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Chapter 1

Electrostatics

1.1 Notion of Charge

1.1.1 Experimental observations

Electrical phenomena have been known to mankind for thousands of
years. However, modern research only dates back to the 18th century.
In 1785 Coulomb introduced his famous law, and by 1875 Maxwell had
formulated the theory of electromagnetism.

Electromagnetic interactions, along with gravity, are the most im-
portant of the physical forces at the macroscopic scale. However, elec-
tromagnetism reveals itself directly everywhere in nature in elementary
particles, atoms, molecules, biological systems, solids, and even at as-
trophysical scales, e.g. in stellar atmospheres.

1.1.2 Elementary particles

In our current understanding of nature at the most fundamental level,
the universe is made out of particles1, the largest fraction of which
carries charge.

1In a more sophisticated reading: the quanta of associated fields

9



10 CHAPTER 1. ELECTROSTATICS

Particle type mass [kg] charge [C=A·s] sign
proton (p+) baryon 1.678 · 10−27 1.6022 · 10−19 +
neutron (n) baryon 1.675 · 10−27 0 0
(u quark quark 7.5 · 10−30 2

3
Cp+ +)

∆(uuu) baryon 2.196 · 10−27 2Cp+ +
W± boson mediator 1.463 · 10−25 ±Cp+ +
electron (e−) lepton 9.109 · 10−31 −1.6022 · 10−19 −
myon (µ) lepton 1.900 · 10−28 −1.6022 · 10−19 −

Table 1.1: Some (elementary and composite) particles and some of their properties; quarks do not
occur in isolated form, so the mass is speculative

1.1.3 Charged bodies

An important observation is that the charge of the electron is exactly
(at any measured precision) opposite the charge of the proton:

Cp+ + Ce− = 0 (1.1)

Other particles such as the µ lepton (Cµ = Ce−) or one of the K
mesons (CK+ = Cp+) carry exactly the same charge. It has therefore
been reasonable to introduce an elementary unit of charge, also called
e. All macroscopic objects have integer multiples of this elementary
charge

q = (n+ − n−)e (1.2)

This quantification2 of charge has already been introduced as early as
1910 by Millikan.

1.1.4 Conservation of charge

The Standard Model (SM) of particle physics, which currently is our
most well confirmed microscopic model of the entire universe, implies
that in any process (mechanical, chemical, nuclear, collisional (parti-
cles), etc.) total charge is always conserved. Examples:

2We carefully distinguish this notion from the “quantization of charge” which is carried out in Quantum Field
Theory and employed in elementary particle physics.
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• Radioactive decay:
n −→ p+ + e− + νe
q = 0 −→ q = +e+ (−e) + 0 = 0

• Pair creation and annihilation:
e− + e+ ↔ 2γ

q = −e+ (+e) = 0

• π-meson decay3:
π− −→ µ− + νµ
q = −1 −→ q = −1

where νe is the electron neutrino4 and γ is the photon. In addition,
charge does not depend on the frame of reference. Electric charge is
of importance in fundamental symmetries of the universe, e.g. the
celebrated CPT theorem.

If charge is to be conserved in a finite volume (which is a special
case of charge conservation) then the entering charge must be exactly
compensated by the exiting charge: such that q in V is conserved if

q

q
in

qout

V

Figure 1.1: Flow of charge into and out of
a delimited region V

q(t1) = q(t2) + qin(t1 − t2)− qout(t1 − t2) (1.3)

qin(t1 − t2) = qout(t1 − t2), with discrete time instant ti.
3π-mesons are two-quark states, π− ≡ du
4The electron neutrino is a lepton of the first generation.
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1.1.5 Point charges

A “point charge” is a hypothetical charge concentrated in a point (in
the mathematical sense: without spatial dimension). This is an ideal-
ization that is used in the Standard Model or in atomic physics, e.g.
in representing the electron, as well as in situations where the charged
bodies are much smaller than the length scale of the physical prob-
lem: An example is the model of the atomic nucleus in non-relativistic

+ +

+ +
+

+

−−−−−

a

a’

d

Figure 1.2: Distance between two charge
distributions

Collapsing the charge distributions into point
charges is warranted under the condition
{a, a′} <<< d.

atomic physics, which is typically regarded as a massive point charge
qnuc = np+e in obtaining the wave function of an electron, even at the
atomic length scale (10−10 [m]).

1.2 Coulomb’s Law

1.2.1 Positive and negative charges

Experimental evidence suggests that a charged particle exerts a force
on another charged particle. This force may be attractive or repulsive:

+ +

− −

+ −

Figure 1.3: Attractive and repulsive forces
between charged particles

repulsive

attractive
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1.2.2 Direction

The force between charged particles always follows a straight line con-
necting the particles’ positions. These positions are points in isotropic
space.

1.2.3 Distance dependence

The magnitude of the force between charges diminishes with the inverse
square of the distance (“ 1

R2 ” law). The validity of this law has been
tested from 10−15 m through very large distances.

1.2.4 Formal representation of Coulomb’s Law

Be two point charges q1 and q2 in vacuum. We define the vector ~F12

F
12

r

e
q q

M M12

12
1

1 2

2

Figure 1.4: Force exerted by particle 1 on particle 2

as the force particle 1 exerts on particle 2. According to Newton’s laws
~F12 = −~F21. We call ~r12 the distance vector connecting the points M1

and M2 and ~e12 = 1
||~r12||

~r12 the unit vector in that direction.
Then Coulomb’s law reads

~F12 =
1

4πε0

q1q2

r2
12

~e12 (1.4)

with

ε0 ≈ 8.854 · 10−12 [kg−1 m−3 s4 A2] = 8.854 · 10−12 [N−1 m−2 C2]

the vacuum permittivity. It is related5 to the vacuum speed of light
via the vacuum permeability µ0 as ε0 = 1

µ0c
2
0
.

5The value for ε0 in fact results from this equation.
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In media other than the vacuum the permittivity is replaced by
ε = ε0εr where εr > 1 is the relative permittivity, a dimensionless
parameter. Examples: in air εr ≈ 1.006, in water εr ≈ 80.

1.2.5 Superposition principle

Be a point charge q0 and N other point charges q1, q2, . . . , qN . The

q
2

q
1

F

F
10

F
20

q
0

Figure 1.5: Total force exerted on particle by N other particles

total electrostatic force exerted on q0 is then

~F =

N∑
i=1

~Fi0 (1.5)

From this superposition of forces it follows that in general

||~F || 6=
N∑
i=1

|| ~Fi0||, (1.6)

except in the special case of aligned charges.

1.3 The Electric Field

1.3.1 Notion of Field

A field associates a quantity to every point of a region in space.



1.3. THE ELECTRIC FIELD 15

Be M a point in space, then Φ(M) is called a scalar field, if Φ is a
scalar. An example of a scalar field is the temperature field.
~G(M) is called a vector field, if ~G is a 3-component vector. Ex-

amples of vector fields are the gravitational field and the electrostatic
field.

If the field is identical in every point in space, the field is called
uniform.

If the field is constant in time for any point in space, the field is
called stationary.

1.3.2 The Electric Field of a Point Charge

We wish to define the electric field ~E(M) in every point in space. For
point charges, the point of departure is Coulomb’s Law (Eq. 1.4) which
we can re-write as

~F12 = q2
~E(M2). (1.7)

Then
~E(M2) =

1

4πε0

q1

r2
12

~e12 (1.8)

is the electric field at the point M2 produced by a point charge q1

located at a distance ||~r12||. It is sometimes useful to introduce a
position vector ~r having its origin at the position of the point charge,
in which case the expression for the electric vector field becomes

~E(~r) =
1

4πε0

q

r2
~er (1.9)

with r = ||~r|| and ~er = ~r
r .

One can ask the question as to whether ~E(M) is measurable, and
how. Placing a charge q into the field and measuring the force on q
introduces the problem that the initial field is changed by the presence
of q. The problem is solved by using a test charge δq that is very small
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compared to the charges creating the field. Then, the electrostatic field
is measured as

~E = lim
δq→0

δ ~F

δq
. (1.10)

1.3.3 The Superposition Principle of Fields

We now introduce the definition of the electrostatic field into the more
general expression (1.5) for a spatial distribution of point charges. The
electrostatic force acting on a charge q0 at the point M0 can thus be
written as

~F0 = q0
~E(M0) =

N∑
i=1

~Fi0. (1.11)

with

~E(M0) =

N∑
i=1

1

4πε0

qi
r2
i0

~ei0. (1.12)

It follows that since the electric field due to one of the N particles is
given by ~Ei0 = 1

4πε0

qi
r2i0
~ei0 the superposition principle for the field can

directly be written as

~E0 =

N∑
i=1

~Ei0. (1.13)

The superposition principle of fields therefore follows from the superpo-
sition principle of forces on charges (which is the result of experiment).

1.3.4 Continuous Charge Distributions

A charged system may contain very many particles and/or have a very
complicated structure. In such cases it can be useful to define fields,
forces, etc. in terms of a continuous charge density. If the charge
density is uniform, then the total charge inside a volume V is simply
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dq

dE
P

MV

Figure 1.6: Charge distribution represented by a charge density ρV(P ) inside a delimiting volume
V . An infinitesimal volume dV around a point P contains the charge dq.

given by Q = ρVV . In the general case of a non-uniform charge density,
the total charge is given by the volume integral

Q =

∫∫∫
V

ρV dV . (1.14)

In order to obtain the electric field in a pointM we define the infinites-
imal contribution ~dE due to the charge dq located at point P :

~dE(M) =
1

4πε0

dq(P )

|| ~PM ||2
~ePM =

1

4πε0

ρV(P )dV
|| ~PM ||2

~ePM (1.15)

The total electric field is therefore obtained by integrating over all dV
located at all P inside V :

~E(M) =

∫∫∫
V

~dE(M) =
1

4πε0

∫∫∫
V

ρV(P )~ePM

|| ~PM ||2
dV (1.16)

The expression simplifies to surface integrals in the case of surface
charge distributions or line integrals in the case of linear charge distri-
butions.

1.3.5 Field Lines

A field line is by definition the line that is created by tracing the di-
rection of the vector field in each point of a topological path. In more
complicated cases (e.g. the electric dipole field) this can be achieved
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+

Figure 1.7: A few field lines of a
positive (idealized) point charge.

The test charge is positive, by definition, so that the field
lines point towards the charge if it is negative.

by discretizing the path and then letting the discrete path segments
become infinitesimally small.

In practice, one chooses a point in space, calculates the electric field
vector in that point, attaches the vector to that point, and uses a
point along the direction of the vector as the new point. Repeating the
procedure produces the field line, in a discretized form. If the distances
between test points becomes infinitesimally small, the true field line is
obtained.

Figure 1.8: A few field lines of an electric dipole field.
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1.4 The Electric Potential V

1.4.1 Line Integral

The calculus of electrostatics and -dynamics very often involves the
integration along a path in coordinate space. In order to define the
line integral, we first discretize this path into a finite number of points
along the path C. We can now obtain the line integral over the vector

dl kM

M M

M

k k+1

i

f

M Mk k+1

dl k

=

Figure 1.9: Discretized path with N connected points MN ; a vector defines the step from point
Mk to point Mk+1.

field ~G by letting the number of points along the path tend to infinity,
which entails that the step length becomes infinitesimally small:∫

C

~G · ~dl := lim
N→∞
||~dlk||→0

N∑
k=1

~G(Mk) · ~dlk (1.17)

The value of the line integral may also be denoted CMi→Mf
=
∫
C

~G · ~dl

(“circulation”). The path may be, but does not have to be closed.
Since we are often confronted with n superposed vector fields, we

note that due to the linearity of the operation of integration, we may
write ∫

C

n∑
i

~Gi · ~dl =

n∑
i

∫
C

~Gi · ~dl =

n∑
i

Ci (1.18)
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In the following we consider the important example of the electric
field of a point charge.

1.4.2 Line integral over the Electrostatic Field of a Point Charge

The electrostatic potential of a point charge may be determined from
the following general configuration (Fig. 1.10). Integration along the

rd ’
r ’

C ’

r

r

M

q

M

rf

f

i

i

Figure 1.10: Point charge q at a general position and integration path between initial and final
points.

path C ′ therefore yields the expression

∫
C′

~E(~r ′) · ~dr
′
=

q

4πε0

Mf∫
Mi

~r ′ − ~r
||~r ′ − ~r||3

· ~dr
′
. (1.19)

We simplify this general expression by shifting the cartesian coordinate
frame such that the charge q comes to lie at its origin (~r = ~0). We then
obtain

Mf∫
Mi

~E(~r) · ~dl =
q

4πε0

Mf∫
Mi

~er
r2
· ~dl (1.20)

dropping the primes. It is now convenient to consider the spherical
symmetry of the electric field of the point charge. We may therefore
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express the infinitesimal displacement vector in spherical polar coordi-
nates6:

~dl = dx~ex + dy~ey + dz~ez

= dlr~er + dlϑ~eϑ + dlϕ~eϕ (1.21)
= dr~er + rdϑ~eϑ + r sinϑdϕ~eϕ. (1.22)

Due to ~er · ~dl = dr the line integral becomes

CMi→Mf
=

q

4πε0

rf∫
ri

1

r2
dr =

q

4πε0

[
−1

r

]rf
ri

=
q

4πε0

[
1

ri
− 1

rf

]
(1.23)

1.4.3 Definition of the Electrostatic Potential

We write the result of the line integral from the preceding subsection
as a difference between two values of a scalar field V (M) at these two
points:

Mf∫
Mi

~E · ~dl = V (Mi)− V (Mf). (1.24)

This in turn means that the scalar field, called the electrostatic poten-
tial, can in any point of the defined space be written as

V (M) =
q

4πε0

1

r(M)
+ D (1.25)

where we have introduced an integration constantD, constant in space.
The most typical (but not necessary) choice for this constant is D = 0

which ensures that for a point charge the potential vanishes at infinite
distance:

lim
r→∞

V (r) = 0 (1.26)
6The spherical expression can be understood in the following way: dlr = dr is straightforward; dlϑ = rdϑ

because the contour length when integrating over ϑ depends on r, and dlϕ = r sinϑ dϕ because in addition to the
radius the value of the polar angle plays a role in determining the contour length for the azimuthal integration.
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We come to several important conclusions:

• The line integral over the electrostatic field only depends on the
initial and end points, but not on the integration path chosen
between these two points.

• It also immediately follows that for a closed path (Mi = Mf) the
line integral over the electric field vanishes:

Mi∫
Mi

~E · ~dl =

∮
C

~E · ~dl = 0 (1.27)

Therefore, the electric field is called a conservative field. Eq.
(1.27) is the first of Maxwell’s Equations, here for the special
case of electrostatics and in integral form. Its local form will be
established later on.

• In case of a distribution of point charges we can use the superpo-
sition principle Eq. (1.13) and the preceding Eq. (1.27) to obtain∮

C

~E · ~dl =

∮
C

N∑
i=1

~Ei · ~dl =

N∑
i=1

∮
C

~Ei · ~dl = 0. (1.28)

1.4.4 The Gradient Operator

We consider the change of a scalar field G along an infinitesimal dis-
placement ~dl = dx~ex + dy~ey + dz~ez between two points in coordinate
space which can be written as a total differential

G(M ′)−G(M) = dG =
∂G

∂x
dx +

∂G

∂y
dy +

∂G

∂z
dz. (1.29)
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M M

dl

’

Figure 1.11: Displacement between points M and M ′.

We now define the gradient of the scalar field G via the scalar product
with the displacement vector:

dG := ~gradG · ~dl (1.30)

From this definition, the expression for the gradient of the scalar field
follows as

~gradG =
∂G

∂x
~ex +

∂G

∂y
~ey +

∂G

∂z
~ez (1.31)

in cartesian coordinates. The total differential of a scalar field can thus
be understood as a measure of the change of the field (given by its
gradient) in the direction of a displacement.

A useful mathematical symbol for the gradient is the “nabla” opera-
tor, defined in cartesian coordinates as

∇ :=

3∑
i=1

~ei
∂

∂xi
(1.32)

with ~ei the unit vector along the coordinate xi.

1.4.5 The Gradient of the Electrostatic Potential

Suppose that the distance between the initial (Mi) and end point (Mf)
of a line integral over a vector field ~H be infinitesimally small. Then
the line integral becomes

Mf∫
Mi

~H · ~dl −→ ~H · ~MiMf = ~H · ~dl. (1.33)
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Using Eq. (1.30) we can therefore write

~H · ~dl = dG (1.34)

and identify the vector field as the gradient of a scalar field:

~H = ~gradG (1.35)

In the case of the electrostatic potential as scalar field, the sign of
the gradient is negative in order to conform with the conventions in
subsections 1.2.4 and 1.3.5. Thus

~E = − ~gradV (1.36)

1.4.6 Electrostatic Potential for Continuous Charge Distributions

In case the charge distribution is continuous (see Fig. (1.6)) we may
proceed by analogy to Eq. (1.15) and define a differential contribution
to the electric potential as

dV (M) =
1

4πε0

dq

r(M)
(1.37)

and represent the differential charge dq by the charge density. As an
example for a surface charge density σ the differential charge becomes
dq = σ dS, with dS a surface element. The electric potential in a point
M is then obtained from the integral

V (M) =
1

4πε0

∫∫
S

σ dS

|| ~PM ||
. (1.38)

1.5 Symmetry of the Electrostatic Field and Potential

Symmetry plays an enormous role in physics. The properties and inter-
actions of the constituents of the universe with respect to fundamental
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symmetries such as spatial parity, time reversal, charge conjugation,
rotations, etc., define modern physical theories, such as the Standard
Model of elementary particles. The search for new physics beyond the
Standard Model is practically always connected to violations of such
fundamental symmetries.

In the case of electrostatics, it is useful to consider the transformation
properties of the field and the potential with respect to planar reflec-
tions. We understand a symmetry transformation as an operation
that leaves the properties of a physical system invariant.

1.5.1 Electrostatic Potential

Suppose that a charge distribution ρ has a symmetry plane S, i.e.,
reflecting7 the charge distribution at S yields precisely the same charge
distribution, Fig. (1.12). Due to the reflection symmetry of the charge

V

V ’

S

P P’

M

d

d

M’

ρ

Figure 1.12: Charge distribution with a symmetry plane S.

distribution, it follows that for charge density in dV = dV ′ around P
(P ′)

ρ(P ) = ρ(P ′), (1.39)
7We understand that “reflecting” means taking an elementary volume unit at one side of the symmetry plane

and displacing it along a straight line perpendicular to the symmetry plane to a position at the other side of the
plane which is at equal distance from the plane as the original position.
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and due to dq = ρ(P ) dV
dq = dq′. (1.40)

The elementary electrostatic potentials at pointsM andM ′ due to two
symmetrically displaced elementary volumes are then using Eqs. (1.37)
and (1.40)

dV (M) =
1

4πε0

(
dq

|| ~PM ||
+

dq′

|| ~P ′M ||

)
=

1

4πε0
dq

(
1

|| ~PM ||
+

1

|| ~P ′M ||

)

dV (M ′) =
1

4πε0

(
dq

|| ~PM ′||
+

dq′

|| ~P ′M ′||

)
=

1

4πε0
dq

(
1

|| ~PM ′||
+

1

|| ~P ′M ′||

)
(1.41)

However, || ~PM || = || ~P ′M ′|| and || ~P ′M || = || ~PM ′||, and therefore
dV (M) = dV (M ′). Integration over V results in

V (M) = V (M ′). (1.42)

We have established an explicit symmetry relation for the electrostatic
potential in the presence of a symmetry plane.

1.5.2 Electrostatic Field

From an identical reasoning we can conclude on the symmetry of the
electrostatic field. From Eqs. (1.15) and (1.40)

d ~E(M) =
1

4πε0
dq

(
~PM

|| ~PM ||3
+

~P ′M

|| ~P ′M ||3

)

d ~E(M ′) =
1

4πε0
dq

(
~PM ′

|| ~PM ′||3
+

~P ′M ′

|| ~P ′M ′||3

)
. (1.43)

As before, || ~PM || = || ~P ′M ′|| and || ~P ′M || = || ~PM ′||. Concerning the
vectors themselves, Fig. (1.13) shows that although they in principle
are 3-dimensional, we note that the points (P, P ′,M,M ′) necessarily
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AB
t

AB n

S
P P’

M’M

Figure 1.13: Normal and tangential components of vectors ~AB with respect to a symmetry plane
S.

come to lie in a plane, and therefore only two components of a cartesian
vector need to be considered here8. Introducing a normal (n) and a
tangential (t) component, and noting that

~PMn = − ~P ′M ′
n

~PM t = ~P ′M ′
t

~P ′Mn = − ~PM ′
n

~P ′M t = ~PM ′
t, (1.44)

we can rewrite Eq. (1.43) as

d ~En(M) =
1

4πε0
dq

(
~PMn

|| ~PM ||3
+

~P ′Mn

|| ~P ′M ||3

)

d ~En(M ′) =
1

4πε0
dq

(
−

~P ′Mn

|| ~P ′M ||3
−

~PMn

|| ~PM ||3

)

d ~Et(M) =
1

4πε0
dq

(
~PM t

|| ~PM ||3
+

~P ′M t

|| ~P ′M ||3

)

d ~Et(M
′) =

1

4πε0
dq

(
~P ′M t

|| ~P ′M ||3
+

~PM t

|| ~PM ||3

)
(1.45)

8In other words, S can be rotated freely around its normal vector such that the various vectors would only have
two components with respect to a cartesian coordinate system in S.
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which yields two final relations for the normal and tangential compo-
nents of the electric field:

~En(M) = − ~En(M ′)
~Et(M) = ~Et(M

′) (1.46)

1.5.3 Points in Planes of Symmetry

A very important special case of the above elucidation is comprised by
points lying in a plane that has been identified as a symmetry plane of
the charge distribution. In this case M = M ′ and thus

~En(M) = − ~En(M) = ~0

leaving ~Et(M) as the only non-vanishing component. This means that
the electric field vector is contained in any symmetry plane S of a
charge distribution:

~E(MS) ‖ S (1.47)

This is a very powerful theorem that can be used to determine the
direction of the electric field for many typical charge distributions.

1.5.4 Planes of Antisymmetry

Since there are two kinds of electric charges in the universe (positive
and negative) the case may occur in which a charge distribution has an
antisymmetry plane, A. In accord with the illustration in Fig. (1.12)
this means that ρ(P ) = −ρ(P ′) and therefore dq = −dq′. From the
above relations (1.41) and (1.43) we easily deduce
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V (M) = −V (M ′)
~En(M) = ~En(M ′)
~Et(M) = − ~Et(M

′). (1.48)

For points lying in a plane of antisymmetry A, i.e. M = M ′, the
potential and the tangential component of the electric field vanish:

V (M) = −V (M) = 0
~Et(M) = − ~Et(M) = ~0 (1.49)

~E, therefore, is perpendicular to planes of antisymmetry:

~E(MA) ⊥ A (1.50)

1.6 Gauss’s Theorem

This is one of the central theorems of electrostatics. It follows from
geometric considerations and from the form of the electric field due to
charges. We first discuss the notions of flux and solid angle and then
deduce Gauss’s theorem.

1.6.1 Flux of a Vector Field

1.6.1.1 Orientation of a surface

In case of a closed surface a criterion of orientation exists, since there
is an inner and an outer region separated by the surface. However, for
open surfaces such a criterion does not exist. It is therefore necessary
to define the orientation of the surface, because the direction of flux
through the surface must be defined. The right-hand rule9 defines the
orientation of ~n, and therefore of the oriented surface element ~ndS.

9Let your thumb point from the center of dS towards the oriented path, your index finger in the direction of
the oriented path; then your middle finger defines the direction of ~n.
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dS

n

S

Figure 1.14: Definition of the ori-
entation of an open surface.

• dS is a differential surface element.

• ~n is a normalized vector orthogonal to dS.

• Trace a closed path following the surface S around
dS.

• The direction of ~n is given by the right-hand rule (ou
“règle de tire-bouchon”).

If the surface is closed, ~n points outward, by convention.

1.6.1.2 Definition of the Flux of a Vector Field

The flux Φ of a vector field ~G through an oriented surface S is defined
by

Φ :=

∫∫
S

~G · ~n dS (1.51)

1.6.1.3 The Solid Angle

The solid angle is a generalization of the notion of the usual planar
angle to a 3-dimensional context.

We first prove the following theorem for the planar angle: If the

A

R
R’

B’

O

B

A’φ

Figure 1.15: Relations of segment
lengths, radius and planar angle.

One-dimensional segment theorem:

AB

R
=
A′B′

R′
= ϕ (1.52)

circles of Fig. 1.15 are replaced by spheres, the planar angle ϑ becomes
the solid angle, called Ω, which is the area of a segment of a unit
sphere (R = 1) which is centered at the angle’s vertex. The solid angle
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1
S

2
S

θ
O

Ω

R

R

1

2

Figure 1.16: Relations of segment
surfaces, radius and solid angle.

Two-dimensional segment theorem:

S1

R2
1

=
S2

R2
2

= Ω (1.53)

is measured in the dimensionless unit steradian.
We note two special cases:

I) ϑ = π
2 . In this case one should obtain the solid angle of a demi-

sphere, and indeed, Ω = 2π
(
1− cos

(
π
2

))
= 2π.

II) ϑ = π. Here, the solid angle of the full sphere is obtained: Ω =

2π (1− cos (π)) = 4π

1.6.1.4 Elementary Solid Angle

In order to generalize the use of the solid angle, we have to depart from
the surface of a sphere to more complicated, general surfaces.

Ω
dS

Figure 1.17: Solid angle in case of a
general surface.

dS

dΣ

θ
r

n
Ω

Figure 1.18: The elementary solid angle
defined via the elementary cone.

In Fig. (1.18) dΣ is an elementary surface segment for the surface
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orthogonal to ~r. The differential solid angle can thus be written as

dΩ =
dΣ

r2
, (1.54)

using the two-dimensional segment theorem, Eq. (1.53), with r = ~r ·~er.
However, the normal vector onto the true surface of interest may be

at an angle ϑ with ~r. The two surface elements are related to each
other by the scalar product of the two respective normal vectors, as

dΣ = ~er · ~n dS (1.55)

since in the collinear case Σ = S. In the orthogonal “limit” S becomes
infinitely large (dS scales accordingly) as the scalar product10 ~er·~n→ 0.

Therefore, the elementary solid angle, Eq. (1.54) can be written as

dΩ =
~r · ~n
r3

dS (1.56)

and the surface integral yields the solid angle

Ω =

∫∫
S

~r · ~n
r3

dS. (1.57)

As an important example, we consider the case of a sphere. We wish to
determine the solid angle under which the entire sphere appears, and
we verify the earlier result:

Ω =

π∫
0

2π∫
0

~er · ~n
r2

r2 sinϑdϑdϕ

=

π∫
0

sinϑdϑ

2π∫
0

dϕ = [− cosϑ]π0 [ϕ]2π0 = 4π (1.58)

Note that ~er · ~n = 1 can be chosen for the spherical case.
10We use ~er · ~n = cosϑ for this argument.
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1.6.1.5 Multiply Intersected Closed Surface

The case may occur in which the vertex for taking the solid angle (the
origin) lies outside of a closed surface. This situation is shown in Fig.
(1.19). The two elementary solid angles can now be written, using Eq.

n1
n2

n1
’

dS1

dS2

Figure 1.19: Vertex for the solid angle outside of a closed surface.

(1.56), as

dΩ1 =
~r1 · ~n1

r3
1

dS1 = − ~r1 · ~n′1
r3

1

dS1

dΩ2 =
~r2 · ~n2

r3
2

dS2 (1.59)

However, since the elementary cone is the same in either case, using
theorem (1.53) the identity

~r1 · ~n′1
r3

1

dS1 =
~r2 · ~n2

r3
2

dS2 (1.60)

has to hold. Note that the reversed vector, ~n′1, has to be used here for
which cosϑ ≥ 0, the angle formed by ~n′1 and ~r. From this it follows
that

dΩ1 + dΩ2 = 0 (1.61)

for all elementary cones. Since the total solid angle with respect to the
vertex is the sum of the elementary solid angles,

Ω = 0 (1.62)
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for a vertex outside a closed surface. We can generalize this result:
Ω = 0 if the considered cone intersects the closed surface an even
number of times.

1.6.2 Gauss’s Theorem

The flux Φ of the electrostatic field of a point charge q through a surface
S is

Φ =

∫∫
S

~E · ~n dS =
q

4πε0

∫∫
S

1

r3
~r · ~n dS (1.63)

and using the solid angle from Eq. (1.57) we can write

Φ =
q

4πε0
Ω. (1.64)

This result is reasonable, since the solid angle is a measure of the surface
segment and therefore has to be related to the flux through the surface
segment.

For an arbitrary ensemble of charges qi we can therefore define a
solid angle contribution Ωi with respect to a given closed surface11.
Thus,

Φ =
1

4πε0

∑
i

qi Ωi (1.65)

and we distinguish between two cases:
Ωi = 0 if qi is outside S,
Ωi = 4π if qi is inside S.

The first statement follows from the considerations in subsection 1.6.1.5.
The second statement is due to Eq. (1.53) with ϑ = π.

We may therefore write for an arbitrary ensemble of charges located
inside a closed surface:

Φ =
1

4πε0
4π
∑
iin

qi =
Qin

ε0
(1.66)

11This is nothing else than applying the superposition principle of fields.
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With Eq. (1.63) we finally obtain Gauss’s Theorem:

{

S

~E · ~n dS =
Qin

ε0
(1.67)

It states that the flux of the electric field through a closed surface is
proportional to the total charge located inside this closed surface. This
is the second of Maxwell’s Equations in electrostatics, here again in
integral form. Equation (1.27) is a so-called structure equation for
the electrostatic field, whereas Eq. (1.67) relates field and source.

In the case of a continuous charge distribution ρV located inside the
closed surface Gauss’s Theorem becomes

{

S

~E · ~n dS =
1

ε0

∫∫∫
V

ρV dV . (1.68)

1.7 Local Form of Gauss’s Theorem – Divergence

1.7.1 Definition of the Divergence of a Vector Field

The notion of divergence has been introduced in fluid dynamics. In
electrodynamics (or its non-relativistic approximation electrostatics)
the divergence is related to the occurrence of sources of fields.

The mathematical definition of the divergence goes as follows: Be a
volume V delimited by a closed surface S(V) around a point P . Then
for any vector field ~G

div ~G(P ) := lim
V→P

1

V

{

S(V)

~G · ~n dS (1.69)

The divergence can thus be understood as the source density of the
flux of ~G.
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How does this definition connect to the usual calculus of the diver-
gence? As an illustration, we reduce the dimensionality of the prob-
lem. For the corresponding 2-dimensional situation we suppose that we
would consider the flux through a delimiting contour C(S) of a surface
S for which the expression becomes

lim
S→P

1

S

∮
C(S)

~G · ~n dl, (1.70)

and finally, for the 1-dimensional case introducing a cartesian coordi-
nate x

lim
l→P

1

l

(
~G(x + l)− ~G(x)

)
· ~ex, (1.71)

where the integration reduces to the sum over the two end points of the
interval l, and the sign is introduced due to the different orientation of
the normal vector at the two end points. However, this last expression
is just identical to the differential quotient (the x-component of the
derivative of the vector field)

lim
l→P

1

l

(
~G(x + l)− ~G(x)

)
· ~ex =

∂ ~G

∂x
· ~ex (1.72)

from which we infer for the 3-dimensional case the expression for the
divergence:

div ~G =
∂ ~G

∂x
· ~ex +

∂ ~G

∂y
· ~ey +

∂ ~G

∂z
· ~ez (1.73)

Very often the symbol ∇ (“nabla”) is used to denote the divergence (as
well as for the gradient in Eq. (1.31)), which in cartesian coordinates
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can also be written as

∇ · ~G =

(
3∑
i=1

∂

∂xi
~ei

)
·

 3∑
j=1

Gj ~ej


=

3∑
i,j=1

~ei · ~ej
∂

∂xi
Gj

=

3∑
i,j=1

δij
∂Gj

∂xi

=

3∑
i=1

∂Gi

∂xi
(1.74)

Here we use the δ (“Kronecker”) symbol, defined as

δij =

{
0 if i 6= j

1 if i = j
∀i, j ∈ IN (1.75)

1.7.2 Gauss’s Theorem in Local Form

We now consider the special case of the electrostatic field, for which
the general divergence definition Eq. (1.69) becomes

div ~E(P ) := lim
V→P

1

V

{

S(V)

~E · ~n dS

= lim
V→P

1

V
QV
ε0
, (1.76)

where Gauss’s Theorem, Eq. (1.67), has been used with respect to the
volume V . Since QV

V is just a charge density for the considered volume,
we may reformulate:

div ~E(P ) = lim
V→P

ρV
ε0

=
ρ(P )

ε0
(1.77)

Thus, for any point P , we obtain Gauss’s Theorem in local form as
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div ~E =
ρ

ε0
(1.78)

It is important to understand that this is a local expression, relating
the charge density in a given point to the divergence of the field in that
given point. The equivalent integral form of Gauss’s Theorem is used
when surface and volume of a given problem are well defined, whereas
the local form is typically used in a more general context.

1.7.3 Point charges and Dirac’s “delta function”

Let us apply Gauss’s Theorem in local form, Eq. (1.78), to a seemingly
very simple case, that of a point charge q. If placed at the origin, we
may write the electrostatic field due to q as

~E(~r) =
q

4πε0

~er
r2

(1.79)

using Eq. (1.9). In spherical polar coordinates the radial part of the
divergence operator applied to a vector field ~G is div~G = 1

r2
∂
∂r

(
r2Gr

)
,

and so we obtain

div ~E = ∇ · ~E =
q

4πε0r2

∂

∂r

(
r2

r2

)
= 0. (1.80)

If we now integrate Gauss’s Theorem over all space, using the preceding
result for the divergence,∫∫∫

V

div ~E dV =
1

ε0

∫∫∫
V

ρ dV (1.81)

we obtain a startling result: Since the integrand is zero, the left-hand
side of Eq. (1.81) is zero, too, which means that upon performing the
integration on the right-hand side, we should also obtain zero. However,
basic physics demands that

∫∫∫
V

ρ dV = q, (since the point charge has
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to be somewhere in space) and not zero! We face a contradiction. What
is going on?

The problem is related to the fact that Eq. (1.79) is incomplete. It
defines the electric field of a point charge everywhere in space, except
at the position of the charge, where it is undefined. And since Eq.
(1.78) is a local expression, it yields the correct divergence everywhere
in space, except at the position of the charge, which however becomes
decisive here. This means that for consistency, the space U over which
Eq. (1.78) is defined has to exclude the origin O in the case of a point
charge:

div ~E =
ρ

ε0
U\{O} (1.82)

In other words, due to the locality, the charge density is only defined in
those points P where the electrostatic field is defined. A charge density
is therefore required which describes a point charge when integrated
over all space12. The solution was proposed by P.A.M. Dirac. What
is required is a “function” that is zero everywhere in space, except at a
given point, and that the integral over this function yields 1. This is
Dirac’s “delta function”13 δ(x) which is defined via its integral as

+∞∫
−∞

δ(x) dx = 1 (1.83)

If we furthermore define a 3-dimensional version of δ(x) as

δ(3)(~r) := δ(x) δ(y) δ(z) (1.84)

then the charge density for a point charge can be written as

ρq = q δ(3)(~r) (1.85)
12Then Gauss’s Theorem can be applied over all space, including the origin. We must, however, refrain from

using the standard expression for the electric field of the point charge, and instead work with the divergence of ~E
as such.

13δ(x) is not strictly a function, but a so-called distribution which is defined in more detail in the mathematical
literature. A mnemonic is to picture δ(x) as a distribution over the integration axis with a mean width the limit
of which is taken to tend to zero, however, retaining the value 1 for the integral over δ(x). It can be considered as
the continuous analog of the discrete Kronecker symbol.
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and the spatial integral over this charge density yields q. Therefore, the
consistency of the integration in Eq. (1.81) has been regained when the
divergence of the electric field is expressed in terms of a charge density
for a point charge.

To summarize, in applying the local form of Gauss’s Theorem to
the case of distributions of point charges, care has to be taken. In
those cases, however, the integral form in Eq. (1.67) is still applicable
without difficulties.

1.7.4 Theorem of Gauss and Ostrogradsky (Divergence Theorem)

Eqs. (1.68) and (1.81) can be directly combined to yield∫∫∫
V

div ~E dV =
{

S(V)

~E · ~n dS (1.86)

with S(V) the surface delimiting the integration volume, which is known
as Gauss-Ostrogradsky Theorem or Divergence Theorem. It means
that a property of the vector field inside the volume is related to the
flux of the vector field traversing the delimiting surface.

The above considerations allow for a generalization of this theorem
to any vector field ~G, not just the electrostatic field.∫∫∫

V

div~GdV =
{

S(V)

~G · ~n dS (1.87)

1.8 Local Equations for the Electrostatic Potential

1.8.1 Poisson’s Equation

Replacing in Gauss’s Theorem in local form, Eq. (1.78) the electric
field by the local electrostatic field structure equation ~E = − ~gradV



1.8. LOCAL EQUATIONS FOR THE ELECTROSTATIC POTENTIAL 41

(Eq. (1.36)), we obtain

div
(
~gradV

)
= − ρ

ε0
. (1.88)

Using considerations from vector analysis, in particular Eq. (1.74), this
equation may be reformulated as

∇ · (∇V ) = ∆x V (~x ) (1.89)

where we have introduced the Laplaceoperator (or Laplacian)

∆x :=

3∑
i=1

∂2

∂x2
i

. (1.90)

We thus obtain Poisson’s equation

∆V = − ρ
ε0

(1.91)

which evidently is a local equation for the electrostatic potential in the
presence of charges, represented by the charge density ρ.

For a region of space without charges, Poisson’s equation reduces to
Laplace’s equation

∆V = 0. (1.92)

These two latter equations are sometimes used to solve specific prob-
lems. As an example, we mention the elementary case of a point charge.
Then, Eq. (1.92) is valid for all of space, except at the position of the
charge, where we have

∆
q

4πε0 r
= −q δ

(3)(~r)

ε0

∆
1

r
= −4π δ(3)(~r) (1.93)
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This means that it is possible to represent the action of the Laplacian
onto a function at a point where this function is undefined. This is a
special type of differential equation, the solutions14 of which are called
Green’s functions.

Eqs. (1.91) and (1.92) play an important role in atomic physics
and Quantum Electrodynamics, but also for problems with continuous
charge distributions.

1.9 Electrostatic Multipole Expansion

In this section we wish to address a central aspect of general charge
distributions which plays a role in practically any microscopic context,
from biochemical and chemical systems down to atoms and elementary
particle theory. Suppose that an arbitrary charge distribution is lo-
cated in a volume, the length scale of which is small compared to the
distance from a point P of reference (such a charge distribution could
for instance be given by the quarks in an atomic nucleus, the electrons
in an atom, or a cluster of water molecules in a solute).

1.9.1 General Expression for the Electrostatic Potential

The electrostatic potential in a point P , at a distance ||~r|| from the
origin, for such an arbitrary charge distribution is

V (~r ) =
1

4πε0

N∑
i=1

qi
Ri
, (1.94)

where we have set V (∞) = 0 since no charges are supposed to be
located at large distance. We now rewrite the distance between P and

14Green’s function of the Laplacian is, therefore, the function 1
r .
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Figure 1.20: Charge distribution seen from a point P which is farther from the origin than any of
the charges inside the respective region.

the ith charge as

Ri = ||~Ri|| =
√

(~r − ~ri)2

=
(
~r 2 + ~r 2

i − 2~r · ~ri
)1
2 =

(
~r 2 + ~r 2

i − 2rri cosϑi
)1
2 (1.95)

with ||~rj|| = rj. We take a closer look at

1

Ri
=

1

r
[
1 +

(
ri
r

)2 − 2rir cosϑi

]1
2

=
1

r (1 + t)
1
2

=
1

r
(1 + t)−

1
2 (1.96)

with the definition t :=
(
ri
r

)2 − 2rir cosϑi. Since under our present
conditions for the multipole expansion as in Fig. (1.20)

ri
r
< 1 ∀i (1.97)

t > −1 is always valid, so the square root in Eq. (1.96) never becomes
imaginary. This allows us to Taylor expand as follows:

(1 + t)−
1
2 = 1− 1

2
t +

3

8
t2 − 5

16
t3 + . . . (1.98)
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Then Eq. (1.96) is rewritten as

1

Ri
=

1

r

{
1 +

1

2

[
2
ri
r

cosϑi −
(ri
r

)2
]

+
3

8

[
−2

ri
r

cosϑi +
(ri
r

)2
]2

− 5

16

[
−2

ri
r

cosϑi +
(ri
r

)2
]3

+ . . .

}
=

1

r

{
1 +

ri
r

cosϑi −
1

2

(ri
r

)2

+
3

2

(ri
r

)2

(cosϑi)
2

+O
[(ri

r

)3
]}

. (1.99)

Since ri
r < 1 we know that terms of order n in O

[(
ri
r

)n] become less
and less important as n increases. We therefore in the following retain
only terms up to O

[(
ri
r

)2
]
, remembering that the series is an infinite

expansion. Thus,
1

Ri
≈ 1

r

{
1 +

ri
r

cosϑi +
1

2

(ri
r

)2 [
3 (cosϑi)

2 − 1
]}

. (1.100)

Inserting Eq. (1.100) into the expression for the electrostatic potential,
Eq. (1.94), yields

V (~r ) =
1

4πε0r

N∑
i=1

qi

+
1

4πε0r2

N∑
i=1

qiri cosϑi

+
1

4πε0r3

N∑
i=1

qir
2
i

2

[
3 (cosϑi)

2 − 1
]

+ . . . (1.101)

It is more than an interesting mathematical feature that this expression
can be written in terms of a set of polynomials that has been introduced
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by Legendre to solve his differential equation15. We define Legendre’s
polynomials by the so-called formula of Rodriguez:

P`(x) =
1

2``!

d`

dx`
(
x2 − 1

)` (1.102)

With x = cosϑj for the jth particle, use of Eq. (1.102) and reorganizing
the terms in Eq. (1.101)

V (~r ) =
1

4πε0

N∑
i=1

qi

[
1

r
+

1

r2
ri cosϑi +

1

r3
r2
i

(
3 (cosϑi)

2 − 1
)

+ . . .

]

=
1

4πε0

N∑
i=1

qi

∞∑
`=0

1

r`+1
r`i P`(cosϑi) (1.103)

we finally obtain a closed expression for the electrostatic potential in
terms of the introduced expansions:

V (~r ) =
1

4πε0

∞∑
`=0

1

r`+1

N∑
i=1

qir
`
i P`(cosϑi) (1.104)

1.9.2 Individual Multipole Terms

The general electrostatic multipole expansion allows us to view a charge
distribution as the sum of individual multipole terms, each with distinct
characteristics. We will now analyze these terms one by one.

15A side remark is that Legendre’s differential equation occurs when solving Laplace’s equation (1.92) in spherical
polar coordinates. Since this is an equation for the electrostatic potential, a direct link is established. Legendre
polynomials play an essential role in the angular solutions of problems with spherical symmetry, pivotal in atomic
physics.
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1.9.2.1 Electric Monopole Moment

The first term in the sum over ` in Eq. (1.104) with ` = 0 yields

V`=0(~r ) =
1

4πε0r

N∑
i=1

qi (1.105)

and with the introduction of the total charge

Q =

N∑
i=1

qi (1.106)

also referred to as electric monopole moment, we may write this
term as

VM(~r ) =
Q

4πε0r
. (1.107)

In accord with its origin in electric point charges and being independent
of the position of the individual charges, the term is called Monopole
(M) term. At very long distance r this term will be dominant for a
non-neutral distribution, because in the limit the charge distribution
will be independent of its internal structure and resemble the form of
a point charge Q.

For general, i.e. also continuous charge distributions, the monopole
moment contribution to the potential will be written as

VM(~r ) =
1

4πε0r

∫∫∫
V

ρ(~r ′) dV ′ (1.108)

where
∫∫∫
V

ρ(~r ′) dV ′ represents the monopole moment. Note that this

expression is also useful for point charges with the introduction of
Dirac’s delta function for the charge density ρ (see subsection 1.7.3).
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1.9.2.2 Electric Dipole Moment

The second term in the sum over ` in Eq. (1.104) with ` = 1 yields

V`=1(~r ) =
1

4πε0r2

N∑
i=1

qi ri cosϑi. (1.109)

We wish to rewrite this into a more convenient form. Since

cosϑi =
~r · ~ri
r ri

= ~er ·
~ri
ri

(1.110)

Eq. (1.109) becomes

V`=1(~r ) =
1

4πε0r2

N∑
i=1

qi ri ~er ·
~ri
ri

=
1

4πε0r2
~er ·

(
N∑
i=1

qi ~ri

)
(1.111)

The quantity in the parenthesis is evidently an intrinsic property of
the charge distribution and independent of the point P . It is called the
electric dipole moment which is defined as

~p :=

N∑
i=1

qi ~ri. (1.112)

With the introduction of the dipole moment the dipole term can be
written as

VD(~r ) =
~er · ~p

4πε0r2
. (1.113)

An interesting aspect of this term is that it becomes the dominant
feature of a charge distribution at long distance when the system is
electrically neutral (Q = 0).

Finally, for a general charge distribution, we write the electric dipole
moment as

~p :=

∫∫∫
V ′

ρ(~r ′)~r ′ dV ′. (1.114)
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1.9.2.3 Higher Multipole Moments

With ` = 2, Eq. (1.104) yields the electric quadrupole moment, with
` = 3 the electric octupole moment, etc. We can thus regard the
electrostatic potential as a sum over individual multipole contributions,
each containing a respective multipole moment:

V (~r ) =

∞∑
`=0

V`(~r ) =
1

4πε0

{
Q

r
+
~er · ~p
r2

+ . . .

}
(1.115)

1.10 Electrostatic Energy

We wish to obtain an expression for the energy in electrostatics. Since
we so far are not considering dynamics of particles, this will be a po-
tential energy due to electrostatic forces.

1.10.1 Elementary Definition

Let us consider the elementary work δW two point charges q1 and q2

carry out along infinitesimal (virtual) displacements d~r1 and d~r2. With
the definition of forces from subsection 1.2.4 this work can be written
as

δW = ~F21 · d~r1 + ~F12 · d~r2

=
q1q2

4πε0r3
12

(~r21 · d~r1 + ~r12 · d~r2)

=
q1q2

4πε0r3
12

~r12 · (d~r2 − d~r1) (1.116)

Therefore,
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Figure 1.21: Elementary displacement and
direction for elementary work on point
charges

The elementary displacements on individual
charges combine to a displacement along the
line connecting the point charges.

δW =
q1q2

4πε0r3
12

~r12 · d~r12

=
q1q2

4πε0r3
12

r12 dr12

=
q1q2

4πε0r2
12

dr12 := −dεe (1.117)

where the elementary electrostatic energy dεe has been defined. The
electrostatic potential energy can thus be written as

εe =
q1q2

4πε0r12
+ Cste. (1.118)

for two point charges q1 and q2. The constant is usually set to zero,
which means that the energy becomes zero when the charges are in-
finitely separated.

It is straightforward to generalize this result to an arbitrary number
N of point charges. Limiting the second summation in order to avoid
double counting of terms, we obtain

εe =
1

4πε0

N∑
i=1

N∑
j>i

qiqj
rij

(1.119)

It is also instructive to relate the electrostatic potential energy to the

electrostatic potential. If we define V (i) =
N∑
j=1

qj
4πε0rij

as the potential
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at the location of a charge qi due to N other point charges, then we
obtain

εe =
1

2

N∑
i=1

qiV (i). (1.120)

The prefactor 1
2 compensates for the double counting of terms intro-

duced through two unrestricted summations.
Finally, for continuous charge distributions, the electrostatic energy

becomes
εe =

1

2

∫∫∫
V

ρ V dV (1.121)

where ρ is a local volume charge density and V is a potential function.
In case of a surface charge density σ the expression becomes

εe =
1

2

∫∫
S

σ V dS. (1.122)

1.10.2 Electrostatic Energy in Terms of the Electrostatic Field

We start out from Eq. (1.121). Due to Gauss’s Theorem in local form,
Eq. (1.78), the volume charge density can be expressed as ρ = ε0 ∇· ~E,
and so the electrostatic energy

εe =
ε0

2

∫∫∫
V

V
(
∇ · ~E

)
dV (1.123)

Since due to Eq. (4) in the appendix∇·
(
V ~E
)

= V
(
∇ · ~E

)
+ ~E ·∇V

and ~E = −∇V , Eq. (1.123) becomes

εe =
ε0

2

∫∫∫
V

~E 2 dV +

∫∫∫
V

∇ ·
(
V ~E
)
dV

 (1.124)
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With the help of the divergence theorem, Eq. (1.86), the second term
is rewritten as∫∫∫

V

∇ ·
(
V ~E
)
dV =

{

S(V)

(
V ~E
)
· ~n dS (1.125)

We remember that for determining the electrostatic energy, we are
integrating over all space. This means that for any relatistic physical
case, the enclosing surface can be chosen so large, that the charge
distribution inside the volume appears point-like. Then, since V ∝ 1

r ,
E ∝ 1

r2
, and dS ∝ r2,

lim
r→∞

{

S(V)

(
V ~E
)
· ~n dS −→ 0 (1.126)

and so

εe =
ε0

2

∫∫∫
V

~E 2 dV . (1.127)

This is a very useful and widely used expression for the electrostatic
energy, solely in terms of the electrostatic field generated by the present
charges.
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Chapter 2

Electric Currents

Magnetism originates from charges in motion. Before introducing the
concepts of magnetostatics, we must take a closer look at the basics of
charged currents.

2.1 Electrokinetics

2.1.1 Volume Charge Density

Since charged bodies are ultimately always made up of point charges,
we can represent the (mean) charge density in a finite region V of space
as

ρ =
1

V
QV , (2.1)

where QV is the total charge inside V . Supposing that the detailed
distribution of point charges is not relevant for a given problem, and
we content ourselves with a continuous charge distribution, then we
can take the limit for a finite volume tending towards a point P and
obtain

ρ(P ) = lim
∆V→P

1

∆V
Q∆V (2.2)

Eq. (2.2) supposes an “ideal” world where the point charges qi can take
on any value, i.e., they are not quantized. In the real physical world
this definition naturally leads to the Dirac delta function, since then the

53
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charge density becomes infinite at points where point charges are lo-
cated, and zero otherwise. In the case of a distribution of point charges
we can therefore generalize Eq. (1.85) to n point charges distributed
at points ~ri over space and write

ρ(~r) =

n∑
i=1

qi δ
(3)(~r − ~ri) (2.3)

where ~r is a position vector relative to an origin.

2.1.2 Charged Volume Current

We can write an elementary charged electric current as the charge of a
particle multiplied by a velocity vector, q~v. The supposed continuous
situation at the heart of Eq. (2.2) then allows us to write the charged
current density as

~J(P ) = ρ(P )~v(P ) (2.4)

where we understand ~v(P ) as the velocity of charge in point P . From
this we can infer a local expression for the charged current density in
terms of the charge density at a point in space:

~J = ρ~v (2.5)

Note that ~J can be considered as a vector field. This definition of
charged current density is of practical value in applications involving
conductors and similar macroscopic objects.

In analogy to Eq. (2.3) and subsection 2.1.2 the charged current
density for moving point charges is written as

~J(~r) =

n∑
j=1

qj ~vj δ
(3)(~r − ~rj) (2.6)

The physical dimension of J is dim[J ] = QL
L3T

= Q
L2T

.
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2.1.3 Intensity of the Electric Current

Suppose that ~J(P ) is known for a region of space containing the points
P . Then a differential intensity of electric current traversing an arbi-
trary differential surface in the region is defined as

dI(P ) := ~J(P ) · ~n dS(P ) (2.7)

from which the electric current intensity I traversing a given surface
is obtained by integration:

I =

∫∫
S

~J · ~n dS (2.8)

Note that the surface S can be, but must not necessarily be a closed
surface.

The physical dimension of I is dim[I ] = Q
T .

2.2 Conservation of Charge

2.2.1 Continuity Equation of Electromagnetism

Be a closed surface containing electric charge, Fig. (2.1)

n
in

dS

S
V

Q

Figure 2.1: Charge inside a delim-
ited volume.

The current intensity for charge flowing out of the volume
is

I = −dQin

dt
(2.9)

which describes the time-dependent change of total charge
inside the region, considering Qin = Qin(t) as a function of
time.

Using Eqs. (1.14) and (2.8) it follows that

d

dt

∫∫∫
V

ρV(~r, t) dV = −
∫∫
S

~J · ~n dS. (2.10)
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where ρV = ρV(~r, t) is considered as a time-dependent scalar field.
Since the theorem of Gauss-Ostrogradsky, Eq. (1.86), is valid for any
vector field, we may write

d

dt

∫∫∫
V

ρV(~r, t) dV = −
∫∫∫
V

div ~J dV , (2.11)

Since
d

dt

∫∫∫
V

ρV(~r, t) dV =

∫∫∫
V

∂ρV(~r, t)

∂t
dV ,

Eq. (2.11) becomes∫∫∫
V

∂ρV(~r, t)

∂t
dV = −

∫∫∫
V

div ~J dV . (2.12)

Eq. (2.12) holds if the integrands on either side are identical. Therefore,

∂

∂t
ρV(~r, t) = −div ~J(~r, t) (2.13)

which is the so-called continuity equation of electromagnetism. Note
that in the general case of a non-linear time-dependence of the charge
density inside the volume, the charged current density is also a function
of time.

The continuity equation is of fundamental importance. Its interpre-
tation is gained if we view the divergence of a vector field as related to
sources of this vector field, here sources of current. Then it becomes
clear that if there are (local) sources of current, the local charge density
cannot be constant in time and they are related to the temporal change
of the charge density. The continuity equation can therefore also be
regarded as a manifestation of the conservation of charge.
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2.2.2 Stationary Regime

Electrostatics as it is presented in the first chapter is an entirely time-
independent theory, concerned with static configurations of electric
charges. From the considerations in the second chapter it becomes
clear that the time variable begins to play a role when electric cur-
rents are considered. We may, however, define a regime where there
is no explicit time-dependence, even in the presence of currents. This
stationary regime is defined by the condition

∂ψ

∂t
= 0 ∀ψ ∈ {Physical quantities} (2.14)

An immediate important consequence of the stationary regime for Eq.
(2.13) is

∂

∂t
ρV = 0⇒ div ~J = 0 (2.15)

the latter of which can be considered as the continuity equation in the
stationary regime. Of course, ∂

∂t Jk = 0 as well.
It is this regime on which the following theory of magnetostatics will

be based on.
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Chapter 3

Magnetostatics

3.1 Experimental Evidence

Magnetic phenomena have been known to mankind for thousands of
years, because magnetised materials can be found on the earth’s sur-
face. The earliest scientific records of magnetism are known from an-
cient Greece. The modern scientific theory of magnetism dates back
only a few hundred years, with milestones being the work of Romagnosi
(1801, battery and magnetic needle), Ørsted (1819, electric currents
create magnetic fields), Biot and Savart (1820, law of), and Ampère
(1820-1825, law of).

The essential basic experiment measures forces between different ar-
rangements of conducting wires carrying electric currents (Ørsted, Am-
père). First, we define the direction of electric currents perpendicular
to a plane of representation (here the piece of paper in front of you),
see Figure 3.1. The major results of the experiments are summarized

Figure 3.1: Definition of cur-
rent direction

The current is directed towards the observer.

The current is directed away from the observer.

in Figure 3.2. From detailed studies with varying wire configurations
and current intensities, a theory of the magnetic field could be con-

59
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F
2 1

F
2 1

F
1 2

F
1 2

Figure 3.2: Basic electromagnetic experi-
ment; wire 1 is to the left, wire 2 to the
right.

An attractive force acts on parallel wires with
parallel currents.

A repulsive force acts on parallel wires with an-
tiparallel currents.

No force at all is detected if one or both of the
currents are interrupted.

ceived, along the following qualitative lines: If it is assumed that the
magnetic force ~Fm acting on the wires derives from a relation between
an elementary current1 q ~v and a magnetic vector field ~B via a vector
product, as

~Fm = q ~v × ~B, (3.1)

then we can picture the various vector fields as done in Figures 3.3 and
3.4 for the uppermost configuration of wires in Fig. 3.2. ~B2(~r1) is to

F2 1

(r  )1B2

(r  )11J

Figure 3.3: Force due to current in wire 1
and magnetic field vector at wire 1 due to
current in wire 2

B (r  )21

J (r  )
2 2

F1 2

Figure 3.4: Force due to current in wire 2
and magnetic field vector at wire 2 due to
current in wire 1

be understood as the magnetic field produced by the current in wire 2

(index “2”) at the position of wire 1 (represented by the position vector
~r1). Here we use the right-hand convention as introduced in subsection
1.6.1.1. Since ~B is induced by moving charges it is also called magnetic

1The theory has been formulated for stationary currents, i.e. conductors carrying many elementary charges.
The “current” q ~v should therefore be understood as an element of a stationary current in this context.
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induction.
The magnetic force in Eq. 3.1 therefore results from the movement

of charge q in the magnetic field ~B at the position of the charge2.

3.2 The Lorentz Force

We are now in the position to present the first quantity that combines
electro- and magnetostatics, which is of such fundamental character
that it deserves a subsection of its own.

The total force acting on a charged particle is the sum of an electric
and a magnetic force. With the electrostatic force in terms of the
electric field from section 1.3.2 and Eq. (3.1) we obtain the Lorentz
force3:

~FL = q
(
~E + ~v × ~B

)
(3.2)

The fields are taken at the position of the charge q.

3.3 Biot and Savart’s Law

After having established the principal form of the magnetic force acting
on moving charges, we are still in need of a quantitative theory of the
magnetic field due to a current, and the ensuing force on a charge.

Qualitatively, the direction of the magnetic field can again be con-
ceived as resulting from a vector product, in this case of the electric
current and a position vector to a specified point in space, as shown in
Fig. 3.5. Quantitatively, the results of the aforementioned experiments
have been summarized by Biot and Savart into the following elementary

2 ~Fm is measured in this experiment as a force on the wire, the bulk mass of which is represented by the atomic
nuclei of the metal the wire is made of. So the force on the conducting electrons is mediated onto the wire by the
electron-proton interactions.

3The exact form of the Lorentz force has to account for kinematical effects due to Einstein’s special theory of
relativity, which introduces a prefactor. This will be discussed in the context of the relativistic representation of
classical electrodynamics.
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Vd

J B(M)

PM

P
M

Figure 3.5: Qualitative representation of
Biot and Savart’s law

A magnetic field ~B in a point M due to a stationary
volume current density ~J

contribution to a magnetic vector field, due to an elementary stationary
current ~J dV :

d ~B(M) =
µ0

4π

(
~J(P ) dV

)
×

~PM

|| ~PM ||3
(3.3)

The constant µ0 = 4π ·10−7 [J s2C−2m−1 = N A−2] is the vacuum per-
meability. It has this exact value and is obtained through the measured
force on parallel conducting wires and Ampère’s force law

∆Fm
∆L

= 2
µ0

4π

I1 I2

r
(3.4)

where L is a length and r the distance between parallel wires. The S.I.
unit of the magnetic field is Tesla, T = N A−1m−1.

Qualitatively, and using Biot-Savart’s law, the magnetic field at the
position of a wire in the uppermost configuration of Fig. 3.2 is as shown
in Figs. 3.6 and 3.7: The magnetic fields are thus in accord with those
assumed to be at the origin of the magnetic force introduced above.

We can regard Eq. (3.3) as the magnetism elementary equivalent of
Eq. (1.15). This implies that where electric charges are the genera-
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PM

B2

J

(M)

(P)
2

Figure 3.6: Magnetic field vector at
wire 1 due to current in wire 2

J (P)
1

PM

B 1 (M)

Figure 3.7: Magnetic field vector at
wire 2 due to current in wire 1

tors of the electric field, electric currents are the generators of the
magnetic field.

The total magnetic field in a point M is obtained by integrating the
expression for the elementary contribution, Eq. (3.3), over all space:

~B(M) =
µ0

4π

∫∫∫
V

~J(P ) ×
~PM

|| ~PM ||3
dV (3.5)

Very often we assume an idealized situation where the conducting
medium is simplified to be an infinitely thin wire. In that case the
volume integral over the current density can be written as∫∫∫

V

~J dV =

∫
C

∫∫
S

~J · ~n dS

~n d` −→
∫
C

I ~d` (3.6)

because ~J ||~n is here always fulfilled. Effectively, the volume integration
has thus become a linear integration along the path of the conducting
wire.

Consequently, Biot and Savart’s law can be written for linear current
densities as

~B(M) =
µ0 I

4π

∮
C

~dl(P ) ×
~PM

|| ~PM ||3
(3.7)



64 CHAPTER 3. MAGNETOSTATICS

3.4 Properties of the magnetic field

3.4.1 Symmetry of the Magnetostatic Field

As already introduced in section 1.5 for electrostatics, we will now
establish the symmetry properties of the magnetic field based on the
symmetry of the underlying (stationary) currents.

Suppose we have a current distribution with a plane of symmetry4,
as shown in Fig. 3.8. We immediately deduce, using the differential

V

V ’

S M’

dB’(M’)

dB(M’)

dB’(M)

dB(M)

P
d

d

P ’

M

II

Figure 3.8: Stationary current distribution with a symmetry plane S. Two points M and M ′ are
introduced at equal distance from S.

form of Biot-Savart’s law, Eq. (3.3) for a linear current, the following

4

In the present case only the tangential component of ~I with respect
to the plane of symmetry exists. In a more general setting, we must
also consider the normal component, e.g. for the here shown distribu-
tion. For a plane of symmetry of the current, the normal component
changes sign upon reflection, In → −In whereas the tangential com-
ponent retains the same sign, It → It.

S

I I
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elementary field contributions:

d ~B(M) =
µ0 I

4π
~dl ×

~PM

|| ~PM ||3

d ~B′(M) =
µ0 I

4π
~dl
′
×

~P ′M

|| ~P ′M ||3

d ~B(M ′) =
µ0 I

4π
~dl ×

~PM ′

|| ~PM ′||3

d ~B′(M ′) =
µ0 I

4π
~dl
′
×

~P ′M ′

|| ~P ′M ′||3
(3.8)

Due to the symmetry plane relating the currents we have ~dl = ~dl
′
. Fur-

thermore, the arrangement of points at symmetric displacements from
the symmetry plane allows to write || ~P ′M ′|| = || ~PM || and || ~PM ′|| =

|| ~P ′M ||. Therefore,

d ~B(M) + d ~B′(M) =
µ0 I

4π

[
~dl ×

~PM

|| ~PM ||3
+ ~dl ×

~P ′M

|| ~P ′M ||3

]

d ~B(M ′) + d ~B′(M ′) =
µ0 I

4π

[
~dl ×

~PM ′

|| ~P ′M ||3
+ ~dl ×

~P ′M ′

|| ~PM ||3

]
(3.9)

Since the four points P, P ′,M,M ′ in Fig. 3.8 are located in a plane,
we obtain the same relationships between normal and tangential com-
ponents of the connecting vectors as in Eq. (1.44). Writing the total
contribution to the field in point M as d ~B(M) and the total contribu-
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tion in point M ′ as d ~B(M ′), we can make the following identifications:

d ~B(M)t =
µ0 I

4π

[
~dl ×

~PMn

|| ~PM ||3
+ ~dl ×

~P ′Mn

|| ~P ′M ||3

]

d ~B(M)n =
µ0 I

4π

[
~dl ×

~PM t

|| ~PM ||3
+ ~dl ×

~P ′M t

|| ~P ′M ||3

]

d ~B(M ′)t =
µ0 I

4π

[
−~dl ×

~P ′Mn

|| ~P ′M ||3
− ~dl ×

~PMn

|| ~PM ||3

]

d ~B(M ′)n =
µ0 I

4π

[
~dl ×

~P ′M t

|| ~P ′M ||3
+ ~dl ×

~PM t

|| ~PM ||3

]
(3.10)

Note that due to the vector product the normal components of the
connecting vectors, ~PMn and ~P ′Mn, are related to the tangential
components of the magnetic field, and vice versa. We finally obtain by
comparing normal and tangential components in the preceding equa-
tion

~Bn(M) = ~Bn(M ′)
~Bt(M) = − ~Bt(M

′) (3.11)

which is just the exact opposite of the symmetry relations obtained for
the electrostatic field, Eq. (1.46).

3.4.1.1 Points in Planes of Symmetry

For the special case of points in planes of symmetry, M = M ′, and we
obtain

~Bt(M) = − ~Bt(M) = ~0

leaving ~Bn(M) as the only non-vanishing component. In other words,
if a current distribution displays a symmetry plane, then the mag-
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netic field in points within this plane is perpendicular to the plane,
~B⊥ plane(S).

3.4.1.2 Points in Planes of Antisymmetry

In this case one of the currents has been reversed, compared to the
afore-discussed situation, so ~dl = −~dl

′
. This situation is shown in Fig.

3.9. Then Eqs. (3.10) become

V

V ’

A

dB’(M)

dB(M)

M’ dB(M’)

dB’(M’)

P
d

d

M

P’

I
I

Figure 3.9: Stationary current distribution with an antisymmetry plane A. Two points M and
M ′ are introduced at equal distance from A.

d ~B(M)t =
µ0 I

4π

[
~dl ×

~PMn

|| ~PM ||3
− ~dl ×

~P ′Mn

|| ~P ′M ||3

]

d ~B(M)n =
µ0 I

4π

[
~dl ×

~PM t

|| ~PM ||3
− ~dl ×

~P ′M t

|| ~P ′M ||3

]

d ~B(M ′)t =
µ0 I

4π

[
−~dl ×

~P ′Mn

|| ~P ′M ||3
+ ~dl ×

~PMn

|| ~PM ||3

]

d ~B(M ′)n =
µ0 I

4π

[
~dl ×

~P ′M t

|| ~P ′M ||3
− ~dl ×

~PM t

|| ~PM ||3

]
(3.12)

and now the result of comparison is
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~Bn(M) = − ~Bn(M ′)
~Bt(M) = ~Bt(M

′). (3.13)

If the point in question is located in the antisymmetry plane,M = M ′,
then

~Bn(M) = − ~Bn(M) = ~0

and the magnetic field lies within the plane, ~B || plane(A).
We conclude that the reversion of the symmetry properties relative

to the electrostatic field is essentially due to the vector product rela-
tionship between magnetic field and its source, the current. In contrast
to this, the electrostatic field is oriented along the line connecting field
point and source point.

3.4.2 Ampère’s Theorem. Integral Form

In electrostatics, charges are the sources of the electrostatic field, and
the integral relationship that arises is Gauss’s Theorem. We will now
study the relationship between the magnetic field and its sources (elec-
tric currents) in order to establish an equation which can be regarded
as the magnetism equivalent of Gauss’s Theorem.

Our goal is to derive an expression for the line integral over the
magnetostatic field. Be a magnetic field due to a circular loop of current
C as shown in Fig. 3.10. Since the magnetic field at point M is given
by virtue of Biot-Savart’s law, Eq. (3.7), we can use the distance vector
~dr connecting the points M and M ′ along a path of integration C ′ to
define an elementary line integral element (circulation)

~B · ~dr =
µ0 I

4π

∮
C

~dl(P ) ×
~PM

|| ~PM ||3

 · ~dr. (3.14)
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C C’

dl

P
M M’

dr

PM
n

−dr

I

Figure 3.10: Basic configuration for the derivation of the line integral over the magnetic field.

With the help of some vector analysis, here the circular identities (valid
for commuting vector components)

(
~a×~b

)
·~c =

(
~b× ~c

)
·~a = (~c× ~a)·~b,

Eq. (3.14) can be rewritten as

~B · ~dr =
µ0 I

4π

∮
C

~MP

|| ~PM ||3
·
(
− ~dr × ~dl

)
, (3.15)

where the second of the circular identities and the commutation of the
scalar product have been used. We now obtain the line integral by
integrating over the entire path C ′:∮

C′

~B · ~dr =
µ0 I

4π

∮
C′

∮
C

~MP

|| ~PM ||3
·
(
− ~dr × ~dl

)
. (3.16)

We can reinterpret the vector product under the integral by writing

− ~dr × ~dl := ~n dS (3.17)

where the normal vector ~n is orthogonal to the surface element dS
which arises from the orientations and lengths of − ~dr and ~dl. This
means that the right-hand side of Eq. (3.16) becomes a surface inte-
gration over an open surface δS which is created by the vector product
following the integration paths:∮

C′

~B · ~dr =
µ0 I

4π

∮
C′

∫
δS

~MP

|| ~PM ||3
· ~n dS (3.18)
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δS can be understood as the surface that is created as the point P
follows the integration path C.

So the right-hand side is related to the flux of the vector field ~MP

|| ~PM ||3
traversing this surface. However, due to Eq. (1.57) this flux also corre-
sponds to a solid angle, which we call dΩ. It corresponds to the solid
angle under which δS is seen from the point M . Thus, the expression
can also be written as an integral over a solid angle, in accord with Eq.
(1.56), as ∮

C′

~B · ~dr =
µ0 I

4π

∮
C′

dΩ =
µ0 I

4π
∆Ω, (3.19)

where ∆Ω = Ωfinal − Ωinitial is the difference between solid angles in
a final and an initial point of the integration path. We have in the
following to distinguish between two cases:

1. The integration path does not link the circuit. In this case Eq.

I

P

C

M

Ω

C’

Figure 3.11: Solid angle for circuit and integration path that are not interlaced.

(3.19) becomes∮
C′

~B · ~dr =
µ0 I

4π

M∫
M

dΩ = Ω(M)− Ω(M) = 0. (3.20)

2. The integration path links the circuit, as shown in Fig. 3.12. If the
integration path along C ′ follows the orientation as in the figure,
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C
n

C’

P

M

I

Figure 3.12: Solid angle discontinuity for circuit and integration path that are interlaced.

then Ω = −2π when M reaches the center of the loop C. However,
as M passes through the loop, there is a discontinuity of the
solid angle, as it depends on the orientation of the surface (given
by the orientation of C). The solid angle changes from Ωtop = ±2π

to Ωbottom = ∓2π when traversing the surface. So the integration
picks up a factor of ±4π in general. The sign of this factor can be
determined in the following way: Due to Biot-Savart’s law the mag-

C
n

I

C’

B

B
I

I

Figure 3.13: Integration path passing through surface opposed to surface orientation.

netic field ~BI due to the current intensity I is oriented in the way
as shown in Fig. 3.13. This means that the parallel component of
the integration path element ~dr is always opposed (anti-collinear)
with ~BI , and so the sign of ~B · ~dr is negative, in this case.

We can summarize the above analysis and state Ampère’s theorem in
integral form: If Ii is a linear current intensity in a circuit Ci that
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enlaces the integration contour C ′, then∮
C′

~B · ~dr = µ0

n∑
i=1

si Ii (3.21)

The sign si is determined by the orientation of Ii for every current loop
that passes through the integration path, and by the orientation of the
integration path itself.

The theorem is given a more general form using the definition of the
linear current density Eq. (2.8),∮

C

~B · ~dr = µ0

∫∫
S

~J · ~n dS (3.22)

with ~J the volume current density traversing the oriented surface S
which is delimited by the contour C (we have dropped the primes for
simplicity).

3.4.3 Ampère’s Theorem. Local Form

We start out by realizing that a closed integration path C can be repre-
sented by two closed paths C1 and C2 that are enclosed by the first, as
shown in Fig. 3.14. A line integral over C can then be rewritten using
the two new paths. In the case of the magnetostatic field this means∮

C

~B · ~dr =

∮
C1

~B · ~dr +

∮
C2

~B · ~dr, (3.23)

since obviously
B∫
A

~B · ~dr = −
A∫

B

~B · ~dr. (3.24)
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S 1

n
1

n
2

S 2

A

B

C1

C2

C

Figure 3.14: Subdivision of a closed integration path into two.

Under the assumption that the volume current density ~J traversing the
contour in question is homogeneous (it is also stationary by definition
in the current context), and using Ampère’s theorem, Eq. (3.22), Eq.
(3.23) becomes∮
C1(S1)

~B · ~dr +

∮
C2(S2)

~B · ~dr = µ0

∫∫
S1

~J · ~n1 dS +

∫∫
S2

~J · ~n2 dS

 .
(3.25)

Note that this identity holds for the situation depicted in Fig. 3.14. We
may now continue to divide S into an arbitrary number N of connected
subsurfaces, so that Eq. (3.25) turns into

N∑
k=1

∮
Ck(Sk)

~B · ~dr = µ0

N∑
k=1

∫∫
Sk

~J · ~nk dS. (3.26)

In a next step we consider a single of these loops and the surface it
encloses, premultiply this equation with a factor 1

Sk
and take the in-

finitesimal limit, i.e., we let the fragment surface and therefore also the
contour delimiting it tend to zero:

lim
Sk→0

1

Sk

∮
Ck

~B · ~dr = µ0 lim
Sk→0

1

Sk

∫∫
Sk

~J · ~nk dS (3.27)
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The left-hand side of this equation gives, multiplied by the normal
vector onto the respective Sk, the definition of the curl of a vector
field, here the vector field ~B:

~rot ~B · ~nk := lim
Sk→0

1

Sk

∮
Ck(Sk)

~B · ~dr (3.28)

In the limit Sk → 0 the integral on the right-hand side of Eq. (3.27)
becomes equal to ~J · ~nk Sk, and so it can be inferred that at the point
P around which Sk is taken

~rot ~B(P ) · ~nk = µ0
~J(P ) · ~nk (3.29)

Therefore,

~rot ~B = µ0
~J (3.30)

which constitutes Ampère’s Theorem in local form. It means that the
curl of the magnetic vector field in a point is non-zero only if the volume
current density in that point is non-zero. Restated in other words, in
a region without sources (currents) the curl of the magnetostatic field
vanishes.

3.4.4 Calculus for the Curl

Using arguments similar to those already developed for the case of the
divergence operation in subsection 1.7.1 for Eq. (3.28), we can write
the curl operation on a vector field ~G in cartesian coordinates as

~rot~G = ∇× ~G. (3.31)

Using the Lévy-Civita symbol we can also write(
3∑
i=1

~ei
∂

∂xi

)
×

(
3∑
i=1

~ej Gj(~x)

)
=

3∑
i,j,k=1

εijk
∂

∂xi
Gj(~x)~ek. (3.32)
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3.4.5 Stokes’ Theorem

If we take the flux through a surface S on both sides of Ampère’s
Theorem, Eq. (3.30), we arrive at∫∫

S

~rot ~B · ~n dS = µ0

∫∫
S

~J · ~n dS, (3.33)

and using Ampère’s Theorem in integral form, Eq. (3.22) for the right-
hand side, Eq. (3.33) becomes∫∫

S

~rot ~B · ~n dS =

∮
C(S)

~B · ~dr (3.34)

which is known as Stokes’ Theorem or curl theorem. In the present
case it has been derived for the magnetostatic field, but it may, just
like the theorem of Gauss and Ostrogradsky, be generalized to arbitrary
vector fields ~G, i.e.,∫∫

S

~rot ~G · ~n dS =

∮
C(S)

~G · ~dr (3.35)

3.5 Conservation of the Flux of the Magnetostatic Field

Stokes’ Theorem, Eq. (3.34) tells us something about the flux of the
curl of a vector field through a delimited surface. But what about the
flux of the vector field itself? We know from subsection 1.7.4 and the
discussion preceding that, that the flux of a vector field is related to
its divergence. So let us first determine the divergence of the magne-
tostatic field.

In accord with Fig. 3.15, and using Biot-Savart’s law in the form
for a stationary current density, Eq. (3.5), the magnetostatic field in a
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Figure 3.15: Stationary current density ~J and coordinates in a laboratory reference frame.

point M is given by using the coordinate vector ~r as

~B(~r) =
µ0

4π

∫∫∫
V ′

~J(~r ′) × ~r − ~r ′

||~r − ~r ′||3
dV ′. (3.36)

We now calculate the divergence of this magnetostatic field:

div ~B(~r) = ∇~r · ~B(~r)

=
µ0

4π

∫∫∫
V ′

∇~r ·
[
~J(~r ′) × ~r − ~r ′

||~r − ~r ′||3
d3r′
]

=
µ0

4π

∫∫∫
V ′

∇~r ·
[
~J(~r ′) ×

(
∇~r

−1

||~r − ~r ′||

)]
d3r′(3.37)

In the last line we have used the expression for the gradient of the
scalar field −1

||~r−~r ′||.
In the next step, we exploit the vector analysis relation (see Eq. (8)

in appendix .14

div
[
~a(~r)×~b(~r)

]
= ~b · ~rot~a− ~a · ~rot~b (3.38)

With the help of this relation Eq. (3.37) can be reformulated to
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become

div ~B(~r) =
µ0

4π

∫∫∫
V ′

[
~r − ~r ′

||~r − ~r ′||3
· ~rot ~J(~r ′) + ~J(~r ′) · ~rot

(
~grad

1

||~r − ~r ′||

)]
(3.39)

Using the above-developed techniques for vector analysis we can demon-
strate that

~rot
(
~grad f (~r)

)
= 0 (3.40)

~rot ~J(~r ′) = 0 (3.41)

and so it follows that there is another local relation for the magneto-
static field

div ~B = 0. (3.42)

The fact that the magnetostatic field is divergence free is true indepen-
dent of the presence of currents. It is therefore an intrinsic property
of ~B. In general, vector fields ~G that are divergence free in all points,
div ~G = 0, are called solenoidal fields.

Since Gauss and Ostrogradsky’s Theorem, Eq. (1.86), is valid for
any vector field, we can write

{

S(V)

~B · ~n dS =

∫∫∫
V

div ~B dV (3.43)

and using Eq. (3.42) we obtain

{

S(V)

~B · ~n dS = 0. (3.44)
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Eqs. (3.42) and (3.44) are the structure equations of the magne-
tostatic field in local and integral form, respectively. They are
one of Maxwell’s Equations, in local and in integral form, respectively.

If we now construct two surfaces which are both delimited by a
contour C, one lying inside the other, then the respective fluxes of ~B

S1

S2

n
1

n
2

C

Figure 3.16: Two open surfaces delimited by the same contour C. S2 comes to lie inside S1.

traversing S1 and S2 are

Φ1 =

∫∫
S1

~B · ~n1 dS

Φ2 =

∫∫
S2

~B · ~n2 dS

If the union of the open surfaces S1 and S2 is considered, then we can
write

{

S1∪S2

~B · ~n dS =

∫∫
S2

~B · ~n2 dS −
∫∫
S1

~B · ~n1 dS. (3.45)

The sign change results from the fact that one of the surfaces is oriented
towards the interior of the resulting closed surface. To convince yourself
that this is true, take a look at Fig. (1.19) and the following equation.
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Due to Eq. (3.44)∫∫
S2

~B · ~n2 dS −
∫∫
S1

~B · ~n1 dS = 0 (3.46)

and it follows that

Φ1 = Φ2, (3.47)

independent of the specific choice of the two surfaces. This means that
any surface chosen which is delimited by the respective contour pro-
duces the same flux. Thus, the flux of the magnetostatic field depends
only on that contour, and it is therefore understood to have conserva-
tive flux.

3.6 Magnetic Vector Potential

3.6.1 Definition

In electrostatics the field derives from a scalar potential via a local
relation, Eq. (1.36). We will next establish a corresponding potential
in magnetostatics. The starting point is the central intrinsic property
of the magnetostatic field, the fact that is it divergence free (Eq. (3.42))

div ~B = 0.

Let us take the divergence of the curl of an arbitrary vector field ~G(~r).
The result is

div
(
~rot ~G(~r)

)
= 0.

Since, the divergence of the curl of an arbitrary vector field vanishes,
we can use this result and relate it to the magnetic field:

~B = ~rot ~A (3.48)
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It means that any arbitrary magnetic field can be written as the curl
of an associated potential which itself is a vector field. ~A(~r) is called
the vector potential of the magnetic field.

3.6.2 Line integral over the vector potential

We write the flux of ~B traversing a surface delimited by a contour C:

Φ =

∫∫
S

~B · ~n dS =

∫∫
S

~rot ~A · ~n dS

=

∮
C(S)

~A · ~dr (3.49)

where in the last identity we have used Stokes’ Theorem, Eq. (3.34),
for the vector field ~A. One thus arrives at a lemma: The flux of the
magnetic field through a surface can also be calculated as the line
integral over the corresponding vector potential, from which the field
derives, for a contour delimiting the surface.

3.6.3 General Expression for the Vector Potential

Although the vector potential is an analogy to the scalar electrostatic
potential, it is more difficult to handle than the latter and cannot always
be given in a simple closed form. However, we can derive a general
expression for ~A(~r).

We start from Eq. (3.7), rewritten using the reference frame and
position vectors as shown in Fig. 3.15. Then

~B(~r) =
µ0 I

′

4π

∮
C′

~dr
′
× ~r − ~r ′

||~r − ~r ′||3
(3.50)
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We reformulate the integrand as follows:

~dr
′
× ~r − ~r ′

||~r − ~r ′||3
= − ~dr

′
×∇r

1

||~r − ~r ′||

= ∇r
1

||~r − ~r ′||
× ~dr

′
+

1

||~r − ~r ′||
∇r × ~dr

′

= ∇r ×
~dr
′

||~r − ~r ′||
(3.51)

where in the second line a zero has been added. Here it has, moreover,
been used that in general

~rot
(
u(~r) ~G(~r)

)
=
(
~gradu(~r)

)
× ~G(~r) + u(~r) ~rot ~G(~r) (3.52)

and in our particular case u(~r) := 1
||~r−~r ′|| and ~G(~r) := ~dr

′
. With this

reformulation the magnetic field from Eq. (3.50) becomes

~B(~r) =
µ0 I

4π

∮
C′

∇r ×
~dr
′

||~r − ~r ′||

= ∇r ×

µ0 I

4π

∮
C′

~dr
′

||~r − ~r ′||

 (3.53)

and by comparison with Eq. (3.48) it immediately follows that

~A(~r) =
µ0 I

4π

∮
C′

~dr
′

||~r − ~r ′||
(3.54)

which is a general expression for the magnetic vector potential in case
of a filamentary current density producing the magnetic field. This
expression may be readily generalized to the case of a volume current
density:
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~A(~r) =
µ0

4π

∫∫∫
V ′

~J(~r ′)

||~r − ~r ′||
dV ′ (3.55)

In the case of motional point charges, the charged current density from
Eq. (2.6) will be used and the vector potential is then written as

~A(~r) =
µ0

4π

n∑
j=1

qj ~vj

∫∫∫
V ′

δ(3)(~r ′ − ~rj)
||~r − ~r ′||

dV ′ (3.56)

Let us finally investigate the divergence of the magnetic vector poten-
tial. Starting from Eq. (3.54) for the case of a filamentary current

∇r · ~A(~r) =
µ0 I

4π

∮
C′

∇r ·
~dr
′

||~r − ~r ′||

= −µ0 I

4π

∮
C′

~dr
′
·∇r′

1

||~r − ~r ′||
(3.57)

This holds true due to the general relation

div
(
u(~x) ~G(~x)

)
= u(~x) div ~G(~x) + ~G(~x) · ~gradu(~x)

and the fact that ∇r
1

||~r−~r ′|| = −∇r′
1

||~r−~r ′||. Eq. (3.57) is reformulated
using Stokes’ Theorem, Eq. (3.34) for the vector field ∇r′

1
||~r−~r ′|| to

∇r · ~A(~r) = −µ0 I

4π

∫∫
S ′

[
∇r′ ×

(
∇r′

1

||~r − ~r ′||

)]
· ~n dS (3.58)

But due to the identity Eq. (3.40) the curl of a gradient always vanishes,
and so the integrand becomes zero. Therefore,

div ~A = 0 (3.59)
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for a vector potential produced by a filamentary current density. This
result can be generalized to arbitrary stationary current densities and
their associated vector potentials by starting from Eq. (3.55) and using
the divergence theorem and a boundary surface of a very large volume
on which the current density is zero.

3.7 Gauge Invariance and Electromagnetic Gauge

The electrostatic scalar potential V (~r) is determined up to a constant.
This constant vanishes when the electrostatic field is calculated from
the underlying potential, and so ~E(~r) is invariant with respect to an
infinite set of different potentials, given the limitation to an additive
constant.

There is an analogy in magnetism. Here it results from the fact that
~B = ~rot ~A. Suppose we vary a vector potential by adding the gradient
of an arbitrary scalar field f (~r):

~A −→ ~A′ = ~A + ~gradf (3.60)

Eq. (3.60) is called an electromagnetic gauge transformation. Now
we calculate the magnetic field for the transformed vector potential, as

~B′ = ~rot ~A′ = ~rot ~A + ~rot
(
~gradf

)
= ~B, (3.61)

which is true due to the linearity of the curl operation and due to the
fact that the curl of any gradient vanishes, Eq. (3.40).

In turn, this means that the scalar field f (~r) can be chosen freely
without changing the resulting magnetic field, and therefore without
changing the physics of magnetism.

An important choice is the so-called Coulomb gauge, defined by
the condition

div ~A′ = 0. (3.62)
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Using the general gauge transformation, Eq. (3.60), we arrive at

div ~A′ = div ~A + div
(
~gradf

)
= ∆ f, (3.63)

where Eq. (3.59) has been used, and so

∆ f (~r) = 0. (3.64)

This means that in Coulomb gauge the scalar field is not just some
scalar field, but one that satisfies Laplace’s equation, Eq. (1.92).
Physically, since Laplace’s equation is valid in regions without electric
sources, this gauge is also called radiation gauge5.

Another gauge fixing often used in physics is the Feynman gauge,
which will be discussed in more advanced courses of electromagnetism,
in particular when the concepts of special Einsteinian relativity have
been introduced.

3.8 Magnetic Multipole Expansion

We have already seen in section 1.9 how the electrostatic potential can
be expanded into multipole terms. A corresponding expansion can be
carried out for the magnetic vector potential ~A.

The basis for the expansion is now a spatial region with an arbitrary
current density distribution, ~J(~r ′), see Fig. (3.17). We start out
from the general expression for the vector potential, Eq. (3.55),

~A(~r) =
µ0

4π

∫∫∫
V ′

~J(~r ′)

||~r − ~r ′||
dV ′

and use Eq. (1.103) from the multipole expansion for the electrostatic
5The theory of electromagnetic radiation requires the departure from the stationary regime and the introduction

of the time-dependent domain.



3.8. MAGNETIC MULTIPOLE EXPANSION 85

−

1

2

3 i
=

ϑ

dV ’

J

O x

x

x PR

rr

rr ’

’

V

’

Figure 3.17: Current density distribution seen from a point P which is farther from the origin
than any of the currents inside the respective region.

potential, where it was found that

1

||~r − ~r ′||
=

∞∑
`=0

1

r`+1
r′
`
P`(cosϑ′) (3.65)

Combining the above two equations gives the vector potential as

~A(~r) =
µ0

4π

∞∑
`=0

1

r`+1

∫∫∫
V ′

~J(~r ′) r′
`
P`(cosϑ′)dV ′

=
µ0

4πr

∫∫∫
V ′

~J(~r ′) dV ′ monopole term, ` = 0

+
µ0

4πr2

∫∫∫
V ′

~J(~r ′) (~er · ~r ′) dV ′ dipole term, ` = 1

+
µ0

4πr3

∫∫∫
V ′

1

2
~J(~r ′)

[
3 (~er · ~r ′)2 − r′2

]
dV ′ quadrupole term, ` = 2

Just like for the electrostatic multipole expansion, the goal is to write
the vector potential ~A(~r) as a series in terms of multipole moments
which are only functions of the current density distribution. The first
term is the
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3.8.1 Magnetic Monopole Moment

We begin with a manipulation of a component of the stationary current
density distribution

Jx(~r
′) = ~J(~r ′) · ~ex + x′~∇~r ′ · ~J(~r ′) (3.66)

Due to the stationary form of the continuity equation (2.15) the term
that has been added in Eq. (3.66) is zero, and so

Jx(~r
′) = ~∇~r ′ · (x′ Jx(~r ′)) . (3.67)

This identity is seen to be true using relation (4).
The volume integral over Jx(~r ′) is, therefore,∫∫∫
V ′

Jx(~r
′) dV ′ =

∫∫∫
V ′

~∇~r ′ ·
(
x′ ~J(~r ′)

)
dV ′ =

{

S ′(V ′)

x′ ~J(~r ′) · ~n dS ′

(3.68)
where the divergence theorem Eq. (1.86) has been used. But since
the current density distribution is, by definition, localized in space, the
boundary surface S(V) can always be chosen such that there is no flux
of ~J(~r ′) traversing it. Thus,

∫∫∫
V ′ Ji(~r

′)dV ′ = 0, ∀ i ∈ {1, 2, 3}.
This means that there are no magnetic monopoles in the frame-

work of magnetostatics6.

3.8.2 Magnetic Dipole Moment

[TO BE CONTINUED ... ACTUALLY, THIS IS WHERE THE REAL
FUN BEGINS.]

3.9 Poisson’s Equation in Magnetism

Poisson’s equation in electrostatics, Eq. (1.91), relates the electrostatic
potential and its sources, electric charges. We wish to obtain a corre-

6The analogy in electrostatics is
∫∫∫
V′ ρ(~r

′) dV ′ = Qin pointing to the existence of electric monopoles.
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sponding local relation between the vector potential and the sources of
the magnetic field, electric currents.

The magnetic field is divergence free, so it is of interest to study its
curl in the light of the relationship between magnetic field and vector
potential. Starting from Ampère’s Theorem in local form, Eq. (3.30),
we have

~rot ~B = ~rot
(
~rot ~A

)
= µ0

~J (3.69)

It can be shown that a double curl of a vector field can be written as

~rot
(
~rot ~A

)
= ~grad

(
div ~A

)
−∆ ~A, (3.70)

and so, using Coulomb gauge, Eq. (3.63),

∆ ~A = −µ0
~J (3.71)

which is Poisson’s equation in magnetism.
As a lemma, we here add the corresponding relation for electrostat-

ics. Taking the curl of the electric field yields

~rot ~E = − ~rot
(
~gradV

)
= 0, (3.72)

due to Eq. (3.40). Thus, the electric field is curl free which consitutes
the local form of one Maxwell’s Equations already encountered
in electrostatics, Eq. (1.27),

~rot ~E = 0. (3.73)
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Chapter 4

Summary: Maxwell’s Equations in the
Stationary Regime

Local form

~rot ~E = ~0 div ~B = 0 Structure equations
div ~E = ρ

ε0
~rot ~B = µ0

~J Relation between field and source

Integral form∮
C

~E · ~dr = 0
v

S

~B · ~n dS = 0
v

S

~E · ~n dS = Q
ε0

∮
C

~B · ~dr = µ0 It

89
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.1 Exercises 1: Electrostatic field, discrete distributions

1. Coulomb’s law, electrostatic field, electrostatic force
Be a two-dimensional cartesian coordinate system and a point
charge q0 = −e located at the point (0, 3), q1 = +2e at (−3,−1),
and q2 = −q1 at (3,−1).

(a) Calculate the total electrostatic field ~E(M) at the location of
q0 (M) due to the two other charges q1 and q2.

(b) Determine the total electrostatic force acting on q0.
(c) Show that sum of the norms of the two individual forces does

not equal the norm of the total force vector.
(d) Calculate the norm of the total force acting on q0 in units of

the S.I..
(e) Visualize the different contributions to ~E(M) and ~F (M) graph-

ically.

2. Linear charge distribution
Be a semi-circle of radius R carrying a homogeneous linear charge
density λ. Calculate the electrostatic field at the center of the
corresponding circle as a function of λ.
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Homework

1. Be a hemisphere of radius R carrying a homogeneous surface charge
density σ. Calculate the electrostatic field at the center of the cor-
responding sphere as a function of σ.

2. Consider two point charges q1 = +e and q2 = −e at a distance
d. Determine a few field lines of the resulting dipole field by deter-
mining the direction of the electrostatic field at a number of chosen
points. Trace the resulting field lines.
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.2 Exercises 2: Electrostatic field and potential, continuous
distributions

1. We consider an idealized circular disc centered at O and perpendic-
ular to the axis z′Oz, of outer radius r = b and inner radius r′ = a.
The disc is uniformly charged, and its surface charge density be σ.

(a) Determine the electrostatic field ~E and the electrostatic po-
tential V at an arbitrary point M along the z axis. We set
V (∞) = 0.

(b) Use the results of the preceding exercise to deduce:
i. The electrostatic field and potential of a full disc of radius
R at an arbitrary point along the z axis,

ii. the electrostatic field created by a plane of infinite size.

Homework:
Be a positive point charge q at the origin of a cartesian coordinate

frame.

1. We consider two concentric circles C1 and C2 around the origin of
radii r1 and r2.

(a) Calculate the line integral of the electrostatic field created by q
for the path between two points A0(r1, ϕ0) and A1(r1, ϕ1) along
C1.

(b) Calculate the line integral of the electrostatic field for the path
from A0(r1, ϕ0) to B0(r2, ϕ0), which is located on C2.

(c) Calculate the line integral for two different paths from A0(r1, ϕ0)

to B1(r2, ϕ1).

2. Calculate the electrostatic field of a point charge using the local
relation between electrostatic potential and electrostatic field and
the “nabla” operator.



.3. EXERCISES 3: SYMMETRY PLANES AND THE ELECTROSTATIC FIELD 93

.3 Exercises 3: Symmetry planes and the electrostatic field

1. Determine for the following cases all possible unique planes of sym-
metry and/or antisymmetry, and give the direction of the electro-
static field in every point lying in such a plane,

(a) for a muon1 µ,
(b) an electric dipole, consisting of an electron e− and a positron

e+ at a finite distance,
(c) an electric quadrupole, formed by placing a π meson (π+) at

position (a, 0, 0) and another at (−a, 0, 0), respectively, and a
π− at position (0, a, 0) and another at (0,−a, 0), respectively,
of a cartesian coordinate frame.
Determine the direction of the electrostatic field at points (0, 0, z),
(x, 0, 0), (0, y, 0), (x, x, 0), (x, y, 0).

Homework:
Determine all possible unique planes of symmetry and/or antisym-

metry for a uniformly and positively charged finite cylinder. Determine
the direction of the electrostatic field for all kinds of points.

1A muon is a lepton of the second generation, carrying a charge −e.
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.4 Exercises 4: Gauss’s Theorem

1. Be an infinitely long cylinder of radius a, placed along the axis z′z,
containing a uniform charge density ρ.

(a) Based on symmetry considerations due to the uniformity of
the charge distribution, determine for an arbitrary point M in
space
i. The direction of ~E(M),
ii. The set of coordinates on which ~E(M) depends.

(b) Calculate the electrostatic field ~E(M) for 0 < ρ < ∞ using
Gauss’s theorem!

(c) From the preceding result deduce V (M).
(d) Let the radius a of the cylinder tend to zero. As a consequence,

the charge distribution will become that of an infinitely thin
and infinitely long wire, carrying the one-dimensional charge
density λ. Use the result obtained in 1b to determine ~E(M)

for this new charge distribution.

2. We consider an infinitely extended and infinitely thin sheet in the
(y, z) plane, carrying a uniform and positive surface charge density
σ.

(a) Determine the direction of the electrostatic field at any point
in space using symmetry arguments.

(b) Calculate the electrostatic field ~E(M) using Gauss’s Theorem.
(c) Trace the graph of the scalar function E(x).
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Homework:
Consider two infinitely extended parallel planes P1 and P2 separated

by d and placed at x = d/2 and x = −d/2, respectively. P1 carries a
uniform charge density σ1, P2 a uniform charge density σ2. Determine
the electrostatic field at any point M . Distinguish two different cases:
1) σ1 = σ2 = σ, and 2) σ1 = −σ2 = σ, with σ > 0. Trace the graph
of the function E(x).
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.5 Exercises 5: Divergence and Green’s Identities

1. Divergence

(a) Be a position vector ~r = x~ex + y~ey + z~ez. Calculate div~r.
(b) Use the preceding result and Gauss-Ostrogradsky’s Theorem to

calculate the volume of a sphere of radius R.
(c) Calculate div~er with ~er the normal radial vector.
(d) Be a vector field ~A = −y~ex + x~ey. Visualize ~A in the plane

(x, y). Calculate div ~A.

2. Green’s Theorems
Be φ(x, y, z) and ψ(x, y, z) arbitrary differentiable scalar fields. We
can in general write a vector field as ~A = φ ~gradψ. The derivative
with respect to a normal coordinate ~n onto a surface S(V) delim-
iting the volume V be ∂

∂n = ~n · ~grad.

(a) Deduce the first of Green’s identities:∫∫∫
V

[
φ∆ψ +

(
~gradψ

)(
~gradφ

)]
dV =

{

S(V)

φ
∂ψ

∂n
dS (1)

using the Gauss-Ostrogradsky theorem for the vector field ~A.
(b) Use this result to deduce Green’s second identity∫∫∫

V

[φ∆ψ − ψ∆φ] dV =
{

S(V)

[
φ
∂ψ

∂n
− ψ∂φ

∂n

]
dS (2)
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.6 Exercises 6: Electrostatic Multipole Expansion

1. Prove the Taylor expansion in Eq. (1.98).

2. Legendre’s Polynomials
Use Rodriguez’ formula to calculate the first polynomials up to
k = 3 and verify that Eqs. (1.101) and (1.104) are indeed identical
for this set.

3. A single point charge be located at the point (x, y, z) in cartesian
coordinates. Find the monopole moment and the dipole moment
for this system.

4. Determine the monopole moment and the dipole moment of the
following distribution of point charges in the (x, y) plane:
−q in (−2, 0), −q in (2, 0), 3q in (0, 2), q > 0. Determine the
dipole moment of the same distribution after having displaced the
charges by ~a (which corresponds to a displacement of the origin).

5. Determine the monopole moment and the dipole moment of the
following distribution of point charges in the (x, y) plane:
q in (−1, 1), −q in (−1,−1), q > 0.
Determine the dipole moment of the same distribution after having
displaced the charges by ~a. Conclusion?

6. Point charges are placed at the corners of a cube of edge a. The
charges and their locations are as follows: −3q at (0, 0, 0), −2q at
(a, 0, 0), −q at (a, a, 0), q at (0, a, 0), 2q at (0, a, a), 3q at (a, a, a),
4q at (a, 0, a), 5q at (0, 0, a). Find the monopole moment and the
dipole moment of this charge distribution.

Homework:

1. Be a sphere centered at the origin. Its upper hemisphere carries a
uniform charge volume charge density ρ−, its lower hemisphere a
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uniform charge volume charge density ρ−, with ρ− = −ρ+. Deter-
mine the electric dipole moment of the system.
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.7 Exercises 7: Multipoles, Electrostatic Energy, and Conti-
nuity Equation

1. Estimation of the ionization potential of a lithium (Li) atom.
We use a simple electrostatic model of a light atom by placing point
charges into the (x, y) plane in the following manner:

x

y

e

e

e

Li
3

Figure 1: Electrostatic model of the Li atom

The nucleus of the Li atom carries charge Ze
with Z = 3. The unit of length for the grid
be unity.

(a) Calculate the electric monopole moment of the charge distribu-
tion (what is the result if the lower right electron is removed?).

(b) Calculate the electric dipole moment of the charge distribution
with respect to the given origin (what is the result if the lower
right electron is removed?).

(c) Shift the origin to the point (−1,−1). Recalculate the electric
dipole moment (what is the result if the lower right electron is
removed?).

(d) Calculate the electrostatic energy of the configuration given in
Figure 1 using an explicit expression for point charges. Give
the result in units of e2

4πε0
.
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(e) Show that the same result is obtained if a surface charge den-
sity function σ(x, y) is introduced, i.e., use the expression εe =
1
2

∫∫
S

σV dS.

(f) The ionization potential (IP)2 is in this context defined as IP =

−εe. Calculate IP in units of [J ] and [eV ] with the following
values for the constants:

e ≈ 1.602 · 10−19 [C]

ε0 ≈ 8.854 · 10−12
[
s2C2

kg m3

]
1[J ] ≈ 6.241 · 1018 [eV ]

The length unit for the grid is now taken to 10[pm] which is
the typical length scale “inside” an atom.

2. At a given instant, a system has a charged current density given
by ~J = A(x3~ex + y3~ey + z3~ez), where A is a positive constant.

(a) In what units will A be measured?
(b) At this instant, what is the change of the charge density at the

point (2,−1, 4)[m]?

2This is the jargon of atomic physicists. It is more correct to call this ionization energy and to relate it to the
ionization potential via the charge of the electron.
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.8 Exercises 8: Lorentz Force and Biot and Savart’s law

1. Be a point charge q moving with constant velocity v along the z
axis in positive direction, in presence of a constant external electric
field ~E = Ex~ex + Ey~ey + Ez~ez a constant external magnetic field
~B = Bx~ex + By~ey + Bz~ez.
Calculate the work that is carried out on the particle when it travels
from O to point z. Conclusion?

2. Magnetic field created by a circular loop of wire.
Be a circular loop of wire of radius R, centered around the Oz axis,
carrying a stationary linear current intensity I .

(a) Determine ~B(M) for any point M on the z axis.
(b) Plot the graph of B(z).

3. Magnetic field created by a straight wire.
We consider a piece of rectilinear wire of length L, oriented along
the Oz axis and carrying a stationary linear current intensity I in
the direction ~ez.

(a) Calculate the magnetic field ~B at a point M located at a dis-
tance ρ from the wire and in the plane orthogonal to the wire
and cutting it in half.

(b) Sketch a few magnetic field lines.
(c) From the expression you have obtained, deduce the magnetic

field for lim
L→∞

.
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.9 Exercises 9: Symmetry of the Magnetostatic Field and
Ampère’s Theorem

1. Rectilinear wire of infinite length.

• Reconsider the wire from exercise section .8, exercise 3c. Use
the symmetry properties of the magnetic field to determine
the direction and the orientation of the magnetic field in the
following points:

(x, 0, 0) with x > 0

(0, y, 0) with y > 0

(0, 0, z)

• Use Ampère’s Theorem in integral form to determine the mag-
netic field ~B(M) for an arbitrary point M .

2. Reconsider the circular loop from exercise 2. Use the symmetry
properties of the magnetic field to determine the direction and the
orientation of the magnetic field in the following points:

(0, 0, z) with z 6= 0

(0, 0, 0)

(2R, 0, 0)

Trace a few field lines of the resulting field ~B.

Homework:

Suppose a rectilinear wire had the shape of a square, side length a. It
carries a stationary current intensity I. Determine the magnetic field
vector at the center of the square.
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.10 Exercises 10: Curl, Ampère’s Theorem in local form and
Stokes’ Theorem

1. Be a scalar field V (~r) = f
r where f is a constant and r is a radial

spherical coordinate. Calculate ~rot
(
~gradV (~r)

)
.

2. Prove the validity of Ampère’s Theorem in local form for the case
of the rectilinear wire for the pointsM in space where the magnetic
field is well defined.

3. Be a vector field ~A(~x) = x2~e1 − x1~e2. Use the (x1, x2) plane and
a square contour to validate Stokes’ Theorem for the given vector
field ~A.
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.11 Exercises 11: Vector analysis in Magnetostatics and Lo-
cal Structure Equation

1. Prove the validity of relation (3.38).

2. Prove the validity of relation (3.40).

3. Validate the structure equation of the magnetostatic field for the
case of the field surrounding a rectilinear wire carrying a stationary
linear current intensity I .
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.12 Exercises 12: Vector analysis in Magnetostatics and the
Magnetic Vector Potential

1. Prove Eq. (3.52).

2. Validate the identity
3∑
i=1

εijk εilm = δjlδkm − δjmδkl.

3. Use the expression from exercise 2 to prove the identity ~rot
(
~a(~r)×~b(~r)

)
.

4. For a spatially uniform magnetostatic field, the vector potential
can be written as3

~A(~r) =
1

2
~B × ~r. (3)

(a) By using the relation from exercise 3, show that this vector
potential indeed represents the magnetostatic field.

(b) Prove that ~A(~r) is divergence free.
(c) Visualize ~A(~r).

Homework:

1. Calculate the double curl of a vector field, i.e., ~rot
(
~rot ~G(~r)

)
, and

give the result in the most compact form.

3This kind of field and vector potential is important in atomic physics in the context of the Zeeman effect.
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.13 Exercises 13: Gauge transformation and Magnetic Mul-
tipoles
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.14 Vector analysis. Important relations and proofs

.14.1 Basic relations

div
[
a(~r)~b(~r)

]
=

3∑
i=1

~ei ·
∂

∂xi

a(~r)
3∑
j=1

~ej bj(~r)


=

3∑
i,j=1

δij
∂

∂xi
[a(~r) bj(~r)]

=

3∑
i=1

[
∂a(~r)

∂xi
bi(~r) + a(~r)

∂bi(~r)

∂xi

]
= a(~r) div~b(~r) +~b(~r) · ~grad a(~r) (4)

.14.2 Relations involving vector products

When more complicated mathematical expressions have to be handled,
it is a powerful technique to express the vector product by using the
Levi-Civita symbol, ε, defined as

εijk =


+1 if i, j, k even permutation
−1 if i, j, k odd permutation
0 in all other cases.

∀i, j, k ∈ {1, 2, 3} (5)

A basic application of Eq. (5) is in the definition of the vector product:

~a×~b =

3∑
i,j,k=1

εijk aibj~ek (6)

Similarly, the curl of a vector field can be expressed in a very compact
form as

~rot~G(~x) = ∇~x × ~G(~x) =

3∑
i,j,k=1

εijk
∂

∂xi
Gj(~x)~ek (7)
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Suppose we are confronted with an expression, actually occurring fre-
quently in electrodynamics, like div

[
~a×~b

]
, where ~a = ~a(~r) and ~b =

~b(~r) are vector fields. With the help of Eq. (5) we can write the di-
vergence of the vector product mentioned above in a very convenient,
index-based fashion

div
[
~a(~r)×~b(~r)

]
=

3∑
i=1

~ei ·
∂

∂xi

 3∑
j=1

3∑
k=1

3∑
l=1

εjkl ak(~r) bl(~r)~ej


=

3∑
i,j,k,l=1

~ei · εjkl
(
∂ak
∂xi

bl + ak
∂bl
∂xi

)
~ej

=

3∑
i,j,k,l=1

δij εjkl

(
∂ak
∂xi

bl + ak
∂bl
∂xi

)

=

3∑
j,k,l=1

εjkl
∂ak
∂xj

bl +

3∑
j,k,l=1

εjkl ak
∂bl
∂xj

=

3∑
j,k,l=1

εklj
∂al
∂xk

bj +

3∑
j,k,l=1

εkjl aj
∂bl
∂xk

=

3∑
i,j,k,l=1

~ei · ~ej εklj
∂al
∂xk

bi +

3∑
i,j,k,l=1

~ei · ~ej εkjl ai
∂bl
∂xk

=
∑
i

bi ~ei ·
3∑

j,k,l=1

εklj
∂al
∂xk

~ej +
∑
i

ai ~ei ·
3∑

j,k,l=1

εkjl
∂bl
∂xk

~ej

div
[
~a×~b

]
= ~b · ~rot~a− ~a · ~rot~b (8)
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The curl of the gradient of an arbitrary scalar field vanishes:

~rot
(
~grad f (~x)

)
=

3∑
i,j,k=1

εijk
∂

∂xi

(
3∑
l=1

~el
∂

∂xl
f (~x)

)
· ~ej ~ek

=

3∑
i,j,k,l=1

εijk
∂

∂xi

∂

∂xl
f (~x)δjl ~ek

=

3∑
i,j,k=1

εijk
∂

∂xi

∂

∂xj
f (~x)~ek

=

(
∂

∂x1

∂

∂x2
− ∂

∂x2

∂

∂x1

)
f (~x)~e3(

∂

∂x2

∂

∂x3
− ∂

∂x3

∂

∂x2

)
f (~x)~e1(

∂

∂x3

∂

∂x1
− ∂

∂x3

∂

∂x1

)
f (~x)~e2

~rot
(
~grad f (~x)

)
= ~0 (9)



110CHAPTER 4. SUMMARY: MAXWELL’S EQUATIONS IN THE STATIONARY REGIME

Divergence of the curl of an arbitrary vector field:

div
(
~rot~G(~r)

)
=

3∑
i=1

∂

∂xi
~ei ·

 3∑
j,k,l=1

εjkl
∂

∂xj
Gk(~r)~el


=

3∑
i,j,k,l=1

δil εjkl
∂

∂xi

∂

∂xj
Gk(~r)

=

3∑
i,j,k=1

εjki
∂

∂xi

∂

∂xj
Gk(~r)

=

3∑
i,j,k=1

εijk
∂

∂xi

∂

∂xj
Gk(~r)

= 0 (10)

The last step is evident as for every term k in the sum there is a pair
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of terms with i 6= j with opposite signs.

Double curl of an arbitrary vector field:

~rot
(
~rot ~G(~x)

)
=

3∑
i,j,k=1

εijk
∂

∂xi

 3∑
l,m,n=1

εlmn
∂

∂xl
Gm(~x)~en

 · ~ej ~ek
=

3∑
i,j,k,l,m,n=1

εijk εlmn δjn
∂

∂xi

∂

∂xl
Gm(~x)~ek

=

3∑
i,j,k,l,m=1

εjki εjlm
∂

∂xi

∂

∂xl
Gm(~x)~ek

=

3∑
i,k,l,m=1

(δklδim − δkmδil)
∂

∂xi

∂

∂xl
Gm(~x)~ek

=

3∑
i,k=1

∂

∂xi

∂

∂xk
Gi(~x)~ek −

3∑
i,k=1

∂

∂xi

∂

∂xi
Gk(~x)~ek

=

3∑
k=1

∂

∂xk
~ek

(
3∑
i=1

∂

∂xi
Gi(~x)

)
−

3∑
i=1

∂2

∂x2
i

(
3∑

k=1

Gk(~x)~ek

)
= ~grad

(
div ~G(~x)

)
−∆ ~G(~x) (11)
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Curl of the product of a scalar and a vector field:

~rot
(
u(~x) ~G(~x)

)
=

3∑
i,j,k=1

εijk
∂

∂xi

(
3∑
l=1

u(~x)Gl(~x)~el

)
· ~ej ~ek

=

3∑
i,j,k,l=1

εijk δjl

(
u(~x)

∂Gl(~x)

∂xi
+
∂u(~x)

∂xi
Gl(~x)

)
~ek

=

3∑
i,j,k=1

εijk

(
u(~x)

∂Gj(~x)

∂xi
+
∂u(~x)

∂xi
Gj(~x)

)
~ek

= u(~x)

3∑
i,j,k=1

εijk
∂

∂xi
Gj(~x)~ek

+

3∑
i,j,k=1

εijk

(
3∑
l=1

~el
∂u(~x)

∂xl

)
· ~eiGj(~x)~ek

= u(~x) ~rot~G(~x) +
(
~gradu(~x)

)
× ~G(~x) (12)


