and we ensuingly obtain

∂~x
∂µ

= (asinhµ cosν)~ex +(acoshµ sinν)~ey

∂~x
∂ν

= (−coshµ sinν)~ex +(asinhµ cosν)~ey
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Using the relation

sinh2 µ cos2
ν+ cosh2 µ sin2

ν = sinh2 µ+ sin2
ν (65)

which can be obtained with the help of

cosh2 µ− sinh2 µ = 1

sin2
ν+ cos2

ν = 1

we get ∣∣∣∣∣∣∣∣∂~x∂µ

∣∣∣∣∣∣∣∣ = a
(
sinh2 µ+ sin2

ν
) 1

2 := h1∣∣∣∣∣∣∣∣∂~x∂ν

∣∣∣∣∣∣∣∣ = a
(
sinh2 µ+ sin2

ν
) 1

2 = h1

1.5.2 Line Elements

1.5.3 The Gradient Operator

1.5.4 The Divergence Operator

1.5.5 The Curl Operator

1.5.6 The Laplacian Operator
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